用户名: 密码: 验证码:
米非司酮的糖皮质激素拮抗效应对人子宫NK细胞的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
米非司酮是一种人工合成的19-去甲基睾酮衍生物,具有抗孕激素和糖皮质激素作用。从首次合成米非司酮以来,米非司酮已被广泛用作抗早孕治疗,并成功用于紧急避孕。多年来的基础和临床研究表明,米非司酮在妇产科学、内分泌学、肿瘤学及免疫学等多个领域表现出一定的应用潜力。近年的研究表明,米非司酮对女性的排卵、激素水平以及月经出血模式没有明显影响,但是能够延缓子宫内膜的成熟,从而达到内膜避孕的作用。然而,米非司酮内膜避孕的作用机制还不十分清楚。第一部分人子宫内膜间质细胞对uNK细胞体外存活及功能的影响目的:明确人子宫内膜间质细胞对uNK细胞体外存活、增殖及毒性功能的影响。方法:分离不同时期女性子宫内膜和蜕膜间质细胞,体外培养制备间质细胞条件培养液。从早孕蜕膜组织中分离、分选得到高纯度的人uNK细胞,采用流式细胞方法检测细胞的表型。在光镜下观测了不同时期间质细胞条件培养液对uNK细胞形态学的影响;采用基于乳酸脱氢酶活性为基础的MTS试剂盒检测不同时期间质细胞条件培养液对uNK细胞增殖的影响,并采用流式细胞方法检测uNK细胞对靶细胞K562的细胞杀伤作用。结果:在本实验中,采用细胞免疫磁珠分选方法可以得到高纯度的人uNK细胞(94.52±2.44%)。外源性IL-2能够明显维持uNK细胞的体外存活,并对靶细胞的细胞毒性有促进作用。单独的不同时期间质细胞条件培养液均不能维持uNK细胞的体外存活,但分泌期和早孕期间质细胞条件培养基能够明显增加uNK细胞体外增殖(1.12±0.03和1.22±0.06,p<0.05)。与对照组相比(63.39±±5.18%),不同时期间质细胞条件培养液均能明显降低uNK细胞毒性功能(46.98±±3.58%,45.28±±4.05%,43.72±±1.67%,p<0.05),而这种抑制作用在不同时期间质细胞条件培养液间并没有显著差异(p>0.05)。结论:人子宫间质细胞条件培养基不能维持uNK细胞的体外存活,但能够通过细胞增殖和毒性的影响来调节uNK细胞功能。第二部分米非司酮对人子宫NK细胞生物活性的影响目的:研究米非司酮对人uNK细胞体外增殖、凋亡、IFN-γ分泌、细胞毒性功能及穿孔素和颗粒酶-B蛋白表达水平的影响。方法:体外分选得到的高纯度人uNK细胞,采用不同浓度米非司酮进行体外处理。采用MTS试剂盒检测细胞增殖情况;采用流式细胞方法检测细胞凋亡、毒性功能及毒性颗粒的表达情况;ELISA试剂盒检测细胞IFN-γ分泌水平。结果:不同浓度米非司酮对人uNK细胞的体外增殖、凋亡及IFN-γ的分泌功能均没有明显影响。经65nmol/L和200nmol/L的米非司酮处理后,uNK细胞的毒性分别为68.92±5.96%和69.62±4.22%,虽然高于对照组(62.24±4.39%),但没有显著性差异(p>0.05);1000nmol/L的米非司酮能够明显增加其细胞毒性(73.16±4.27%,p<0.05)。1000nmol/L米非司酮不会影响人uNK细胞颗粒酶-B的蛋白表达(50.50±0.02%和45.97±0.03%,p>0.05),但能够增加穿孔素的蛋白表达水平(49.13±0.03%和36.23±0.05%,p<0.05)。结论:米非司酮对人uNK细胞的体外增殖、凋亡及IFN-γ的分泌功能均没有影响,但可能通过对穿孔素表达水平的上调作用来增加uNK细胞的毒性功能。第三部分米非司酮在人子宫NK细胞毒性调节中的作用及机制目的:研究米非司酮的糖皮质激素拮抗效应在人uNK细胞毒性功能和穿孔素蛋白表达调节中的作用及可能的信号途径。方法:体外分离得到的高纯度人uNK细胞,分别采用不同浓度的孕激素、皮质醇以及米非司酮进行体外处理。采用流式细胞方法检测了uNK细胞毒性功能和穿孔素蛋白的表达情况;采用免疫蛋白印迹检测了ERK1/2、p38和JNK蛋白磷酸化水平的变化;采用ERK1/2蛋白活化的特异性抑制剂PD98059检测了ERK1/2活性在米非司酮诱导的uNK细胞毒性功能和穿孔素表达调节中的作用。结果:不同浓度的孕激素对uNK细胞毒性没有明显影响;而1×10-6M和1×10-5M的皮质醇能够明显降低uNK细胞的细胞毒性(55.07±4.04%、56.20±3.11%和62.30±2.69%,p<0.05)。1×10-6M的米非司酮能够促进uNK细胞毒性功能(62.30±2.69%和73.16±4.26%,p<0.05)和穿孔素蛋白的表达(36.23±4.84%和49.13±2.92%,p<0.05);1×10-6M皮质醇能够抑制米非司酮对uNK细胞毒性功能(73.16±4.26%3和66.92±2.87%,p<0.05)和穿孔素蛋白表达的诱导(49.13±2.92%和33.14±3.45%,p<0.05)。1×10-6M的米非司酮能够增加ERK1/2蛋白的磷酸化水平,但对p38和JNK蛋白磷酸化水平没有明显影响;皮质醇对米非司酮诱导的ERK1/2蛋白的磷酸化水平具有抑制作用(0.87±0.09和0.48±0.07,p<0.05)。此外,PD98059能够明显降低米非司酮对uNK细胞毒性和穿孔素蛋白表达的诱导作用。结论:米非司酮通过糖皮质激素拮抗效应来促进人uNK细胞毒性功能和穿孔素的表达,并诱导ERK1/2蛋白的磷酸化。ERK1/2信号途径可能参与了米非司酮对uNK细胞毒性功能和穿孔素表达的调节。
Mifepristone (RU486) is a synthetic19-norsteroid, which is a potent antagonist of progesterone and glucocorticoid. When it was first found, mifepristone has been used as an abortion drug. Accumulating evidences from the basic and clinical researches demonstrated a variety of potential applications for mifepristone in the areas of gynecology, endocrinology, oncology, and immunology. Recently, several studies have shown that low-dose mifepristone retards endometrial development to achieve the purpose of contraception, so-called endometrial contraception. However, the exact mechanisms responsible for contraception by mifepristone are not fully understood.Part I Effects of human uterine stromal cells on uNK-cell survival and function in vitro Objective:To investigate the effects of human uterine stromal cells on uNK-cell survival, proliferation and cytotoxicity in vitro.Methods:Human endometrial stromal cells were separated in vitro. The conditioned medium was derived from the endometrial stromal cells in proliferative phase, secretory phase, and early pregnancy. Uterine natural killer (uNK) cells were separated and purified from human decidual samples of early pregnancy and analysed by flow cytometer. The effects of stromal cell-derived conditioned medium on the morphology of uNK cells were detected by light microscope. uNK-cell proliferation and cytotoxicity to target cells K562were examined by mitochondrial lactate dehydrogenase-based MTS staining and flow cytometry.Results:In current study, the high purity of uNK cells could be purified by using the human NK-cell immune magnetic beads isolation system (94.52±2.44%). Recombination IL-2could maintain uNK-cell survival and promote uNK-cell cytotoxicity. Conditioned medium from stromal cells at different physiological stages could not maintain uNK-cell survival in vitro; conditioned medium from stromal cells in both the secretory phase and early pregnancy could promote uNK-cell proliferation (1.12±0.03and1.22±0.06). In contrast with the control group (63.39±5.18%), conditioned medium in all groups were able to inhibit uNK-cell cytotoxicity (46.98±3.58%,45.28±4.05%,43.72±1.67%). However, there was no significant difference among the proliferation, secretory, and decidua groups.Conclusion:Human endometrial stromal cells could not maintain the uNK-cell survival, but may be involved in the regulation of uNK-cell functions through influencing proliferation and cytotoxicity. Part Ⅱ Effects of mifepristone on the bioactivity of human uNK cellsObjective:To investigate the influences of different doses of mifepristone on the proliferation, apoptosis, IFN-γ secretion, and the expression of perforin and granzyme-B in human uNK cells.Methods:Human uNK cells were purified from decidual tissue and treated with different concentrations of mifepristone in vitro. The cell proliferation was examined by using MTS staining; flow cytometer was used to evaluate the apoptosis, cytotoxicity and expression of perforin and granzyme-B; ELISA assay was used to detect the secretion level of IFN-γ.Results:We found that mifepristone (0,65,200and1000nmol/L) dose not directly affect the