用户名: 密码: 验证码:
皮秒脉冲电场诱导人宫颈癌HeLa细胞凋亡效应及机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,脉冲电场(Pulsed Electric Fields, PEF)在生物医学领域的运用越来越受到国内外学者的关注。前期的研究工作中发现微秒和纳秒级脉冲电场作用于肿瘤细胞会产生明显的杀伤效应,为脉冲电场用于肿瘤的治疗奠定了一定的基础。然而,微秒和纳秒脉冲电场必须以电极针为电场载体引入体内,以穿刺的方式引导至肿瘤组织,这在一定程度上限制了该方法的临床应用及适应症。能够无创进入体内,达到肿瘤表面的皮秒脉冲电场应运而生。
     匹配超宽带冲激脉冲辐射天线(IRA)的皮秒脉冲电场以其优异的方向性和精细的操控性以及靶向聚焦特性,成为具有巨大发展潜力的生物医学无创治疗的新能源。IRA可以在某一特定的范围内进行能量传输,将脉冲电磁波汇聚于指定区域,甚至摧毁目标,辐射能量在时间和空间上都很集中。根据这一特点,通过IRA将皮秒脉冲电场输送入肿瘤组织,便可实现肿瘤的无创治疗。目前,对于皮秒脉冲电场用于肿瘤治疗的研究还鲜有报道。根据脉冲电场对细胞作用的“窗口效应”及微秒脉冲的电穿孔效应和纳秒脉冲的细胞内处理效应,从理论上讲,皮秒级脉冲电场对细胞的主要作用应该发生在细胞器。另外,我们课题组前期实验发现皮秒脉冲电场会诱发肿瘤细胞线粒体膜电位的变化。因此,在本研究中我们将进一步深入探讨皮秒脉冲电场对另外一种细胞器-内质网功能的影响。
     宫颈癌是女性生殖系统常见的恶性肿瘤之一,现已严重威胁着全球妇女的身心健康。目前宫颈癌的发病逐渐呈现年轻化趋势,传统的手术治疗就意味着失去生育能力,这对于年轻患者是很难接受的,因此,非侵袭性的保留生育功能的治疗手段渐渐成为医患双方的共同需求。宫颈尽管不在体表,但可以通过简单的方法充分暴露,这也为皮秒脉冲电场的应用提供了便利的条件。
     基于此,本课题选取了人宫颈癌HeLa细胞作为体外实验的研究对象,以不同强度的皮秒脉冲电场为研究手段,应用流式细胞计数法(flowcytometry,FCM)、Hoechest染色及透射电子显微镜检测皮秒脉冲电场处理后对细胞凋亡及增殖的影响,运用激光共聚焦显微镜观察胞内钙离子浓度的变化,采用RT-PCR、Real-time PCR、Western Blot的方法在分子水平上探讨皮秒脉冲电场作用下内质网应激相关分子mRNA及蛋白表达水平的变化,寻找皮秒脉冲电场诱导HeLa细胞凋亡可能的分子机制,以期为皮秒脉冲电场用于宫颈癌的治疗提供理论依据,也为宫颈癌患者寻求一种无创的保留生育功能的新的治疗手段。
     第一部分皮秒脉冲电场诱导HeLa细胞凋亡效应的研究
     第一节皮秒脉冲电场诱导HeLa细胞凋亡现象的观察
     目的:观察皮秒脉冲电场处理HeLa细胞后,细胞凋亡现象的发生。
     方法:将HeLa细胞分为四个组,即:对照组和三个不同电场强度作用的实验组(200kV/cm组,400kV/cm组,600kV/cm组)。实验组皮秒脉冲电场的其它参数如下:固定脉宽800ps,频率3Hz,脉冲个数2000个。脉冲电场处理后细胞培养时间为12h。采用Hoechst33258染色观察特征性的细胞凋亡变化;流式细胞仪对细胞凋亡率和细胞周期的变化进行检测;透射电子显微镜分别对对照组和实验组细胞的超微结构进行观察。
     结果:皮秒脉冲电场处理HeLa细胞后,通过Hoechst33258染色,在倒置荧光显微镜下观察发现,实验组HeLa细胞核产生强烈的蓝色荧光,表明细胞在脉冲电场作用下发生了凋亡;流式细胞仪检测到实验组细胞的凋亡率较对照组明显增加,且随着电场强度的增大,发生凋亡的细胞增多,在细胞分裂周期中停留在G2/M期的细胞数逐渐增多;透射电镜下观察到实验组细胞呈现典型的凋亡形态以及线粒体,内质网的肿胀。
     结论:皮秒脉冲电场诱导了HeLa细胞的凋亡,并将细胞周期阻滞在G2/M期。且随着电场强度的增大,细胞的凋亡率逐渐升高,细胞周期中被阻滞在G2/M期的细胞数也逐渐增多。
     第二节皮秒脉冲电场对HeLa细胞中Caspase系列分子表达的影响
     目的:探讨皮秒脉冲电场作用后,HeLa细胞中凋亡相关分子Caspase-12,Caspase-9以及Caspase-3在转录及翻译水平的变化。
     方法:实验分组同前。皮秒脉冲电场处理HeLa细胞后培养12h,提取细胞内总的RNA,RT-PCR的方法检测caspase-12,caspase-9以及caspase-3在转录水平mRNA的相对含量。提取细胞内总蛋白,WesternBlot测定pro-caspase-12,pro-caspase-9,pro-caspase-3及PARP的蛋白水平。
     结果:与对照组相比,皮秒脉冲电场处理过的HeLa细胞中,caspase-12,caspase-9以及caspase-3的转录上调,且随着场强的增大,caspase相对mRNA水平逐渐升高。蛋白水平上,实验组HeLa细胞中无活性的pro-caspase-12,pro-caspase-9和pro-caspase-3的表达量随场强的增大而减少。此外,具有活性的PARP(cleaved-PARP,89kDa)含量随场强的增大明显增加。
     结论:皮秒脉冲电场诱导HeLa细胞凋亡时启动了caspase级联事件,导致了caspase的活性片段在转录和翻译水平表达量的增加,HeLa细胞在皮秒脉冲电场作用下发生的凋亡是caspase依赖性的。
