用户名: 密码: 验证码:
骨吸收抑制剂阿伦膦酸钠对TRPV5~(-/-)小鼠骨代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TRPV5是选择性钙离子通道,参与钙离子的吸收和重吸收,其主要表达于肾脏远曲/集合小管、十二指肠及骨破骨细胞的皱褶缘。已有研究显示TRPV5和TRPV6在骨组织均有表达,但两者的生理作用目前还不清楚。阿伦膦酸钠是第三代骨吸收抑制剂,在细胞水平上阿伦膦酸钠主要通过减少破骨细胞数量,抑制破骨细胞皱褶缘的形成,降低成熟破骨细胞溶酶体酶的释放,而降低破骨细胞的功能。
     本实验引进了TRPV5基因敲除小鼠杂合子,饲养和繁殖按照SPF级要求的动物饲养标准进行,从子代筛选出野生型TRPN5+/+及纯合子TRPV5-/-。为了研究阿伦膦酸钠对TRPV5+/+和TRPV5-/-小鼠骨、肾脏、十二指肠的钙离子通道的表达的影响,本实验将TRPV5+/+和TRPV5-/-小鼠分为四组饲养,其中两组基因型不同的小鼠每周分别给予阿伦膦酸钠2mg/kg一次,连续给予8周,采集血液及尿液标本并做生化分析,小鼠股骨、肾脏、十二指肠制样。从小鼠股骨中提取破骨细胞培养,并对其表面皱褶缘上的钙离子通道进行定量多聚酶链反应分析,应用CT对股骨进行扫描,并对钙离子的吸收峰值进行检测。
     应用阿伦膦酸钠处理的TRPV5+/+小鼠股骨的厚度增加,而TRPV5-/-鼠股骨厚度由减少转为正常,而肾脏和十二指肠的钙离子通道没有改变。两种基因型小鼠的破骨细胞皱褶缘上的CLC-7蛋白及液泡H+-ATPase的表达未见明显改变,但是阿伦膦酸钠显著增加了TRPV5-/-小鼠的甲状旁腺激素的水平及表达。破骨细胞培养液中TRPV5,液泡CLC-7及液泡H+-ATPase均未受阿伦膦酸钠的影响,TRPV5-/-小鼠的骨髓培养中骨吸收陷窝减少,两者对维生素D的反应未见明显区别。阿伦膦酸钠促使TRPV5+/+小鼠的TRPV5基因上调,而降低TRPV5-/-小鼠破骨细胞的吸收功能说明阿伦膦酸钠在破骨细胞功能中发挥着很重要的作用。
     经过阿伦膦酸钠处理后,TRPV5+/+处理组小鼠的液泡H+-ATPase和Cl-通道CLC-7mRNA的表达与处理前比较没有改变,相反,阿伦膦酸钠增加了TRPV5-/-小鼠的液泡H+-ATPase和Cl-通道CLC-7的表达。骨再吸收功能被阿伦膦酸钠抑制后,仅有TRPV5的表达进行增量调节,这说明TRPV5在破骨细胞功能中发挥着重要作用。
     血清高PTH或者PTH任何下游区效应,均是参与维持钙离子的高吸收,然而PTH对钙离子通道表达和钙离子再吸收的刺激反应已被肾脏证实,PTH受体存在于肠道受体,刺激肠道对钙离子的吸收。阿伦膦酸钠介导的对骨再吸收功能的抑制导致钙离子失衡,迫使PTH的诱导作用加长,最终维持血钙水平。
     阿伦膦酸钠处理的TRPV5-/-小鼠骨质厚度和体积指数明显正常化,且骨吸收标记物DPD在尿液中的排泄量减少。另外由于骨吸收被抑制,所以肾脏钙离子排泄减少,骨中钙离子释放也减少。这些资料提示TRPV5对于破骨细胞的骨再吸收是必需的。TRPV5-/-小鼠破骨细胞皱褶缘表达的液泡H+-ATPase和Cl-通道CLC-7未见改变,两者对破骨细胞的骨再吸收发挥重要作用,这一结果提示TRPV5-/-小鼠仍保留有破骨细胞介导的骨再吸收功能,可能是TRPV6代偿TRPV5的功能。
Gene knockout is a self-developed since the late 80s a new type of molecular biology techniques, is the body through a certain way so that a particular gene inactivation or deletion of technology. Gene knockout technology, commonly used in the establishment of a specific gene deletion in animal models, which carry out related research. By gene knockout to determine the nature of specific genes and to study the impact of its body, whether it is understanding the root causes of the disease or to find the target goal of gene therapy are of great significance. At present, the gene knockout mice to study the occurrence of the disease mechanism, diagnosis and treatment of the molecular basis of important experimental material. TRPV5 is a calcium ion-selective channels involved in calcium absorption and re-absorption, its main expression in the kidney distal convoluted/collecting duct, duodenum, and bone osteoclasts fold edge. Alendronate is a third generation of bone resorption inhibitor, at the cellular level, alendronate, primarily by reducing the number of osteoclasts, inhibit osteoclast formation of edge folds, lower mature osteoclast lysosomal enzyme the release, which will reduce osteoclast function. In this study, the introduction of TRPV5 heterozygous knock-out mice, feeding and breeding in accordance with the requirements SPF-class standards of animal husbandry carried out three kinds of offspring phenotype may occur, namely, the wild-type TRPV5+/+, heterozygous TRPV5+/- and homozygous TRPV5-/-, thus a need to conduct genotyping of the offspring, thereby screening out the wild-type TRPV5+/+ and homozygous TRPV5-/-. In order to study of alendronate on TRPV5+/+ and TRPV5-/- mice with bone, kidney, duodenum calcium ion channel expression, this experiment will TRPV5+/+ and TRPV5-/- mice were divided into four groups kept in metabolic cages, in which two groups of mice of different genotypes were given alendronate weekly 2mg/kg