proliferation, apoptosis, and IFN-γ secretion of human uNK cells.65nmol/L and200nmol/L mifepristone had no significant influence on uNK cell-mediated cytotoxicity (68.92±5.96%,69.62±4.22%and62.24±4.39%, p>0.05), which could be significantly augmented by1000nmol/L mifepristone (62.24±4.39%and73.16±4.27%, p<0.05). In addition,1000nmol/L mifepristone significantly promoted the expression level of perforin (49.13±0.03%and36.23±0.05%, p<0.05) but not granzyme-B (50.50±0.02%and45.97±0.03%, p>0.05).Conclusion:Our current study indicated that mifepristone dose not directly affect the proliferation, apoptosis, and IFN-y secretion of uNK cells, but augments uNK-cell cytotoxicity and this effect is probably due to the increased expression of perforin by mifepristone. Part Ⅲ The roles and mechanisms of mifepristone in the regulation of human uNK-cell cytotoxicityObjective:To explored whether the increased cytotoxicity and perforin expression in uNK cells by mifepristone is due to either anti-progesterone or anti-glucocorticoid activity, and also investigated relevant changes in the mitogen-activated protein kinase (MAPK) pathway and evaluated the roles of ERKl/2activity in mifepristone-induced changes of human uNK-cell cytotoxicity and perforin expression.Methods:Human uNK cells were purified from decidual tissue and treated with different concentration of progesterone, cortisol and mifepristone in vitro. Flow cytometer was used to examine the cytotoxicity and perforin expression of uNK cells; Western blotting was used to detect the phosphorylation level of ERK1/2, p38and JNK. A specific ERK1/2inhibitor of the MAPK pathway, PD98059, was used to evaluate the roles of ERK1/2activity in the mifepristone-induced changes of human uNK-cell cytotoxicity and perforin expression.Results:Progesterone had no effects on the cytotoxicity of human uNK cells and cortisol (1×10-6M and1×10-5M) significantly decreased in the cytotoxicity of uNK cells (55.07±4.04%,56.20±3.11%and62.30±2.69%, p<0.05). Mifepristone (1×10-6M) increased the uNK cell-mediated cytotoxicity (62.30±2.69%and73.16±4.26%, p<0.05) and perforin expression (36.23±4.84%and49.13±2.92%, p<0.05) and these effects could be reversed by cortisol (1×10-6M)(73.16±4.26%3and66.92±2.87%, p<0.05;49.13±2.92%and33.14±3.45%, p<0.05). Mifepristone increased the phosphorylation levels of ERK1/2but not p38and JNK in uNK cells; cortisol significantly suppressed the mifepristone-induced phosphorylation of ERK (0.87±0.09and0.48±0.07, p<0.05). After pretreatment with PD98059, mifepristone had no effect on uNK cell-mediated cytotoxicity and perforin expression, with or without cortisol.Conclusion:Mifepristone augments the uNK-cell cytotoxicity and increases the perforin expression through the antagonism of glucocorticoid, and induces the phosphorylation of ERK1/2in human uNK cells. ERK1/2pathway may be involved in the immune regulation of human uNK cells by mifepristone.
引文
[1]Narvekar N, Cameron S, Critchley H O, et al. Low-dose mifepristone inhibits endometrial proliferation and up-regulates androgen receptor. [J]. J Clin Endocrinol Metab,2004,89(5):2491-2497.
    [2]Spitz I M. Progesterone receptor antagonists.[J]. Curr Opin Investig Drugs, 2006,7(10):882-890.
    [3]Gemzell-Danielsson K, Marions L. Mechanisms of action of mifepristone and levonorgestrel when used for emergency contraception.[J]. Hum Reprod Update, 2004,10(4):341-348.
    [4]Croy B A, van den Heuvel M J, Borzychowski A M, et al. Uterine natural killer cells:a specialized differentiation regulated by ovarian hormones.[J]. Immunol Rev, 2006,214:161-185.
    [5]Hansen K A, Opsahl M S, Nieman L K, et al. Natural killer cell activity from pregnant subjects is modulated by RU 486.[J]. Am J Obstet Gynecol,1992,166(1 Pt 1):87-90.
    [6] Van Voorhis B J, Anderson D J, Hill J A. The effects of RU 486 on immune function and steroid-induced immunosuppression in vitro.[J]. J Clin Endocrinol Metab,1989,69(6):1195-1199.
    [7] Chien C H, Lai J N, Liao C F, et al. Mifepristone acts as progesterone antagonist of non-genomic responses but inhibits phytohemagglutinin-induced proliferation in human T cells.[J]. Hum Reprod,2009,24(8):1968-1975.
    [8]Zhu H X, Zhang W W, Zhuang Y L, et al. Mifepristone as an anti-implantation contraceptive drug:roles in regulation of uterine natural killer cells during implantation phase.[J]. Am J Reprod Immunol,2009,61(1):68-74.
    [9] Chen X Y, Zhuang Y L, Li L, et al. The effect of mifepristone on the peripheral blood natural killer cells cytotoxicity and expression of CD94/NKG2A and NKG2D during the implantation phase.[J]. Fertil Steril,2009.
    [10]Leonhardt S A, Boonyaratanakornkit V, Edwards D P. Progesterone receptor transcription and non-transcription signaling mechanisms. [J]. Steroids, 2003,68(10-13):761-770.
    [11]Inoue T, Kanzaki H, Imai K, et al. Progesterone stimulates the induction of human endometrial CD56+ lymphocytes in an in vitro culture system.[J]. J Clin Endocrinol Metab,1996,81(4):1502-1507.
    [12] Henderson T A, Saunders P T, Moffett-King A, et al. Steroid receptor expression in uterine natural killer cells.[J]. J Clin Endocrinol Metab,2003,88(1):440-449.
    [13]Arruvito L, Giulianelli S, Flores A C, et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis.[J]. J Immunol, 2008,180(8):5746-5753.
    [14]Kitaya K, Yasuda J, Nakayama T, et al. Effect of female sex steroids on human endometrial CD16neg CD56bright natural killer cells.[J]. Fertil Steril,2003,79 Suppl 1:730-734.