     第二部分皮秒脉冲电场经内质网途径诱导HeLa细胞凋亡机制的研究
     目的:探讨皮秒脉冲电场作用于HeLa细胞后,内质网应激凋亡的发生及其机制。
     方法:皮秒脉冲电场处理HeLa细胞后,继续培养12h,利用钙离子荧光探针标记,流式细胞仪和激光共聚焦显微镜的方法检测胞内Ca2+浓度的变化;Western blot检测内质网上PERK和eIF2α的磷酸化水平以及ATF6的活化;Real time-PCR和Western blot从转录和翻译水平检测分子伴侣GRP78和GRP94的表达,以及促凋亡转录因子CHOP的表达。
     结果:皮秒脉冲电场作用后,HeLa细胞胞浆中Ca2+浓度较对照组显著升高。内质网上PERK和eIF2α的磷酸化水平增加以及ATF6被活化。分子伴侣GRP78和GRP94以及促凋亡转录因子CHOP在转录和翻译水平均表达上调。
     结论:皮秒脉冲电场作用于HeLa细胞后,观察到明显的细胞内处理效应,对内质网产生了显著的影响。启动了内质网应激相关的HeLa细胞凋亡。
     第三部分皮秒脉冲电场对内质网应激相关的线粒体凋亡通路分子表达的影响
     目的:探讨皮秒脉冲电场作用下,HeLa细胞中与内质网应激密切相关的线粒体凋亡途径中有关分子的表达。
     方法:采用RT-PCR,Western blot的方法检测的Bcl-2和Bax转录和翻译水平的变化。Western blot方法检测线粒体Cytc的释放。
     结果:与对照组相比,皮秒脉冲电场处理过的HeLa细胞中,抗凋亡因子Bcl-2在转录和翻译水平上表达下调,促凋亡因子Bax在转录和翻译水平上表达上调,胞浆中Cyt c的含量增加,且三者的含量变化都与皮秒脉冲电场的强度大小呈正相关。
     结论:结合前期实验的结果,可以得出:线粒体途径在皮秒脉冲电场诱导的HeLa细胞凋亡中发挥着重要的作用。通过Bcl-2可将线粒体和内质网两条凋亡通路联系起来,它们之间的促凋亡作用可能存在一定的协同关系。
In recent years, the application of pulsed electric field (PEF) inbiomedical fields was given more and more attention from scholars athome and abroad. Previous studies have showed that microsecond andnanosecond pulsed electric fields produced significant killing effects intumor cells. However, the application of ms, μs and ns PEF still needs touse the invasive or minimally invasive needle or plate electrodes, to guidethe puncture of tumor tissue, which to some extent limit the clinicalapplication of this method. Therefore, picosecond pulsed electric fieldscame into being, which can be transferred to target deep tissuenon-invasively and reach the surface of tumor precisely.
     Matching the impulse radiating antenna (IRA), picosecond pulsedelectric fields with excellent directivity and fine handling, would become anew method in the field of the non-invasive treatment in tumors. IRA canbe carried out energy within the particular scope. It can converge theelectromagnetic pulse on a designated area, or even destroy the target.Radiation energy is concentrated both in time and in space. According tothis feature, picosecond pulsed electric field was transported into the tumortissue by IRA. And the non-invasive treatment of tumors can come true.But the research of the biological effects of psPEF on cells is limited.According to the window effect of pulses electric fields on cells, the electroporation effect of microsecond pulses and the intracellularelectromanipulations