once a row for 8 weeks, collecting blood and urine specimens and do biochemical analysis, mouse femur, kidney, duodenum sample preparation. Extracted from mouse femur bone broken cell culture, and its surface folds calcium channel on the edge of a quantitative polymerase chain reaction analysis, application uCT right femur scan, and calcium absorption peak for testing. Application of alendronate treated TRPV5+/+ mice increased the thickness of the femur, while the TRPV5-/- mouse femoral thickness reduced to normal, the expression of both TRPV5 was significantly increased, while the kidney and the duodenum calcium channel has not changed. Two kinds of genotypes of mice osteoclasts folds on the edge of CLC-7 protein and vacuolar H+-ATPase expression in no significant change, however, alendronate significantly increased TRPV5-/- mice, PTH hormone levels and expression. Osteoclast culture medium TRPV5, CLC-7, and the vacuolar H+-ATPase were not affected by the effects of alendronate, TRPV5-/- mice with bone marrow culture to reduce bone resorption, the two pairs of vitamin D, Reaction was no significant difference. Alendronate prompted TRPV5+/+ mice TRPV5 genes increases, which will reduce TRPV5-/- mice osteoclasts absorption shows TRPV5 functions in osteoclasts play a very important role. Studies have shown that TRPV5-/- mice, bone re-absorption process is still ongoing, because alendronate can TRPV5-/- mice, normalization of bone thickness.
引文
[1]Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev, 2005,85:373-422.
    [2]Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem,1999,274:8375-8378.
    [3]Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H,Brown EM, Hediger MA. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem,1999,274:22739-46.
    [4]Hoenderop JGJ, Vennekens R, Mu(?)ller D, Prenen J, Droogmans G, Bindels RJM, Nilius B. Function and expression of the epithelial Ca2+ channel family:comparison of the epithelial Ca2+ channel 1 and 2. J Physiol (Lond),2001,537:747-761.
    [5]Peng JB, Brown EM, Hediger MA. Structural conservation of the genes encoding CaT1, CaT2, and related cation channels. Genomics,2002,176:99-109.
    [6]Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest,2003,112:1906-1914.
    [7]Qiu A, Hogstrand C. Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes. Gene 2004,342:113-123.
    [8]Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJ Homo-and heterotetramericarchitecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J,2003,22:776-785.
    [9]Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR. Calcium-selective ion channel, CaT1. is apically localized in gastrointestinal tract epithelia 189 and is aberrantly expressed in human malignancies. Lab Invest,2002, 82:1755-1764.
    [10]Muller D, Hoenderop JG, Meij IC, van den Heuvel LP, Knoers NV, den Hollander AI, Eggert P, Garcia-Nieto V, Claverie-Martin F, Bindels RJ. Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel (ECAC1). Genomics,2000,67:48-53.
    [11]Peng JB, Brown EM, Hediger MA. Apical entry channels in calcium-transporting epithelia. News Physiol Sci,2003,18:158-163.
    [12]Gunthorpe MJ, Benham CD, Randall A, Davis JB. The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci,2002,23:183-191.
    [13]Benham CD, Davis JB, Randall AD. Vanilloid and TRP channels:a family of lipid-gated cation channels. Neuropharmacology,2002,42:873-888.