    [15]Katz P, Zaytoun A M, Jr Lee J H. Characterization of corticosteroid receptors in natural killer cells:comparison with circulating lymphoid and myeloid cells.[J]. Cell Immunol,1985,94(2):347-352.
    [16] Zhou J, Olsen S, Moldovan J, et al. Glucocorticoid regulation of natural cytotoxicity:effects of cortisol on the phenotype and function of a cloned human natural killer cell line.[J]. Cell Immunol,1997,178(2):108-116.
    [17]Vitale C, Chiossone L, Cantoni C, et al. The corticosteroid-induced inhibitory effect on NK cell function reflects down-regulation and/or dysfunction of triggering receptors involved in natural cytotoxicity. [J]. Eur J Immunol, 2004,34(11):3028-3038.
    [18] Chiossone L, Vitale C, Cottalasso F, et al. Molecular analysis of the methylprednisolone-mediated inhibition of NK-cell function:evidence for different susceptibility of IL-2-versus IL-15-activated NK cells.[J]. Blood,
    2007,109(9):3767-3775.
    [19]Koopman L A, Kopcow H D, Rybalov B, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential.[J]. J Exp Med, 2003,198(8):1201-1212.
    [20] Wei S, Gamero A M, Liu J H, et al. Control of lytic function by mitogen-activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a human natural killer cell line:identification of perforin and granzyme B mobilization by functional ERK2.[J]. J Exp Med,1998,187(11):1753-1765.
    [21]Zhang C, Zhang J, Niu J, et al. Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation.[J]. Cytokine,2008,42(1):128-136.
    [22]Aluoch A O, Odman-Ghazi S O, Whalen M M. Pattern of MAP kinases p44/42 and JNK activation by non-lethal doses of tributyltin in human natural killer cells.[J]. Arch Toxicol,2007,81(4):271-277.
    [1]Kim S D, Kim J M, Jo S H, et al. Functional expression of formyl peptide receptor family in human NK cells.[J]. J Immunol,2009,183(9):5511-5517.
    [2]Vitale C, Chiossone L, Cantoni C, et al. The corticosteroid-induced inhibitory effect on NK cell function reflects down-regulation and/or dysfunction of triggering receptors involved in natural cytotoxicity.[J]. Eur J Immunol, 2004,34(11):3028-3038.
    [3] Chiossone L, Vitale C, Cottalasso F, et al. Molecular analysis of the methylprednisolone-mediated inhibition of NK-cell function:evidence for different susceptibility of IL-2-versus IL-15-activated NK cells.[J]. Blood, 2007,109(9):3767-3775.
    [4] Sheshgiri R, Rao V, Tumiati L C, et al. Progesterone induces human leukocyte antigen-g expression in vascular endothelial and smooth muscle cells.[J]. Circulation,2008,118(14 Suppl):S58-S64.
    [5]Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface.[J]. Nat Med, 2006,12(9):1065-1074.
    [6]Carlino C, Stabile H, Morrone S, et al. Recruitment of circulating NK cells through decidual tissues:a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy.[J]. Blood,2008,111(6):3108-3115.
    [7]Bilinski M J, Thorne J G, Oh M J, et al. Uterine NK cells in murine pregnancy.[J]. Reprod Biomed Online,2008,16(2):218-226.
    [8]Yagel S. The developmental role of natural killer cells at the fetal-maternal interface.[J]. Am J Obstet Gynecol,2009,201 (4):344-350.
    [9] Szekeres-Bartho J. Regulation of NK cell cytotoxicity during pregnancy. [J]. Reprod Biomed Online,2008,16(2):211-217.
    [10]Zhang T, Liu S, Yang P, et al. Fibronectin maintains survival of mouse NK cells
    via CD11b/Src/{beta}-catenin pathway.[J]. Blood,2009.
    [11]Huntington N D, Legrand N, Alves N L, et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo[J]. J Exp Med, 2009,206(1):25-34.
    [12]Eidenschenk C, Jouanguy E, Alcais A, et al. Familial NK cell deficiency associated with impaired IL-2-and IL-15-dependent survival of lymphocytes[J]. J Immunol, 2006,177(12):8835-8843.
    [13] Dunn C L, Kelly R W, Critchley H O. Decidualization of the human endometrial stromal cell:an enigmatic transformation. [J]. Reprod Biomed Online, 2003,7(2):151-161.
    [14]Blanco O, Leno-Duran E, Morales J C, et al. Human decidual stromal cells protect lymphocytes from apoptosis.[J]. Placenta,2009,30(8):677-685.
    [15]Kitaya K, Yasuda J, Nakayama T, et al. Effect of female sex steroids on human endometrial CD16neg CD56bright natural killer cells.[J]. Fertil Steril,2003,79 Suppl 1:730-734.
    [16]Dosiou C, Giudice L C. Natural killer cells in pregnancy and recurrent pregnancy loss:endocrine and immunologic perspectives.[J]. Endocr Rev,2005,26(1):44-62.
    [17]Prabhala R H, Fahey J V, Humphrey S L, et al. Regulation by human uterine cells of PBMC proliferation: influence of the phase of the menstrual cycle and menopause.[J]. J Reprod Immunol,1998,40(1):25-45.
    [18]Santoni A, Carlino C, Gismondi A. Uterine NK cell development, migration and function.[J]. Reprod Biomed Online,2008,16(2):202-210.
    [19]Tabiasco J, Rabot M, Aguerre-Girr M, et al. Human decidual NK cells:unique phenotype and functional properties -- a review.[J]. Placenta,2006,27 Suppl A:S34-S39.
    [20]King A, Jokhi P P, Burrows T D, et al. Functions of human decidual NK cells[J]. Am J Reprod Immunol,1996,35(3):258-260.
    [21]Coudert J D, Zimmer J, Tomasello E, et al. Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells[J]. Blood, 2005,106(5):1711-1717.
    [22]Pazmany L, Mandelboim O, Vales-Gomez M, et al. Human leucocyte antigen-G and its recognition by natural killer cells [J]. J Reprod Immunol, 1999,43(2):127-137.
    [23] Lash G E, Robson S C, Bulmer J N. Review: Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua.[J]. Placenta, 2010,31 (Supplement 1):S87-S92.
    [24]Kalkunte S S, Mselle T F, Norris W E, et al. Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface.[J]. J Immunol,2009,182(7):4085-4092.
    [25]Kopp H G, Placke T, Salih H R. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity.[J]. Cancer Res,2009,69(19):7775-7783.
    [26] Sugino N, Kashida S, Karube-Harada A, et al. Expression of vascular endothelial growth factor (VEGF) and its receptors in human endometrium throughout the menstrual cycle and in early pregnancy.[J]. Reproduction,2002,123(3):379-387.
    [27]Arici A, MacDonald P C, Casey M L. Modulation of the levels of transforming growth factor beta messenger ribonucleic acids in human endometrial stromal cells.[J]. Biol Reprod,1996,54(2):463-469.
    [28] Jones R K, Bulmer J N, Searle R F. Cytotoxic activity of endometrial granulated lymphocytes during the menstrual cycle in humans. [J]. Biol Reprod, 1997,57(5):1217-1222.
    [29]Kopcow H D, Allan D S, Chen X, et al. Human decidual NK cells form immature activating synapses and are not cytotoxic. [J]. Proc Natl Acad Sci U S A, 2005,102(43):15563-15568.
    [30] Sun R, Li A L, Wei H M, et al. Expression of prolactin receptor and response to prolactin stimulation of human NK cell lines.[J]. Cell Res,2004,14(1):67-73.