effect of nanosecond pulses, the main role ofpicosecond pulsed electric fields should be in the organelles. In addition,previous experiments of our group found that the picosecond pulsedelectric fields cause changes in mitochondrial membrane potential of tumorcells. So, in this study we will further investigate the influence of thepicosecond pulsed electric field on the function of another organelle-endoplasmic reticulum.
     Cervical carcinoma, the most common malignant tumor of femalereproductive system, is a serious threat to global women's physical andmental health. Its incidence is gradually getting younger and younger inrecent years. The traditional surgical treatment means the loss of fertilityand affects patients’ sexual function, which is very difficult to accept foryoung patients. Therefore, non-invasive treatment with preserved fertilityhas increasingly become the expectation for both doctors and patients.Although the cervical is not in the surface, it can be fully exposed by asimple method, which provides convenient conditions for the application ofpicosecond pulsed electric field (psPEF).
     Based on this, human cervical carcinoma HeLa cells were exposed topsPEF to investigate the underlying mechanisms of apoptosis in this study.Treatment with psPEF led to marked cell apoptosis and cell cycle arrest atG2/M phase. In addition, psPEF impacted the phosphorylation levels ofendoplasmic reticulum sensors and up-regulated the expression ofGlucose-regulated protein78(GRP78), Glucose-regulated protein94(GRP94) and C/EBP homologous protein (CHOP). These changes wereaccompanied by the elevation of Ca2+concentrations in intracellular.Furthermore, activation of caspase-12, caspase-9, caspase-3, increasing therelease of cytochrome c and up-regulation of Bax, and down-regulation of Bcl-2were observed in HeLa cells. Taken together, our findings suggestthat psPEF is an efficient apoptosis-inducing agent for HeLa cells, whichexerts its effects, at least partially, via the endoplasmic reticulum stress andcaspase-dependent signaling pathways.Part1Picosecond pulsed electric fields induced apoptosis in HeLa cells
     Chapter1The apoptosis phenomena of HeLa cells under Picosecondpulsed electric fields
     Objective: To observe the occurrence of apoptosis of HeLa cells aftertreated with picosecond pulsed electric fields.