    [14]Voets T, Prerien J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bo(?)dding M, Droogmans G, Nilius B. Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem,2002,277:33704-33710.
    [15]Nilius B, Vriens J, Prenen J, Droogmans G, Voets T TRPV4 calcium entry channel:a paradigm for gating diversity. Am J Physiol,2004,286:C195-C205.
    [16]Nilius B, Vennekens R, Prenen J, Hoenderop JG, Droogmans G, Bindels RJ. The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem,2001,276:1020-1025.
    [17]Voets T, Janssens A, Prenen J, Droogmans D, Nilius G. Mg2+-dependent gating and strong inward rectification of the cation channel TRPV6. J Gen Physiol 2003,121:245-260.
    [18]Hoenderop JG, Nilius B, Bindels RJ. Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol,2002,64:529-549.
    [19]Peng JB, Brown EM, Hediger MA. Epithelial Ca2+ entry channels:transcellular Ca2+ transport and beyond. J Physiol,2003,551:729-740.
    [20]Lee CT, Huynh VM, Lai LW, Lien YH. Cyclosporine A-induced hypercalciuria in calbindin-D28k knockout and wild-type mice. Kidney Int,2002,62:2055-2061.
    [21]Zheng W, Xie Y, Li G, Kong J, Feng JQ, Li YC. Critical role of calbindin-D28k in calcium homeostasis revealed by mice lacking both vitamin D receptor and calbindin-D28k. J Biol Chem,2004,279:52406-52413.
    [22]Bianco S, Peng JB, Takanaga H, Kos CH, Crescenzi A, Brown EM, Hediger MA Mice lacking the epithelial calcium channel CaTl (TRPV6) show a deficiency in intestinal calcium absorption despite high plasma levels of 1,25-dihydroxy vitamin D. FASEB J,2004,18:706-714.
    [23]Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol,2003,14:2731-2740.
    [24]Reichel H, Koeffler HP, Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med,1989,320:980-991
    [25]Friedman PA, Gesek FA. Cellular calcium transport in renal epithelia:measurement, mechanisms, and regulation. Physiol Rev,1995,75:429-471.
    [26]Hemmingsen C, Staun M, Lewin E, Nielsen PK, Olgaard K. Effect of parathyroid hormone on renal calbindin-D28k. J Bone Miner Res,1996,11:1086-1093.
    [27]Friedman PA, Coutermarsh BA, Kennedy SM, Gesek FA. Parathyroid hormone stimulation of calcium transport is mediated by dual signaling mechanisms involving protein kinase A and protein kinase C. Endocrinology,1996,137:13-20.
    [28]van Baal J, Hoenderop JG, Groenendijk M, van Os CH, Bindels RJ, Willems PH. Hormone-stimulated Ca2+ transport in rabbit kidney:multiple sites of inhibition by exogenous ATP. Am J Physiol,1999,277:F899-F906.
    [29]Brown AJ, Dusso A, Slatopolsky E. Vitamin D. Calcitriol controls the epithelial Ca2+ channels and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice Am J Physiol,1999,277:F157-F175.
    [30]van Abel M, Hoenderop JG, Van Leeuwen HJ, Bindels R. Down-regulation of calcium transporters in kidney and duodenum by the calcimimetic compound NPS R-467. J Am Soc Nephrol,2003,14:459A.
    [31]Hoenderop JG, Dardenne O, Van Abel M, Van Der Kemp AW, Van Os CH, St-Arnaud R, Bindels RJ. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice. FASEB J,2002,16:1398-1406.
    [32]Hoenderop JG, Muller D, Van Der Kemp AW, Hartog A, Suzuki M, Ishibashi K, Imai M, Sweep F, Willems PH, Van Os CH et al. Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol,2001,12:1342-1349.
    [33]van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ. Regulation of the epithelial Ca2+ in small intestine as studied by quantitative mRNA detection. Am J Physiol,2003,285:G78-G85.
    [34]Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R et al. Duodenal calcium absorption in vitamin D receptor-knockout mice:functional and molecular aspects. Proc Natl Acad Sci USA,2001,98:13324-13329.
    [35]Song Y, Peng X, Porta A, Takanaga H, Peng JB, Hediger MA, Fleet JC, Christakos S. Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology,2003,144:3885-3894.
    [36]Bouillon R, Van Cromphaut S, Carmeliet G. Intestinal calcium absorption:molecular vitamin D mediated mechanisms. J Cell Biochem,2003,88:332-339.