    [31]Caligiuri M A, Zmuidzinas A, Manley T J, et al. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors.[J]. J Exp Med, 1990,171 (5):1509-1526.
    [32]Nagler A, Lanier L L, Phillips J H. Constitutive expression of high affinity interleukin 2 receptors on human CD16-natural killer cells in vivo.[J]. J Exp Med, 1990,171(5):1527-1533.
    [33]Robertson M J, Soiffer R J, Wolf S F, et al. Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF):cytolytic activity and proliferation of NK cells are differentially regulated by NKSF.[J]. J Exp Med, 1992,175(3):779-788.
    [34]Kopcow H D, Eriksson M, Mselle T F, et al. Human Decidual NK Cells from Gravid Uteri and NK Cells from Cycling Endometrium are Distinct NK Cell Subsets.[J]. Placenta,2010.
    [35]Eriksson M, Meadows S K, Wira C R, et al. Unique phenotype of human uterine NK cells and their regulation by endogenous TGF-beta.[J]. J Leukoc Biol, 2004,76(3):667-675.
    [1]Spitz I M, Bardin C W. Mifepristone (RU 486)--a modulator of progestin and glucocorticoid action.[J]. N Engl J Med,1993,329(6):404-412.
    [2]Cadepond F, Ulmann A, Baulieu E E. RU486 (mifepristone):mechanisms of action and clinical uses[J]. Annu Rev Med,1997,48:129-156.
    [3]Check J H, Sansoucie L, Chern J, et al. Mifepristone treatment improves length and quality of survival of mice with spontaneous lung cancer.[J]. Anticancer Res, 2010,30(1):119-122.
    [4]Kalkunte S, Chichester C O, Gotsch F, et al. Evolution of non-cytotoxic uterine natural killer cells.[J]. Am J Reprod Immunol,2008,59(5):425-432.
    [5] Lash G E, Bulmer J N. Do uterine natural killer (uNK) cells contribute to female reproductive disorders?[J]. J Reprod Immunol,2011,88(2):156-164.
    [6]Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. [J]. Nat Med, 2006,12(9):1065-1074.
    [7]Koopman L A, Kopcow H D, Rybalov B, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential.[J]. J Exp Med, 2003,198(8):1201-1212.
    [8] Chien C H, Lai J N, Liao C F, et al. Mifepristone acts as progesterone antagonist of non-genomic responses but inhibits phytohemagglutinin-induced proliferation in human T cells.[J]. Hum Reprod,2009,24(8):1968-1975.
    [9] Van Voorhis B J, Anderson D J, Hill J A. The effects of RU 486 on immune function and steroid-induced immunosuppression in vitro.[J]. J Clin Endocrinol Metab,1989,69(6):1195-1199.
    [10]Hansen K A, Opsahl M S, Nieman L K, et al. Natural killer cell activity from pregnant subjects is modulated by RU 486.[J]. Am J Obstet Gynecol,1992,166(1 Pt 1):87-90.
    [11]Zhu H X, Zhang W W, Zhuang Y L, et al. Mifepristone as an anti-implantation contraceptive drug:roles in regulation of uterine natural killer cells during implantation phase.[J]. Am J Reprod Immunol,2009,61(1):68-74.
    [12] Zhou F, Chen X Y, Zhuang Y L, et al. Low-dose mifepristone increases uterine natural killer cell cytotoxicity and perforin expression during the receptive phase[J]. Fertil Steril,2011,96(3):649-653.
    [13] Liu B, Li Z, Mahesh S P, et al. Glucocorticoid-induced tumor necrosis factor receptor negatively regulates activation of human primary natural killer (NK) cells by blocking proliferative signals and increasing NK cell apoptosis.[J]. J Biol Chem, 2008,283(13):8202-8210.
    [14]Wollen A L, Sandvei R, Mork S, et al. In situ characterization of leukocytes in the fallopian tube in women with or without an intrauterine contraceptive device[J]. Acta Obstet Gynecol Scand,1994,73(2):103-112.
    [15]McGregor J A, Hammill H A. Contraception and sexually transmitted diseases: interactions and opportunities [J]. Am J Obstet Gynecol,1993,168(6 Pt 2):2033-2041.
    [16] Marions L, Viski S, Danielsson K G, et al. Contraceptive efficacy of daily administration of 0.5 mg mifepristone.[J]. Hum Reprod,1999,14(11):2788-2790.
    [17] Chen Y, Wang W, Zhuang Y, et al. Effects of low-dose mifepristone administration in two different 14-day regimens on the menstrual cycle and endometrial development:a randomized controlled trial[J]. Contraception,2011,84(1):64-70.
    [18] Li A, Felix J C, Minoo P, et al. Effect of mifepristone on proliferation and apoptosis of Ishikawa endometrial adenocarcinoma cells.[J]. Fertil Steril, 2005,84(1):202-211.
    [19] Lin M F, Kawachi M H, Stallcup M R, et al. Growth inhibition of androgen-insensitive human prostate carcinoma cells by a 19-norsteroid derivative agent, mifepristone.[J]. Prostate,1995,26(4):194-204.
    [20] Goyeneche A A, Caron R W, Telleria C M. Mifepristone inhibits ovarian cancer cell growth in vitro and in vivo.[J]. Clin Cancer Res,2007,13(11):3370-3379.
    [21] Wang G, Shang H L, Xie Y, et al. Effects of mifepristone on the proliferation, apoptosis and cis-diamminedichloroplatinum sensitivity of cultured chemoresistant human ovarian cancer cells.[J]. Chin Med J (Engl),2005,118(4):333-336.
    [22] El E M, Liang Y, Lewis R W. Induction of apoptosis by mifepristone and tamoxifen in human LNCaP prostate cancer cells in culture.[J]. Prostate, 2000,43(1):31-42.
    [23] Murphy A A, Zhou M H, Malkapuram S, et al. RU486-induced growth inhibition of human endometrial cells. [J]. Fertil Steril,2000,74(5):1014-1019.
    [24] Henderson T A, Saunders P T, Moffett-King A, et al. Steroid receptor expression in uterine natural killer cells.[J]. J Clin Endocrinol Metab,2003,88(1):440-449.
    [25]Manaster I, Gazit R, Goldman-Wohl D, et al. Notch activation enhances IFND secretion by human peripheral blood and decidual NK cells[J]. Journal of Reproductive Immunology,2010,84(1):1-7.
    [26] Ashkar A A, Di Santo J P, Croy B A. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy[J]. J Exp Med,2000,192(2):259-270.
    [27] Antonakis N, Georgoulias V, Margioris A N, et al. In vitro differential effects of the antiglucocorticoid RU486 on the release of lymphokines from mitogen-activated normal human lymphocytes[J]. J Steroid Biochem Mol Biol,1994,51(1-2):67-72.
    [28]Yagel S. The developmental role of natural killer cells at the fetal-maternal interface.[J]. Am J Obstet Gynecol,2009,201(4):344-350.
    [29]Kopcow H D, Allan D S, Chen X, et al. Human decidual NK cells form immature activating synapses and are not cytotoxic.[J]. Proc Natl Acad Sci U S A, 2005,102(43):15563-15568.
    [30] Chen X Y, Zhuang Y L, Li L, et al. The effect of mifepristone on the peripheral
    blood natural killer cell's cytotoxicity and expression of CD94/NKG2A and NKG2D during the implantation phase[J]. Fertil Steril,2010,93(8):2615-2620.