     Methods: HeLa cells were divided into control group and fourexperimental groups (different amplitudes of picosecond pulsed electricfields treated groups). The parameters of experimental groups are asfollows: Fixed pulse width800ps, frequency3Hz, the number of pulses2000, three different electric field strength (200kV/cm,400kV/cm,600kV/cm). After treated with pulsed electric fields, the cell was culturedfor12h. Flow cytometry was used to detect changes in the rate of apoptosisand cell cycle; Hoechst33258staining was used to observe thecharacteristic changes in apoptosis; The ultrastructures of cells of thecontrol and experimental groups were observed by transmission electronmicroscopy.
     Results: After treated with psPEF, the apoptosis rate of theexperimental groups was significantly increased than the control group.The cell cycle distribution was assessed by monitoring intensity of PI fluorescence. Results indicated that psPEF blocked cells cleavage in phaseG2/M of the cell cycle. After treated with different amplitudes of psPEFand cultured for12h, typical apoptotic morphological changes of HeLacells were detected by Hoechst33258staining. The quantity of positivecells of the experimental groups increased significantly compared to thecontrol group. The experimental group cells showed typical apoptoticmorphology and the mitochondria and endoplasmic reticulum swollenunder effect of psPEF.
     Conclusion: The picosecond pulsed electric fields induced apoptosisof HeLa cells, and the cell cycle was arrested at the G2/M phase.
     Chapter2Caspase activity in HeLa cells exposed to picosecond pulsedelectric fields
     Objective: To explore the activity of apoptosis-related factorscaspase-12, caspase-9and caspase-3after exposed to picosecond pulsedelectric fields.
     Methods: After treated with different amplitudes of psPEF andcultured for12h, the total RNA and proteins of HeLa cells was extracted.The level of mRNA of caspase-12, caspase-9and caspase-3was detectedby RT-PCR. And the level of proteins of pro-caspase-12, pro-caspase-9,pro-caspase-3and PARP was detected by Western Blot.
     Results: Compared with the control group, the level of transcriptionof caspase-12, caspase-9and caspase-3was upregulated in theexperimental groups. And as the field strength increases, the relativemRNA levels of caspase gradually increased. In the levels of protein, theexpression of inactive pro-caspase-12, pro-caspase-9and pro-caspase-3 was reduced with the increase of the field strength. In addition, the activityof PARP (Cleaved PARP,89kDa) significantly increased with the fieldstrength increasing.
     Conclusion: The caspase cascade of events was activated whenpsPEF induced the apoptosis of HeLa cells. The apoptosis of HeLa cellsunder psPEF is caspase-dependent.
     Part2Mechanism of apoptosis through the endoplasmic reticulumpathway in Hela cells induced by psPEF
     Objective: To investigate the mechanism of apoptosis in Hela cellsvia endoplasmic reticulum stress induced by intense psPEF.
     Methods: After treated with different amplitudes of psPEF andcultured for12h, cells were loaded with the calcium probe Fluo-3-AM andthen examined by immunofluorescence using confocal microscopy andFlow cytometry. The phosphorylation of PERK and eIF2α and theactivation of ATF6were analyzed by Western blot. The expression of themolecular chaperone GRP78and GRP94and the pro-apoptotictranscription factor CHOP was analyzed by Real Time-PCR and Westernblot from the transcriptional and translational levels.
     Results: The green fluorescence intensity increased after the pulses,which indicated the elevation of Ca2+concentrations. The expression ofGRP78, GRP94and CHOP had a significant increase12h after the pulses,regardless of the level of gene or protein, compared with the control group.p-PERK, p-eIF2α and ATF6fragments increased, whereas their normalforms did not change.