    [37]Fleet JC, Bradley J, Reddy GS, Ray R, Wood RJ.1 alpha,25-(OH)2-vitamin D3 analogs with minimal in vivo calcemic activity can stimulate significant transepithelial calcium transport and mRNA expression in vitro. Arch Biochem Biophys,1996,329: 228-234.
    [38]Fleet JC, Eksir F, Hance KW, Wood RJ. Vitamin Dinducible calcium transport and gene expression in three Caco-2 cell lines. Am J Physiol,2002,283:G618-G625.
    [39]Fleet JC, Wood RJ. Specific 1,25(OH)2D3-mediated regulation of transcellular calcium transport in caco-2 cells. Am J Physiol,1999,276:G958-G964.
    [40]Wood RJ, Tchack L, Taparia S.1,25-Dihydroxyvitamin D3 increases the expression of the CaTl epithelial calcium channel in the Caco-2 human intestinal cell line. BMC Physiol,2001,1:11-19.
    [41]Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 2003,14:2731-2740.
    [42]Brown AJ, Finch J, Slatopolsky E. Differential effects of 19-nor-1,25-dihydroxyvitamin D(2) and 1,25-dihydroxyvitamin D(3) on intestinal calcium and phosphate transport. J Lab Clin Med,2002,139:279-284.
    [43]Weber K, Erben RG, Rump A, Adamski J. Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun,2001,289:1287-1294.
    [44]Hoenderop JG, van der Kemp AW, Urben CM, Strugnell SA, Bindels RJ. Effects of vitamin D compounds on renal and intestinal Ca2+ transport proteins in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice. Kidney Int,2004,66:1082-1089.
    [45]Dardenne O, Prud'homme J, Hacking SA, Glorieux FH, St-Arnaud R. Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1). Bone,2003,32:332-340
    [46]Nordin BE, Need AG, Morris HA, Horowitz M, Robertson WG. Evidence for a renal calcium leak in postmenopausal women. J Clin Endocrinol Metab,1991,72:401-407.
    [47]Prince RL, Smith M, Dick IM, Price RI, Webb PG, Henderson NK, Harris MM. Prevention of postmenopausal osteoporosis. A comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med,1991,325: 1189-1195.
    [48]Van Abel M, Hoenderop JG, Dardenne O, St Arnaud R, Van Os CH, Van Leeuwen HJ, Bindels RJ.1,25-dihydroxyvitamin D3-independent stimulatory effect of estrogen on the expression of ECaCl in the kidney. J Am Soc Nephrol,2002,13:2102-2109.
    [49]van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol,2003,285:G78-G85.
    [50]Van Cromphaut SJ, Rummens K, Stockmans I, Van Herck E, Dijcks FA, Ederveen AG, Carmeliet P, Verhaeghe J, Bouillon R, Carmeliet G. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms. J Bone Miner Res,2003,18:1725-1736.
    [51]Weber K, Erben RG, Rump A, Adamski J, Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun, 2001,289:1287-1294.
    [52]Peng JB, Zhuang L, Berger UV, Adam RM, Williams BJ, Brown EM, Hediger MA, Freeman MR.CaTl expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun,2001,282:729-734.
    [53]Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H, Flockerzi V TRPV6 and prostate cancer:cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun,2004, 322:1359-1363.
    [54]Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V.Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem, 2001,276:19461-19468.
    [55]Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H. Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer:a novel prognostic marker for tumor progression. Oncogene,2003,22:7858-7861.
    [56]Rodino MA, Shane E. Osteoporosis after organ transplantation. Am J Med,1998,104: 459-469.
    [57]Reid IR.Glucocorticoid osteoporosis-mechanisms and management. Eur J Endocrinol,1997,137:209-217.
    [58]Stempfle HU, Werner C, Siebert U, Assum T, Wehr U, Rambeck WA, Meiser B, Theisen K, Gartner R.The role of tacrolimus (FK506)-based immunosuppression on bone mineral density and bone turnover after cardiac transplantation:a prospective, longitudinal, randomized, doubleblindtrial with calcitriol. Transplantation,2001,73:547-552.
    [59]Nijenhuis T, Hoenderop JG, Bindels RJ.Downregulation of Ca2+ and Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol,2004,15:549-557.
    [60]Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 1991,66:807-815.
    [61]Fruman DA, Klee CB, Bierer BE, Burakoff SJ.Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proc Natl Acad Sci USA,1992, 89:3686-3690.
    [62]O'Keefe SJ, Tamura J, Kincaid RL, Tocci MJ, O'Neill EA. FK506-and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature,1992,357:692-694.