    [31]Yamada H, Shimada S, Kato E H, et al. Decrease in a specific killer cell immunoglobulin-like receptor on peripheral natural killer cells in women with recurrent spontaneous abortion of unexplained etiology[J]. Am J Reprod Immunol, 2004,51(3):241-247.
    [32]Hadinedoushan H, Mirahmadian M, Aflatounian A. Increased natural killer cell cytotoxicity and IL-2 production in recurrent spontaneous abortion[J]. Am J Reprod Immunol,2007,58(5):409-414.
    [33]Braud V M, Allan D S, McMichael A J. Functions of nonclassical MHC and non-MHC-encoded class I molecules[J]. Curr Opin Immunol,1999,11(1):100-108.
    [34]Colucci F, Caligiuri M A, Di Santo J P. What does it take to make a natural killer?[J]. Nat Rev Immunol,2003,3(5):413-425.
    [35] Wang Y, Xu H, Zheng X, et al. High expression of NKG2A/CD94 and low expression of granzyme B are associated with reduced cord blood NK cell activity[J]. Cell Mol Immunol,2007,4(5):377-382.
    [36]Laskarin G, Strbo N, Sotosek V, et al. Progesterone directly and indirectly affects perforin expression in cytolytic cells[J]. Am J Reprod Immunol, 1999,42(5):312-320.
    [1]Chien C H, Lai J N, Liao C F, et al. Mifepristone acts as progesterone antagonist of non-genomic responses but inhibits phytohemagglutinin-induced proliferation in human T cells.[J]. Hum Reprod,2009,24(8):1968-1975.
    [2] Van Voorhis B J, Anderson D J, Hill J A. The effects of RU 486 on immune function and steroid-induced immunosuppression in vitro.[J]. J Clin Endocrinol Metab,1989,69(6):1195-1199.
    [3]Hansen K A, Opsahl M S, Nieman L K, et al. Natural killer cell activity from pregnant subjects is modulated by RU 486.[J]. Am J Obstet Gynecol,1992,166(1 Pt 1):87-90.
    [4] Zhou F, Chen X Y, Zhuang Y L, et al. Low-dose mifepristone increases uterine natural killer cell cytotoxicity and perforin expression during the receptive phase[J]. Fertil Steril,2011,96(3):649-653.
    [5]Zhu H X, Zhang W W, Zhuang Y L, et al. Mifepristone as an anti-implantation contraceptive drug:roles in regulation of uterine natural killer cells during implantation phase.[J]. Am J Reprod Immunol,2009,61(1):68-74.
    [6] Song L N, Coghlan M, Gelmann E P. Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor[J]. Mol Endocrinol,2004,18(1):70-85.
    [7] Schreiber J R, Hsueh A J, Baulieu E E. Binding of the anti-progestin RU-486 to rat ovary steroid receptors[J]. Contraception,1983,28(1):77-85.
    [8]DeMarzo A M, Onate S A, Nordeen S K, et al. Effects of the steroid antagonist RU486 on dimerization of the human progesterone receptor[J]. Biochemistry, 1992,31(43):10491-10501.
    [9] Chalepakis G, Arnemann J, Slater E, et al. Differential gene activation by glucocorticoids and progestins through the hormone regulatory element of mouse mammary tumor virus[J]. Cell,1988,53(3):371-382.
    [10]Benhamou B, Garcia T, Lerouge T, et al. A single amino acid that determines the sensitivity of progesterone receptors to RU486[J]. Science, 1992,255(5041):206-209.
    [11]El-Ashry D, Onate S A, Nordeen S K, et al. Human progesterone receptor complexed with the antagonist RU 486 binds to hormone response elements in a structurally altered form[J]. Mol Endocrinol,1989,3(10):1545-1558.
    [12]Miyaura H, Iwata M. Direct and indirect inhibition of Thl development by progesterone and glucocorticoids[J]. J Immunol,2002,168(3):1087-1094.
    [13]Arruvito L, Giulianelli S, Flores A C, et al. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis.[J]. J Immunol, 2008,180(8):5746-5753.
    [14] Henderson T A, Saunders P T, Moffett-King A, et al. Steroid receptor expression in uterine natural killer cells.[J]. J Clin Endocrinol Metab,2003,88(1):440-449.
    [15]Kitaya K, Yasuda J, Nakayama T, et al. Effect of female sex steroids on human endometrial CD16neg CD56bright natural killer cells.[J]. Fertil Steril,2003,79 Suppl 1:730-734.
    [16]Dosiou C, Giudice L C. Natural killer cells in pregnancy and recurrent pregnancy loss:endocrine and immunologic perspectives.[J]. Endocr Rev,2005,26(1):44-62.
    [17]Quenby S, Kalumbi C, Bates M, et al. Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage[J]. Fertil Steril, 2005,84(4):980-984.
    [18]Boomsma C M, Keay S D, Macklon N S. Peri-implantation glucocorticoid administration for assisted reproductive technology cycles[J]. Cochrane Database Syst Rev,2007(1):D5996.
    [19]Trapani J A, Smyth M J. Functional significance of the perforin/granzyme cell death pathway[J]. Nat Rev Immunol,2002,2(10):735-747.
    [20] Lieberman J. The ABCs of granule-mediated cytotoxicity:new weapons in the
    arsenal[J]. Nat Rev Immunol,2003,3(5):361-370.
    [21] Grossman W J, Revell P A, Lu Z H, et al. The orphan granzymes of humans and mice[J]. Curr Opin Immunol,2003,15(5):544-552.
    [22]Vivier E, Nunes J A, Vely F. Natural killer cell signaling pathways[J]. Science, 2004,306(5701):1517-1519.
    [23] Vyas Y M, Maniar H, Dupont B. Visualization of signaling pathways and cortical cytoskeleton in cytolytic and noncytolytic natural killer cell immune synapses[J]. Immunol Rev,2002,189:161-178.
    [24]Konjevic G, Mirjacic M K, Vuletic A, et al. Distribution of several activating and inhibitory receptors on CD3-CD16+ NK cells and their correlation with NK cell function in healthy individuals[J]. J Membr Biol,2009,230(3):113-123.
    [25] Chen X, Allan D S, Krzewski K, et al. CD28-stimulated ERK2 phosphorylation is required for polarization of the microtubule organizing center and granules in YTS NK cells[J]. Proc Natl Acad Sci U S A,2006,103(27):10346-10351.
    [26] Li C, Ge B, Nicotra M, et al. JNK MAP kinase activation is required for MTOC and granule polarization in NKG2D-mediated NK cell cytotoxicity[J]. Proc Natl Acad Sci U S A,2008,105(8):3017-3022.
    [27]Lachapelle M H, Miron P, Hemmings R, et al. Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion. Altered profile and pregnancy outcome[J]. J Immunol,1996,156(10):4027-4034.
    [28]Fukui A, Fujii S, Yamaguchi E, et al. Natural killer cell subpopulations and cytotoxicity for infertile patients undergoing in vitro fertilization[J]. Am J Reprod Immunol,1999,41(6):413-422.
    [29] Lash G E, Bulmer J N. Do uterine natural killer (uNK) cells contribute to female reproductive disorders?[J]. J Reprod Immunol,2011,88(2):156-164.
    [30] Mao G, Wang J, Kang Y, et al. Progesterone increases systemic and local uterine proportions of CD4+CD25+ Treg cells during midterm pregnancy in mice[J].
    Endocrinology,2010,151(11):5477-5488.