     Conclusion: After psPEF exposure, PERK and eIF2α were phosphorylated; ATF6was cleaved to the activated form ATF6fragmentation; CHOP has a significant expression up-regulation; thechaperone proteins GRP78and GRP94were up-regulated, which showedthat the apoptosis of HeLa cells under psPEF was related to endoplasmicreticulum stress.
     Part3Effects of psPEF on Bax, Bcl-2and Cyt c in HeLa cells
     Objective: To investigate the effects of psPEF on Bax, Bcl-2and Cytc, which are associated with both endoplasmic reticulum stress andmitochondrial dysfunction.
     Methods: After treated with different amplitudes of psPEF andcultured for12h, the total RNA and proteins of HeLa cells was extracted.The level of mRNA of Bax and Bcl-2was detected by RT-PCR. And thelevel of proteins of Bax, Bcl-2and Cyt c was detected by Western Blot.
     Results: Treatment with psPEF resulted in an increase of cytosoliccytochrome c in a dose dependent manner in HeLa cells. RT-PCR andWestern blot analysis revealed that the expression of Bax was up-regulated.In contrast, the expression of Bcl-2was significantly down-regulated.
     Conclusion: psPEF induced the up-regulation of Bax expression,down-regulation of Bcl-2expression and the movement of Cyt c from themitochondria into the cytoplasm. Combined with the results of previousexperiments, it can be concluded: psPEF induced apoptosis of HeLa cells,which at least partially, by the induction of mitochondrial dysfunction. Twoapoptotic pathways could be linked by Bcl-2. And there may be part of thecollaborative relationship between the two pathway of the mitochondriadysfunction and endoplasmic reticulum stress.
引文
[1] Bray F, Loos AH, Mc CP, et al. Trends in cervical squamous cell carcinomaincidence in13European countries: changing risk and the effects of screening [J].Cancer Epidemiology. Biomarkers and Prevention.2005,14(3):677-686
    [2] Weaver JC. Electroporation: a general phenomenon for manipulating cells andtissues [J]. Journal of Celluar Biochemisty.1993,51(4):426-435
    [3] Okino M, Tomie H, Kanesada H, et al. Optimal electric conditions in electricalimpulse chemotherapy [J]. Japanese Journal of Cancer Research.1992,83(10):1095-1101
    [4] Hofmann GA, Dev SB, Dimmer S, et al. Electroporation therapy: a new approachfor the treatment of head and neck cancer [J]. IEEE Transactions on BiomedicalEngineering.1999,46(6):752-759
    [5] Stacey M, Stickley J, Fox P, et al. Differential effects in cells exposed to ultra-short,high intensity electric fields: cell survival, DNA damage, and cell cycle analysis [J].Mutation Research.2003,542(1-2):65-75
    [6]周玮,熊正爱,刘颖等.不可逆性电穿孔致HeLa细胞凋亡与坏死的作用研究[J].第三军医大学学报.2010,32(18):1941-1944
    [7]杨晓燕,熊正爱,李成祥等.陡脉冲不可逆性电击穿治疗兔肝脏肿瘤研究[J].西南大学学报(自然科学版).2009,31(8):120-125
    [8] Hua Yuanyuan, Wang Xiaoshu, Zhang Yu, et al. Intense picosecond pulsed electricfields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells [J].Molecular Medicine Reports.2012,5(4):981-987
    [9] Chen Wenjuan, Xiong Zhengai, Zhang Min, et al. Picosecond pulsed electric fieldsinduce apoptosis in HeLa cells involving Endoplasmic reticulum stress [J].International Journal of Oncology.2012,42(3):963-970
    [10] Schoenbach KH, Joshi RP, Kolb JF, et al. Ultrashort Electrical Pulses Open a NewGateway into Biological Cells [J]. Proceedings of the IEEE.2004,92(7):1122-1137