    [63]Aicher L, Meier G, Norcross AJ, Jakubowski J, Varela MC, Cordier A, Steiner S.Decrease in kidney calbindin-D28 kDa as a possible mechanism mediating cyclosporine Aand FK-506-induced calciuria and tubular mineralization. Biochem Pharmacol,1997,53:723-731.
    [64]Steiner S, Aicher L, Raymackers J, Meheus L, Esquer-Blasco R, Anderson NL, Cordier A. Cyclosporine A decreases the protein level of the calcium-binding protein calbindin-D28 kDa in rat kidney. Biochem Pharmacol,1996,51:253-258.
    [65]Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature,1989,341:755-757.
    [66]Harding MW, Galat A, Uehling DE, Schreiber SL. A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature,1989,341: 758-760.
    [67]Schreiber SL.Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science,1991,251:283-287.
    [68]Goel M, Garcia R, Estacion M, Schilling WP. Regulation of Drosophila TRPL channels by immunophilin FKBP59. J Biol Chem,2001,276:38762-38773.
    [69]Hoenderop JG, Chon H, Gkika D, Bluyssen HA, Holstege FC, St-Arnaud R, Braam B, Bindels RJ.Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3-1a-hydroxylase knockout mice. Kidney Int65:531-539.
    [70]Monroy A, Plata C, Hebert SC, Gamba G.Characterization of the thiazide-sensitive Na+-Cl_ cotransporter:a new model for ions and diuretics interaction. Am J Physiol, 2000,279:F161-F169.
    [71]Ray WA, Griffin MR, Downey W, Melton LJ. Longterm use of thiazide diuretics and risk of hip fracture. Lancet,1989,11:687-690.
    [72]Reid IR, Ames RW, Orr-Walker BJ, Clearwater JM, Home AM, Evans MC, Murray MA, McNeil AR, Gamble GD. Hydrochlorothiazide reduces loss of cortical bone in normal postmenopausal women:a randomized controlled trial. Am J Med,2000,109: 362-370.
    [73]LaCroix AZ, Wienpahl J, White LR, Wallace RB, Scherr PA, George LK, Cornoni-Huntley J, Ostfeld AM. Thiazide diuretic agents and the incidence of hip fracture. N Engl J Med,1990,322:286-290.
    [74]Costanzo LS, Windhager EE. Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol,1978,235:F492-F506.
    [75]Ellison DH.Divalent cation transport by the distal nephron:insights from Bartter's and Gitelman's syndromes. Am J Physiol,2000,279:F616-F625.
    [76]Reilly RF, Ellison DH. Mammalian distal tubule:physiology, pathophysiology, and molecular anatomy. PhysiolRev,2000,80:277-313.
    [77]Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev,2001,81:51-84
    [78]Nijenhuis T, Hoenderop JG, Loffing J, van der Kemp AW, van Os CH, Bindels RJ.Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transport proteins in kidney. Kidney Int,2003,64:555-564.
    [79]Gitelman HJ, Graham JB, Welt LG. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians,1966,79:221-235.
    [80]Lemmink HH, van den Heuvel LP, van Dijk HA, Merkx GF, Smilde TJ, Taschner PE, Monnens LA, Hebert SC, Knoers NV. Linkage of Gitelman syndrome to the thiazide-sensitive sodium-chloride cotransporter gene with identification of mutations in Dutch families. Pediatr Nephrol,1966,10:403-407
    [81]Hoenderop JG, Hartog A, Stuiver M, Doucet A, Willems PH, Bindels RJ. Localization of the epithelial Ca2+ channel in rabbit kidney and intestine. J Am Soc Nephrol,2000, 11:1171-1178.
    [82]Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B.Human cortical distal nephron:distribution of electrolyte and water transport pathways. J Am Soc Nephrol,2002,13:836-847.
    [83]Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B.Distribution of transcellular calcium and sodium 191transport pathways along mouse distal nephron. Am J Physiol,2001,281: F1021-F1027.
    [84]Friedman PA, Bushinsky DA,Diuretic effects on calcium metabolism. Semin Nephrol, 1999,19:551-556.
    [85]Friedman PA. Codependence of renal calcium and sodium transport. Annu Rev Physiol,1998,60:179-197.
    [86]Reilly RF, Ellison DH, Mammalian distal tubule:physiology, pathophysiology, and molecular anatomy. Physiol Rev,2000,80:277-313.
    [87]Friedman PA. Codependence of renal calcium and sodium transport. Annu Rev Physiol,1998,60:179-197.
    [88]Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ.Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest,2005, 115:1651-1658.