    [31]Tai P, Wang J, Jin H, et al. Induction of regulatory T cells by physiological level estrogen[J]. J Cell Physiol,2008,214(2):456-464.
    [32] Spitz I M. Progesterone receptor antagonists.[J]. Curr Opin Investig Drugs, 2006,7(10):882-890.
    [33]Li A, Felix J C, Minoo P, et al. Effect of mifepristone on proliferation and apoptosis of Ishikawa endometrial adenocarcinoma cells.[J]. Fertil Steril, 2005,84(1):202-211.
    [34] Lin M F, Kawachi M H, Stallcup M R, et al. Growth inhibition of androgen-insensitive human prostate carcinoma cells by a 19-norsteroid derivative agent, mifepristone.[J]. Prostate,1995,26(4):194-204.
    [35] Check J H, Sansoucie L, Chern J, et al. Mifepristone treatment improves length and quality of survival of mice with spontaneous lung cancer.[J]. Anticancer Res, 2010,30(1):119-122.
    [36]E1-Ashry D, Onate S A, Nordeen S K, et al. Human progesterone receptor complexed with the antagonist RU 486 binds to hormone response elements in a structurally altered form[J]. Mol Endocrinol,1989,3(10):1545-1558.
    [37]Bagchi M K, Tsai S Y, Tsai M J, et al. Identification of a functional intermediate in receptor activation in progesterone-dependent cell-free transcription[J]. Nature, 1990,345(6275):547-550.
    [38]Laue L, Chrousos G P, Loriaux D L, et al. The antiglucocorticoid and antiprogestin steroid RU 486 suppresses the adrenocorticotropin response to ovine corticotropin releasing hormone in man[J]. J Clin Endocrinol Metab,1988,66(2):290-293.
    [39] Sartor O, Cutler G J. Mifepristone:treatment of Cushing's syndrome[J]. Clin Obstet Gynecol,1996,39(2):506-510.
    [40] Johanssen S, Allolio B. Mifepristone (RU 486) in Cushing's syndrome[J]. European Journal of Endocrinology,2007,157(5):561-569.
    [41]Yokoyama W M, Kim S, French A R. The dynamic life of natural killer cells[J]. Annu Rev Immunol,2004,22:405-429.
    [42] Fehniger T A, Cai S F, Cao X, et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs[J]. Immunity,2007,26(6):798-811.
    [43]Grossman W J, Revell P A, Lu Z H, et al. The orphan granzymes of humans and mice[J]. Curr Opin Immunol,2003,15(5):544-552.
    [44]Lieberman J. The ABCs of granule-mediated cytotoxicity:new weapons in the arsenal[J]. Nat Rev Immunol,2003,3(5):361-370.
    [45]Davis D M. Assembly of the immunological synapse for T cells and NK cells[J]. Trends Immunol,2002,23(7):356-363.
    [46]Colucci F, Caligiuri M A, Di Santo J P. What does it take to make a natural killer?[J]. Nat Rev Immunol,2003,3(5):413-425.
    [47] Zhou F, Chen X Y, Zhuang Y L, et al. Low-dose mifepristone increases uterine natural killer cell cytotoxicity and perforin expression during the receptive phase [J]. Fertil Steril,2011,96(3):649-653.
    [48] Chiossone L, Vitale C, Cottalasso F, et al. Molecular analysis of the methylprednisolone-mediated inhibition of NK-cell function:evidence for different susceptibility of IL-2-versus IL-15-activated NK cells.[J]. Blood, 2007,109(9):3767-3775.
    [49] Moretta A, Bottino C, Vitale M, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis[J]. Annu Rev Immunol, 2001,19:197-223.
    [50]Vivier E, Nunes J A, Vely F. Natural killer cell signaling pathways[J]. Science, 2004,306(5701):1517-1519.
    [51] Li C, Ge B, Nicotra M, et al. JNK MAP kinase activation is required for MTOC and granule polarization in NKG2D-mediated NK cell cytotoxicity[J]. Proc Natl
    Acad Sci USA,2008,105(8):3017-3022.
    [52] Jiang K, Zhong B, Gilvary D L, et al. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells.[J]. Nat Immunol, 2000,1(5):419-425.
    [53] Wei S, Gamero A M, Liu J H, et al. Control of lytic function by mitogen-activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a human natural killer cell line:identification of perforin and granzyme B mobilization by functional ERK2[J]. J Exp Med,1998,187(11):1753-1765.
    [54] Lu C C, Chen J K. Resveratrol enhances perforin expression and NK cell cytotoxicity through NKG2D-dependent pathways[J]. J Cell Physiol, 2010,223(2):343-351.
    [55] Gonzalez R, Ruiz-Leon Y, Gomendio M, et al. The effect of glucocorticoids on ERK-1/2 phosphorylation during maturation of lamb oocytes and their subsequent fertilization and cleavage ability in vitro.[J]. Reprod Toxicol,2010,29(2):198-205.
    [56]Imasato A, Desbois-Mouthon C, Han J, et al. Inhibition of p38 MAPK by glucocorticoids via induction of MAPK phosphatase-1 enhances nontypeable Haemophilus influenzae-induced expression of toll-like receptor 2.[J]. J Biol Chem, 2002,277(49):47444-47450.
    [57]Rambal A A, Panaguiton Z L, Kramer L, et al. MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM.[J]. Leukemia,2009,23(10):1744-1754.
    [1]Ulmann A, Teutsch G, Philibert D. RU 486[J]. Sci Am,1990,262(6):42-48.
    [2] Spitz I M. Progesterone antagonists and progesterone receptor modulators:an overview[J]. Steroids,2003,68(10-13):981-993.
    [3] Murphy A A, Zhou M H, Malkapuram S, et al. RU486-induced growth inhibition of human endometrial cells[J]. Fertil Steril,2000,74(5):1014-1019.
    [4]Cadepond F, Ulmann A, Baulieu E E. RU486 (mifepristone):mechanisms of action and clinical uses[J]. Annu Rev Med,1997,48:129-156.
    [5] Spitz I M, Bardin C W. Mifepristone (RU 486)-a modulator of progestin and glucocorticoid action.[J]. N Engl J Med,1993,329(6):404-412.
    [6]Foldesi I, Falkay G, Kovacs L. Determination of RU486 (mifepristone) in blood by radioreceptorassay; a pharmacokinetic study[J]. Contraception,1996,54(1):27-32.
    [7] Heikinheimo O, Kontula K, Croxatto H, et al. Plasma concentrations and receptor binding of RU 486 and its metabolites in humans[J]. J Steroid Biochem, 1987,26(2):279-284.
    [8]Heikinheimo O, Kekkonen R, Lahteenmaki P. The pharmacokinetics of mifepristone in humans reveal insights into differential mechanisms of antiprogestin action[J]. Contraception,2003,68(6):421-426.
    [9] Heikinheimo O. Clinical pharmacokinetics of mifepristone [J]. Clin Pharmacokinet, 1997,33(1):7-17.
    [10] Song L N, Coghlan M, Gelmann E P. Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor[J]. Mol Endocrinol,2004,18(1):70-85.
    [11] Schreiber J R, Hsueh A J, Baulieu E E. Binding of the anti-progestin RU-486 to rat ovary steroid receptors[J]. Contraception,1983,28(1):77-85.
    [12]E1-Ashry D, Onate S A, Nordeen S K, et al. Human progesterone receptor complexed with the antagonist RU 486 binds to hormone response elements in a
    structurally altered form[J]. Mol Endocrinol,1989,3(10):1545-1558.