    [11] Yao Chenguo, Mo Dengbin, Li Chengxiang, et al. Study of transmembranepotentials of inner and outer membranes induced by pulsed-electric-field model andsimulation [J]. IEEE Transactions on Plasma Science.2007,35(5):1541-1549
    [12] Caroppi P, Sinibaldi F, Fiorucci L, et al. Apoptosis and human diseases:mitochondrion damage and lethal role of released cytochrome C as proapoptoticprotein [J]. Current Medicinal Chemistry.2009,16(31):4058-4065
    [13] Thorburn A. Death receptor-induced cell killing [J]. Cell Signal.2004,16(2):139-144
    [14] DuRose JB, Tam AB, Niwa M. Intrinsic capacities of molecular sensors of theunfolded protein response to sense alternate forms of endoplasmic reticulum stress[J]. Molecular Cell Biology.2006,17(7):3095-3107
    [15] Siman R, Flood DG, Thinakaran G, et al. Endoplasmic reticulum stress-inducedcysteine protease activation in cortical neurons: effect of an Alzheimer’sdisease-linked presenilin-1knock-in mutation [J]. Journal Biological Chemistry.2001,276(48):44736-44743
    [16] Morishima N, Nakanishi K, Takenouchi H, et al. An endoplasmic reticulumstress-specific caspase cascade in apoptosis [J]. Journal Biological Chemistry.2002,277(37):34287-34294
    [17] Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulumstress-induced apoptosis by enhancing DR5expression in human carcinoma cells[J]. Journal Biological Chemistry.2004,279(44):45495-45502
    [18] Tamm I, Schfiever F, Dorken B. Apoptosis: implications of basic research forclinical oncology [J]. Lancet Oncology.2001,2(1):33-42
    [19] McCullough KD, Martindale JL, Klotz LO, et al. Gadd153sensitizes cells toendoplasmic reticulum stress by down-regulating Bcl-2and perturbing the cellularredox state [J]. Molecular Cell Biology.2001,21(4):1249-1259
    [1] Neumann E, Rosenheck K. Permeability changes induced by electric impulses invesicular membranes [J]. J Membrane Biol.1972,10(3):279-290
    [2] Panje WR, Hier MP, Garman GR, et al. Electroporation therapy of head and neckcancer [J]. Ann Otol Rhinol Laryngol.1998,107(4):779-785
    [3] Zimmermann U, Friedrich U, Mussauer H, et al. Electromanipulation ofMammalian Cells: Fundamentals and Application [J]. IEEE Trans on PlasmaScience.2000,28(1):72-82
    [4] Tsong TY. Electroporation of cell membranes [J]. Biophysical Journal.1991,60(3):297-306
    [5] Weaver JC. Electroporation of Cells and Tissues [J]. IEEE Transactions on PlasmaScience.2000,28(1):24-33
    [6] Weaver JC. Electroporation: a general phenomenon for manipulating cells andtissues [J]. Journal of Celluar Biochemisty.1993,51(4):426-435
    [7] Chizmadzhev YA. Electric breakdown of bilayer lipid membranes II Calculation ofthe transmembrane lifetime in the steady-state diffusion approximations [J].Bioelectrochemistry and Bioenergetics.1979,6(6):53-62
    [8] Sersa G. Tumor blood flow change induced by application of electrical pulses [J].European Journal of Cancer.1999,35(4):672-677
    [9] Neumann E, Sowers AE, and Jordan CA. Electroporation and electrofusion in cellbiology [M]. New York: Plenum,1989
    [10] Lee RC. Electrical injury mechanisms: Electrical breakdown of cell membranes[J]. Plast Reconstr Surg.1987,80(7):672-679
    [11] Ramirez LH. Electrochemotherapy on liver tumors in rabbits [J]. British Journalof Cancer.1998,77(12):2104-2111