    [89]Lee CT, Shang S, Lai LW, Yong KC, Lien YH.Effect of thiazide on renal gene expression of apical calcium channels and calbindins. Am J Physiol,2004,287: F1164-F1170.
    [90]Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Duffy JJ, Doetschman T, Miller ML, Shull GE.Phenotype resembling Gitelman's syndrome inmice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule. J Biol Chem,1998,273:29150-29155.
    [91]Loffing J, Vallon V, Loffing-Cueni D, Aregger F, Richter K, Pietri L, Bloch-Faure M, Hoenderop JG, Shull GE, Meneton P, et al. Altered renal distal tubule structure and renal Na+ and Ca2+ handling in a mouse model for Gitelman's syndrome. J Am Soc Nephrol,2004,15:2276-2288.
    [92]Erler I, Hirnet D, Wissenbach U, Flockerzi V, Niemeyer BA.Ca2+-selective TRPV channel architecture and function require a specific ankyrin repeat. J Biol Chem,2004, 279:34456-34463.
    [93]Chang Q, Gyftogianni E, van de Graaf SF, Hoefs S, WeidemaFA, Bindels RJ, Hoenderop JG. Molecular determinants in TRPV5 channel assembly. J Biol Chem, 2004,279:54304-54311.
    [94]Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M.Homo-and heteromeric assembly of TRPV channel subunits. J Cell Sci,2005,118:917-928.
    [95]Peng JB, Hediger MA. A family of calcium-permeable channels in the kidney:distinct roles in renal calcium handling.Curr Opin Nephrol Hypertens,2002,11:555-561.
    [96]Van de Graaf SF, Hoenderop JG, Gkika D, Lamers D, Prenen J, Rescher U, Gerke V, Staub O, Nilius B, Bindels RJ. Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J,2003,22:1478-1487.
    [97]Gerke V, Moss SE. Annexins:from structure to function. Physiol Rev,2003,82: 331-371.
    [98]Menaa C, Devlin RD, Reddy SV, Gazitt Y, Choi SJ, Roodman GD. Annexin Ⅱ increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures. J Clin Invest,1999,103:1605-1613.
    [99]Gkika Dimitra, Mahieu Frank, Nilius Bernd, et al.80K-H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5). J of Biological Chemistry.2004,279(25):26351-7.
    [100]Palmada M, Poppendieck S, Embark HM, van de Graaf SF, Boehmer C, Bindels RJ, Lang F. Requirement of PDZ domains for the stimulation of the epithelial Ca2+ channel TRPV5 by the NHE regulating factor NHERF2 and the serum and glucocorticoid inducible kinase SGK1. Cell PhysiolBiochem,2005,15:175-182.
    [101]Yun CC, Palmada M, Embark HM, Fedorenko O, Feng Y, Henke G, Setiawan I, Boehmer C, Weinman EJ, Sandrasagra S, et al. The serum and glucocorticoid-inducible kinase SGK1 and the Na+/H+ exchange regulating factor NHERF2 synergize to stimulate the renal outer medullary K+ channel ROMK1. J Am Soc Nephrol,2002,13:2823-2830.
    [102]Palmada M, Embark HM, Yun C, Bohmer C, Lang F. Molecular requirements for the regulation of the renal outer medullary K+ channel ROMK1 by the serum- and glucocorticoid-inducible kinase SGK1. Biochem Biophys Res Commun,2003,311: 629-634.
    [103]Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ.Permeation and gating properties of the novel epithelial Ca2+ channel. J Biol Chem,2000,275:3963-3969.
    [104]Nilius B, Vennekens R, Prenen J, Hoenderop JG, Droogmans G, Bindels RJ. The single pore residue D542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem,2001,276:1020-1025.
    [105]Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H.Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature,1999,399:159-162.
    [106]DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature,2001,411: 484-489.
    [107]Niemeyer BA, Bergs C, Wissenbach U, Flockerzi V, Trost C. Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin. Proc Natl Acad Sci USA,2001,98:3600-3605.
    [108]Nilius B, Weidema AF, Prenen J, Hoenderop JG, Vennekens R, Hoefs S, Droogmans G, Bindels RJ.The carboxylterminus of the epithelial Ca2+ channel ECaCl is involved in Ca2+-dependent inactivation. Pflugers Arch,2003,445:584-588.
    [109]Lambers TT, Weidema AF, Nilius B, Hoenderop JG, Bindels RJ. Regulation of the mouse epithelial Ca2+ channel TRPV6, by the Ca2+-sensor calmodulin. J Biol Chem, 2004,279(28):28855-28861.