    [13]DeMarzo A M, Onate S A, Nordeen S K, et al. Effects of the steroid antagonist RU486 on dimerization of the human progesterone receptor[J]. Biochemistry, 1992,31(43):10491-10501.
    [14]Chalepakis G, Arnemann J, Slater E, et al. Differential gene activation by glucocorticoids and progestins through the hormone regulatory element of mouse mammary tumor virus [J]. Cell,1988,53(3):371-382.
    [15]Benhamou B, Garcia T, Lerouge T, et al. A single amino acid that determines the sensitivity of progesterone receptors to RU486[J]. Science, 1992,255(5041):206-209.
    [16] Onate S A, Tsai S Y, Tsai M J, et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily[J]. Science, 1995,270(5240):1354-1357.
    [17] Wagner B L, Norris J D, Knotts T A, et al. The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor[J]. Mol Cell Biol, 1998,18(3):1369-1378.
    [18] Vegeto E, Allan G F, Schrader W T, et al. The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor[J]. Cell,1992,69(4):703-713.
    [19] Kong E H, Pike A C, Hubbard R E. Structure and mechanism of the oestrogen receptor[J]. Biochem Soc Trans,2003,31(Pt 1):56-59.
    [20] Shang Y, Myers M, Brown M. Formation of the androgen receptor transcription complex[J]. Mol Cell,2002,9(3):601-610.
    [21]Swahn M L, Bygdeman M, Cekan S, et al. The effect of RU 486 administered during the early luteal phase on bleeding pattern, hormonal parameters and endometrium[J]. Hum Reprod,1990,5(4):402-408.
    [22] Li T C, Dockery P, Thomas P, et al. The effects of progesterone receptor blockade in the luteal phase of normal fertile women[J]. Fertil Steril,1988,50(5):732-742.
    [23] Gravanis A, Schaison G, George M, et al. Endometrial and pituitary responses to the steroidal antiprogestin RU 486 in postmenopausal women[J]. J Clin Endocrinol Metab,1985,60(1):156-163.
    [24] Wolf J P, Hsiu J G, Anderson T L, et al. Noncompetitive antiestrogenie effect of RU 486 in blocking the estrogen-stimulated luteinizing hormone surge and the proliferative action of estradiol on endometrium in castrate monkeys[J]. Fertil Steril, 1989,52(6):1055-1060.
    [25]Nieman L K, Choate T M, Chrousos G P, et al. The progesterone antagonist RU 486. A potential new contraceptive agent[J]. N Engl J Med,1987,316(4):187-191.
    [26]Croxatto H B, Salvatierra A M, Croxatto H D, et al. Variable effects of RU 486 on endometrial maintenance in the luteal phase extended by exogenous hCG[J]. Clin Endocrinol (Oxf),1989,31(1):15-23.
    [27] Garzo V G, Liu J, Ulmann A, et al. Effects of an antiprogesterone (RU486) on the hypothalamic-hypophyseal-ovarian-endometrial axis during the luteal phase of the menstrual cycle[J]. J Clin Endocrinol Metab,1988,66(3):508-517.
    [28] Shoupe D, Mishell D J, Page M A, et al. Effects of the antiprogesterone RU 486 in normal women. Ⅱ. Administration in the late follicular phase[J]. Am J Obstet Gynecol,1987,157(6):1421-1426.
    [29]Permezel J M, Lenton E A, Roberts I, et al. Acute effects of progesterone and the antiprogestin RU 486 on gonadotropin secretion in the follicular phase of the menstrual cycle[J]. J Clin Endocrinol Metab,1989,68(5):960-965.
    [30]Kettel L M, Murphy A A, Mortola J F, et al. Endocrine responses to long-term administration of the antiprogesterone RU486 in patients with pelvic endometriosis[J]. Fertil Steril,1991,56(3):402-407.
    [31] Wolf J P, Danforth D R, Ulmann A, et al. Contraceptive potential of RU 486 by
    ovulation inhibition:Ⅱ. Suppression of pituitary gonadotropin secretion in vitro[J]. Contraception,1989,40(2):185-193.
    [32] Dimattina M, Albertson B, Seyler D E, et al. Effect of the antiprogestin RU486 on progesterone production by cultured human granulosa cells:inhibition of the ovarian 3B-hydroxysteroid dehydrogenase[J]. Contraception,1986,34(2):199-206.
    [33] van Uem J F, Hsiu J G, Chillik C F, et al. Contraceptive potential of RU 486 by ovulation inhibition:Ⅰ. Pituitary versus ovarian action with blockade of estrogen-induced endometrial proliferation[J]. Contraception,1989,40(2):171-184.
    [34]Csapo A I. The prospects of PGs in postconceptional therapy[J]. Prostaglandins, 1973,3(3):245-289.
    [35] Smith S K, Kelly R W. The effect of the antiprogestins RU 486 and ZK 98734 on the synthesis and metabolism of prostaglandins F2 alpha and E2 in separated cells from early human decidua[J]. J Clin Endocrinol Metab,1987,65(3):527-534.
    [36]Norman J E, Wu W X, Kelly R W, et al. Effects of mifepristone in vivo on decidual prostaglandin synthesis and metabolism[J]. Contraception,1991,44(1):89-98.
    [37]Bygdeman M, Swahn M L. Progesterone receptor blockage. Effect on uterine contractility and early pregnancy[J]. Contraception,1985,32(1):45-51.
    [38] Norman J E, Kelly R W, Baird D T. Uterine activity and decidual prostaglandin production in women in early pregnancy in response to mifepristone with or without indomethacin in vivo[J]. Hum Reprod,1991,6(5):740-744.
    [39] Rodriguez H A, Kass L, Varayoud J, et al. Collagen remodelling in the guinea-pig uterine cervix at term is associated with a decrease in progesterone receptor expression[J]. Mol Hum Reprod,2003,9(12):807-813.
    [40] Clark K, Ji H, Feltovich H, et al. Mifepristone-induced cervical ripening:structural, biomechanical, and molecular events [J]. Am J Obstet Gynecol, 2006,194(5):1391-1398.
    [41]Bienkiewicz A. Influence of progesterone and its antagonist mifepristone (RU 486)
    on collagen content in uterine cervix in pregnant rats[J]. Endocr Res, 1995,21(3):615-622.
    [42] Bertagna X, Bertagna C, Luton J P, et al. The new steroid analog RU 486 inhibits glucocorticoid action in man[J]. J Clin Endocrinol Metab,1984,59(1):25-28.
    [43] Healy D L, Chrousos G P, Schulte H M, et al. Pituitary and adrenal responses to the anti-progesterone and anti-glucocorticoid steroid RU 486 in primates[J]. J Clin Endocrinol Metab,1983,57(4):863-865.
    [44]Gaillard R C, Riondel A, Muller A F, et al. RU 486:a steroid with antiglucocorticosteroid activity that only disinhibits the human pituitary-adrenal system at a specific time of day[J]. Proc Natl Acad Sci U S A, 1984,81(12):3879-3882.
    [45] Lamberts S W, Koper J W, de Jong F H. The endocrine effects of long-term treatment with mifepristone (RU 486)[J]. J Clin Endocrinol Metab, 1991,73(1):187-191.
    [46] Garrel D R, Moussali R, De Oliveira A, et al. RU 486 prevents the acute effects of cortisol on glucose and leucine metabolism[J]. J Clin Endocrinol Metab, 1995,80(2):379-385.