    [12] Schoenbach KH, Joshi RP, Kolb JF, et al. Ultrashort electrical pulses open a newgateway into biological cells [J]. Proceedings of the IEEE.2004,92(7):1122-1137
    [13] Buescher ES, Smith RR, Schoenbach KH. Submicrosecond intense pulsed electricfield effects on intracellular free calcium:Mechanisms and effects [J]. IEEETransactions on Plasma Science.2004,32(4):1563-1572
    [14] Schoenbach KH, Nuccitelli R, Pliquett U, et al. Nanosecond pulsed electric fieldscause melanomas to self-destruct [J]. Biochem Biophys Res Commun.2006,343(2):351-360
    [15] Nuccitelli R, Pliquett U, Chen X, et al. Nanosecond pulsed electric fields causemelanomas to self-destruct [J]. Biochem Biophys Res Commun.2006,343(2):351-360
    [16] Nuccitelli R, Chen X, Pakhomov AG, et al. A new pulsed electric field therapy formelanoma disrupts the tumor's blood supply and causes complete remission withoutrecurrence [J]. Int J Cancer.2009,125(2):438-445
    [17] Yao Chenguo, Mo Dengbin, Li Chengxiang, et al. Study of transmembranepotentials of inner and outer membranes induced by pulsed-electric-field model andsimulation [J]. IEEE Transactions on Plasma Science.2007,35(5):1541-1549
    [18] Yao Chenguo, Mi Yan, Li Chengxiang, et al. Study of transmembrane potentialson cellular inner and outer membrane--frequency response model and its filtercharacteristic simulation [J]. IEEE Transactions on Biomedical Engineering.2008,55(7):1792-1799
    [19] Hua Yuanyuan, Wang Xiaoshu, Zhang Yu, et al. Intense picosecond pulsed electricfields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells [J].Molecular Medicine Reports.2012,5(4):981-987
    [20]龙再全,姚陈果,李成祥,等.皮秒电场脉冲在肿瘤无创治疗中的聚焦特性[J].生物医学工程学杂志.2010,(5):1128-1132
    [21] Kerr JF, Wyllie AH Currie AR. Apoptosis: A basic biological phenomenon withwide-ranging implications in tissue kinetics [J]. British Journal of Cancer.1972,26(8):239-257
    [22] Ran RV, Hermel E, Castro-Obregon S, et a1. Coupling endoplasmic retieulumstress to the cell death program: Mechanism of caspase activation [J]. J Biol Chem.2001,276(36):33869-33874
    [23] Ferri KF, Kroemer G. Organelle-specific of cell death pathways. Nat Cell Biol.2001,31(11):255-263
    [24] Xie Q, Khaoustov VI, Chung CC, et al. Effect of tauroursodeoxycholic acid on ERstress-induced caspase-12activation [J]. Hepatology.2002,36(6):592-601
    [25] Mouw G, Zechel JL, Gamboa J, et al. Activation of caspase-12, an endoplasmicreticulum resident caspase, after permanent focal ischemia in rat [J].Neuroreport.2003,14(2):183-186
    [26] Nakagawa T, Zhu H, Morishima N, et al. Caspase-12mediatesendoplasmic-reticulum-specific apoptosis and cytotoxicity by amyliod-beta [J].Nature.2000,403(6765):98-110
    [27]Saleh A, Srinivasula SM, Acharya S, et al. Cytochrome c and dATP-mediatedoligomerization of apaf-1is a prerequisite for procaspase-9activation [J]. TheJournal of Biological Chemistr y,1999,274(25):17941-17945
    [28] Soengas MS, Alarcon RM, Yoshida H, et al. Apaf-1and caspase-9inp53-dependent apoptosis and tumor inhibition [J]. Science.1999,284(5411):156-159
    [29] Poter AG, Janicke RU. Emerging roles of caspase-3in apoptosis [J]. Cell DeathDiffer.1999,6(2):99-104
    [30] Cheng EH, Kirsch DG, Clem RJ, et al. Conversion of Bcl-2to a Bax-like deatheffector by caspases [J]. Science.1997,278(5345):1966-1968