    [110]Gkika D, Mahieu F, Nilius B, Hoenderop JG, Bindels RJ.80K-H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5). J Biol Chem,2004,279:26351-26357.
    [111]Hirai M, Shimizu N. Purification of two distinct proteins of approximate Mr 80,000 from human epithelial cells and identification as proper substrates for protein kinase C. Biochem J,1990,270:583-589.
    [112]Bindels RJ, Hartog A, Abrahamse SL, Van Os CH. Effects of pH on apical calcium entry and active calcium transport in rabbit cortical collecting system. Am J Physiol, 1994,266:F620-F627.
    [113]Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G, Nilius B. Modulation of the epithelial Ca2+ channel ECaC by extracellular pH. Pflugers Arch, 2001,442:237-242.
    [114]Peng JB, Chen XZ, Berger UV, Vassilev PM, Brown EM, Hediger MA. A rat kidney-specific calcium transporter in the distal nephron. J Biol Chem,2000,275: 28186-28194.
    [115]Yeh BI, Sun TJ, Lee JZ, Chen HH, Huang CL. Mechanism and molecular determinant for regulation of rabbit transient receptor potential type 5 (TRPV5) channel by extracellular pH. J Biol Chem,2003,278:51044-51052
    [116]王又红.基因敲除技术的应用现状与发展前景.国外医学,1999,26:1-5.
    [117]Muller,-U.Ten years of gene targeting:targeted mouse mutants, from vector design to phenotype analysis. Mech-Dev,1999, Apr,82:3-21.
    [118]Ledermann,-B. Embryonic stem cells and gene targeting. Exp-Physiol.2000, Nov, 85(6):603-13.
    [119]Thomas P. homologous recombination in human ES cell. Nature publish on line,2003, 10:Feb.
    [120]Nelson RJ, Young KA. Behavior in mice with targeted disruption of single genes. Neurosci Biobehav Rev 1998,22:453-62.
    [121]Hasty P. Andrew Holmes Targeted gene mutation approaches to the study of anxiety-like behavior in mice Neuroscience and Biobehavioral Reviews. Nature, 25:261-273.
    [122]Roberto P, Stockl, Alejandro Olveral, Ricardo Sanchezl. Inhibition of gene expression in Entamoeba histolytica with antisense peptide nucleic acid oligomers. Nature Publishing Group,2001,34:245-52.
    [123]ARMINHALLMANN*, ANNETTE RAPPEL, AND MANFRED SUMPER Gene replacement by homologous recombination in the multicellular green alga Volvox carteri Proc. Natl Acad Sci.1997,94:7469-7474,
    [124]Joel S, Bedford*, Howard L. Liber Applications of RNA interference for studies in DNA damage processing, genome stability, mutagenesis, and cancer Seminars in Cancer.Biology,2003,13:301-308.
    [125]U. Klinner B. Sch(?)afer Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiology Reviews.2004,28:201-223.
    [126]Georg Mellitzera, Marc Halloneta, Lan Chena, Siew-Lan Anga. Spatial and temporal 'knock down' of gene expression by electroporation of double-stranded RNA and morpholinos into early postimplantation mouse embryos. Mechanisms of Devel-opment,2002,118:57-63.
    [127]H-akan Thonberg,* Camilla C, Cecilia Dahlgren. Claes Wahlestedt Characterization of RNA interference in rat PC 12 cells:requirement of GERp95. Biochemical and Biophysical Research Communications,2004,318:927-934.
    [128]Nijenhuis T, Hoenderop JG, Bindels RJ. TRPV5 and TRPV6 in Ca2+(re) absorption: Regulating Ca2+ entry at the gate. Pflugers Arch,2005,451:181-192.
    [129]Hoenderop JG, van Leeuwen JP, van der Eerden B, Kersten F, van der Kemp AW, Merrliat A, Waarsing E, Rossier B, VallonV, Hummler E, Bindels RJ. Renal Ca2+ wasting, hyperabsorption and reduced bone thickness in mice lacking TRPV5. J Clin Invest,2003,112:1906-1914.
    [130]Van der Eerden BC, Hoenderop JG, de Vries TJ, Schoenmaker T, Buurman CJ, Uitterlinden AG, Pols HA, Bindels RJ, van Leeuwen JP. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc. Natl Acad Sci USA, 2005,102:17507-17512.
    [131]Harada S, Rodan GA.Control of osteoblast function and regulation of bone mass. Nature,2003,423:349-355.
    [132]Nijenhuis T, Hoenderop JG, van der Kemp AW, Bindels RJ. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol, 2003,14:2731-2740.