    [47]Gaillard R C, Poffet D, Riondel A M, et al. RU 486 inhibits peripheral effects of glucocorticoids in humans[J]. J Clin Endocrinol Metab,1985,61(6):1009-1011.
    [48] Jimenez M V, Sola E, Egea M A, et al. Key factors determining the course of methyl iodide oxidative addition to diamidonaphthalene-bridged diiridium(Ⅰ) and dirhodium(Ⅰ) complexes[J]. Inorg Chem,2000,39(21):4868-4878.
    [49]Denison F C, Riley S C, Elliott C L, et al. The effect of mifepristone administration on leukocyte populations, matrix metalloproteinases and inflammatory mediators in the first trimester cervix[J]. Mol Hum Reprod,2000,6(6):541-548.
    [50]Hyder S M, Huang J C, Nawaz Z, et al. Regulation of vascular endothelial growth factor expression by estrogens and progestins[J]. Environ Health Perspect,
    2000,108 Suppl 5:785-790.
    [51]Lu S, Wu R, Wang Z. [Expression of T-lymphocytes and cytokines in the decidua of mifepristone with misoprostol for terminating early pregnancy] [J]. Zhonghua Fu Chan Ke Za Zhi,2001,36(10):625-627.
    [52] Zhang J, Xia E, Zhang J. [Effect of mifepristone on the expression of tumor necrosis factor-alpha and transforming growth factor-beta in decidua of early pregnancy][J]. Zhonghua Fu Chan Ke Za Zhi,2001,36(1):27-29.
    [53] Islam Z, Moon Y S, Zhou H R, et al. Endotoxin potentiation of trichothecene-induced lymphocyte apoptosis is mediated by up-regulation of glucocorticoids[J]. Toxicol Appl Pharmacol,2002,180(1):43-55.
    [54]Fukuzuka K, Edwards C R, Clare-Salzer M, et al. Glucocorticoid and Fas ligand induced mucosal lymphocyte apoptosis after burn injury [J]. J Trauma, 2000,49(4):710-716.
    [55] Zhang X, Moilanen E, Kankaanranta H. Enhancement of human eosinophil apoptosis by fluticasone propionate, budesonide, and beclomethasone[J]. Eur J Pharmacol,2000,406(3):325-332.
    [56]Rojas I G, Padgett D A, Sheridan J F, et al. Stress-induced susceptibility to bacterial infection during cutaneous wound healing [J]. Brain Behav Immun, 2002,16(1):74-84.
    [57] Grimes D A, Creinin M D. Induced abortion:an overview for internists[J]. Ann Intern Med,2004,140(8):620-626.
    [58]Meckstroth K R, Darney P D. Prostaglandins for first-trimester termination[J]. Best Pract Res Clin Obstet Gynaecol,2003,17(5):745-763.
    [59] Creinin M D, Fox M C, Teal S, et al. A randomized comparison of misoprostol 6 to 8 hours versus 24 hours after mifepristone for abortion[J]. Obstet Gynecol, 2004,103(5 Pt 1):851-859.
    [60]Ashok P W, Templeton A, Wagaarachchi P T, et al. Midtrimester medical
    termination of pregnancy:a review of 1002 consecutive cases[J]. Contraception, 2004,69(1):51-58.
    [61]Heikinheimo O, Suhonen S, Haukkamaa M. One- and 2-day mifepristone-misoprostol intervals are both effective in medical termination of second-trimester pregnancy[J]. Reprod Biomed Online,2004,8(2):236-239.
    [62]Leminen R, Raivio T, Ranta S, et al. Late follicular phase administration of mifepristone suppresses circulating leptin and FSH-mechanism(s) of action in emergency contraception?[J]. Eur J Endocrinol,2005,152(3):411-418.
    [63]Piaggio G, Heng Z, von Hertzen H, et al. Combined estimates of effectiveness of mifepristone 10 mg in emergency contraception[J]. Contraception, 2003,68(6):439-446.
    [64] Brown A, Cheng L, Lin S, et al. Daily low-dose mifepristone has contraceptive potential by suppressing ovulation and menstruation:a double-blind randomized control trial of 2 and 5 mg per day for 120 days[J]. J Clin Endocrinol Metab, 2002,87(1):63-70.
    [65]Gemzell-Danielsson K, Swahn M L, Svalander P, et al. Early luteal phase treatment with mifepristone (RU 486) for fertility regulation[J]. Hum Reprod, 1993,8(6):870-873.
    [66] Chen Y, Wang W, Zhuang Y, et al. Effects of low-dose mifepristone administration in two different 14-day regimens on the menstrual cycle and endometrial development:a randomized controlled trial[J]. Contraception,2011,84(1):64-70.
    [67]Kettel L M, Murphy A A, Mortola J F, et al. Endocrine responses to long-term administration of the antiprogesterone RU486 in patients with pelvic endometriosis[J]. Fertil Steril,1991,56(3):402-407.
    [68]Eisinger S H, Bonfiglio T, Fiscella K, et al. Twelve-month safety and efficacy of low-dose mifepristone for uterine myomas[J]. J Minim Invasive Gynecol, 2005,12(3):227-233.
    [69] Steinauer J, Pritts E A, Jackson R, et al. Systematic review of mifepristone for the treatment of uterine leiomyomata[J]. Obstet Gynecol,2004,103(6):1331-1336.
    [70]Fiscella K, Eisinger S H, Meldrum S, et al. Effect of mifepristone for symptomatic leiomyomata on quality of life and uterine size:a randomized controlled trial [J]. Obstet Gynecol,2006,108(6):1381-1387.
    [71] Steinauer J, Pritts E A, Jackson R, et al. Systematic review of mifepristone for the treatment of uterine leiomyomata[J]. Obstet Gynecol,2004,103(6):1331-1336.
    [72] Schoenlein P V, Hou M, Samaddar J S, et al. Downregulation of retinoblastoma protein is involved in the enhanced cytotoxicity of 4-hydroxytamoxifen plus mifepristone combination therapy versus antiestrogen monotherapy of human breast cancer[J]. Int J Oncol,2007,31(3):643-655.
    [73]Klijn J G, de Jong F H, Bakker G H, et al. Antiprogestins, a new form of endocrine therapy for human breast cancer[J]. Cancer Res,1989,49(11):2851-2856.
    [74] Song L N, Coghlan M, Gelmann E P. Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor[J]. Mol Endocrinol,2004,18(1):70-85.
    [75]Taplin M E, Manola J, Oh W K, et al. A phase Ⅱ study of mifepristone (RU-486) in castration-resistant prostate cancer, with a correlative assessment of androgen-related hormones[J]. BJU Int,2008,101(9):1084-1089.
    [76]Rocereto T F, Saul H M, Aikins J J, et al. Phase Ⅱ study of mifepristone (RU486) in refractory ovarian cancer[J]. Gynecol Oncol,2000,77(3):429-432.
    [77]Jurado R, Lopez-Flores A, Alvarez A, et al. Cisplatin cytotoxicity is increased by mifepristone in cervical carcinoma:an in vitro and in vivo study [J]. Oncol Rep, 2009,22(5):1237-1245.
    [78]Ramondetta L M, Johnson A J, Sun C C, et al. Phase 2 trial of mifepristone (RU-486) in advanced or recurrent endometrioid adenocarcinoma or low-grade endometrial stromal sarcoma[J]. Cancer,2009,115(9):1867-1874.
    [79]Grunberg S M, Weiss M H, Russell C A, et al. Long-term administration of mifepristone (RU486):clinical tolerance during extended treatment of meningioma[J]. Cancer Invest,2006,24(8):727-733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700