    [133]Hoenderop JG, Nilius B, Bindels RJ.Calcium absorption across epithelia. Physiol Rev, 2005,85:373-422.
    [134]Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH. Willems PH, Bindels RJ.Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitaminD3-responsive epithelia. J Biol Chem,1999,274:8375-8378.
    [135]Lee GS, Lee KY, Choi KC, Ryu YH, Paik SG, Oh GT, Jeung EB. Phenotype of a calbindin-D9k gene knockout is compensated for by the induction of other calcium transporter genes in a mouse model. J Bone Miner Res,2007,22:1968-1978.
    [136]Kutuzova GD, Akhter S, Christakos S, Vanhooke J, Kimmel-Jehan C, Deluca HF. Calbindin D(9k) knockout mice are indistinguishable from wild-type mice in phenotype and serum calcium level. Proc Natl Acad Sci USA,2006,103:12377-12381.
    [137]Zheng W, Xie Y, Li G, Kong J, Feng JQ, Li YC 200.4 Critical role of calbindin-D28k in calcium homeostasis revealed by mice lacking both vitamin D receptor and calbindin-D28k. J Biol Chem,2004,279:52406-52413.
    [138]Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazideinduced hypocalciuria and hypomagnesemia. J Clin Invest,2005,115: 1651-1658.
    [139]Van Abel M, Hoenderop JG, Friedlaender MM, van Leeuwen JP, Bindels RJ. Coordinated control of renal Ca2+ transport proteins by parathyroid hormone. Kidney Int,2005,68:1708-1721.
    [140]Renkema KY, Nijenhuis T, Van der Eerden BCJ, Van der Kemp AWCM, Weinans H, van Leeuwen JP, Bindels RJM, Hoenderop JGJ.Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol, 2005,16:3188-3195.
    [141]Reszka AA, Rodan GA. Mechanism of action of bisphosphonates.Curr Osteoporos Rep,2003,1:45-52.
    [142]Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC.Cellular and molecular mechanisms of action of bisphosphonates. Cancer,2000, 88(12 Suppl):2961-2978.
    [143]Hoenderop JG, Muller D, Van Der Kemp AW, Hartog A,Suzuki M, Ishibashi K, Imai M, Sweep F, Willems PH, Van OsCH, Bindels RJ. Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol,2001,12:1342-1349.
    [144]Nijenhuis T, Hoenderop JG, Loffing J, van der Kemp AW, Van Os C, Bindels RJ.Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transporting proteins in the distal tubule. Kidney Int,2003,64:555-564.
    [145]Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet,2000,25:343-346.
    [146]Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C.Mutations in the a3 subunit of the vacuolar H+-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet,2000,9:2059-2063.
    [147]Van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ.Regulation of the epithelial Ca2+ channelsin small intestine as studied by quantitative mRNA detection.Am J Physiol Gastroinstest Liver Physiol,2003,285: G78-G85.
    [148]Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry:Standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res,1987,2:595-610.
    [149]Pettersson U, Albagha OM, Mirolo M, Taranta A, Frattini A,McGuigan FE, Vezzoni P, Teti A, Van Hul W, Reid DM, Villa A, Ralston SH. Polymorphisms of the CLCN7 Gene Are Associated With BMD in Women. J Bone Miner Res,2005,20:1960-1967.
    [150]Henriksen K, Gram J, Schaller S, Dahl BH, Dziegiel MH, Bollerslev J, Karsdal MA.Characterization of osteoclasts from patients harboring a G215R mutation in CLC-7 causing autosomal dominant osteopetrosis type Ⅱ. Am J Pathol,2004, 164:1537-1545.
    [151]Laitala-Leinonen T, Lowik C, Papapoulos S, Vaananen HK. Inhibition of intravacuolar acidification by antisense RNA decreases osteoclast differentiation and bone resorption in vitro. J Cell Sci,1999,112:3657-3666.
    [152]Suda T, Ueno Y, Fujii K, Shinki T.Vitamin D and bone.J Cell Biochem,2003,88: 259-266.
    [153]Smith EA, Frankenburg EP, Goldstein SA, Koshizuka K, Elstner E, Said J, Kubota T, Uskokovic M, Koeffler HP.Effects of long-term administration of vitamin D3 analogs to mice. J Endocrinol,2000,165:163-172.
    [154]Holt I, Marshall MJ, Davie MW. Pamidronate stimulates recruitment and decreases longevity of osteoclast nuclei inmice. Semin Arthritis Rheum,1994,23:263-264.
    [155]Martin TJ, Sims NA.Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med,2005,11:76-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700