    [31] Li X, Darzynkiewicz Z. Cleavage of Poly(ADP-ribose) polymerase measured insitu individual cells: relationship to DNA fragmentation and cell cycle positionduring apoptosis [J]. Exp Cell Res.2000,255(1):125-132
    [1] Hamanaka RB, Bennett BS, Cullinan SB, et al. PERK and GCN2contribute toeIF2alpha phosphorylation and cell cycle arrest after activation of the unfoldedprotein response pathway [J]. Mol Biol Cell.2005,16(12):5493-5501
    [2] Davenport EL, Moore HE, Dunlop AS, et al. Heat shock protein inhibition isassociated with activation of the unfolded protein response pathway in myelomaplasma cells [J]. Blood.2007,110(7):2641-2649
    [3] Boitier E, Rea R, Duchen MR. Mitochondria exert a negative feedback on thepropagation of intracellular Ca2+waves in rat cortical astrocytes [J]. J Cell Biol.1999,145(4):795-808
    [4] Jouaville LS, Ichas F, Holmuhamedov EL, et al. Synchronization of calcium wavesby mitochondrial substrates in Xenopus laevis oocytes [J].Nature.1995,377(6548):438-441
    [5] Pinton P, Ferrari D, Papizzi Z, et a1. The Ca2+concentrationof the endoplasmicreticulum is a key determinant of ceremide-induced apoptosis:significance for themolecular mechanism of Bcl-2action [J]. EMBo J.2001,20(11):2690-2701
    [6] Hoozemans JJ, Stieler J, van Haastert ES, et a1. The unfolded protein responseaffects neuronal cell cycle protein expression: implications for Alzheimer's diseasepathogenesis [J]. Exp Gerontol.2006,41(4):380-386
    [7] Little E, Ramakrishnan M, Roy B, et a1. The glucose-regulated proteins (GRP78and GRP94): functions, gene regulation, and applications [J]. Crit Rev EukaryotGene Expr.1994,4(1):1-18
    [8] Lu Q, Harrington EO, Newton J, et a1. Inhibtion of ICMT induces endothelial cellapoptosis through GRP94[J]. Am J Reapir Cell Mol Biol.2007,37(1):20-30
    [9] Quinones QJ, de Ridder GG, Pizzo SV. GRP78: a chaperone with diverse rolesbeyond the endoplasmic reticulum [J]. Histol Histopathol.2008,23(11):1409-1416
    [10] DuRose JB, Tam AB, Niwa M. Intrinsic capacities of molecular sensors of theunfolded protein response to sense alternate forms of endoplasmic reticulum stress[J]. Mol Biol Cell.2006,17(7):3095-3107
    [11] Oyadomari S, Mori M. Roles of CHOP/GADD153in endoplasmic reticulumstress [J]. Cell Death Differ.2004,11(4):381-389
    [12] Wang Y, Shen J, Arenzana N. Activation of ATF6and ATF6DNA binding siteby the endoplasmic reticulum stress response [J]. J Biol Chem.2000,275(35):27013-27020
    [13] McCullough KD, Martindale JL, Klotz LO, et a1. Gadd153sensitizes cells toendoplasmic reticulum stress by down-regulating Bcl-2and perturbing the cellularredox state [J]. Mol Cell Biol.2001,21(4):1249-1259
    [14] Lao Y, Chang DC. Study of the functional role of Bcl-2family proteins inregulating Ca(2+) signals in apoptotic cells [J]. Biochem Soc Trans.2007,35(Pt5):1038-1039
    [1] McCullough KD, Martindale JL, Klotz LO, et a1. Gadd153sensitizes cells toendoplasmic reticulum stress by down-regulating Bcl-2and perturbing the cellularredox state [J]. Mol Cell Biol.2001,21(4):1249-1259
    [2] Lu Q, Harrington EO, Newton J, et a1. Inhibtion of ICMT induces endothelial cellapoptosis through GRP94[J]. Am J Reapir Cell Mol Biol.2007,37(1):20-30
    [3] Burlacu A. Regulation of apoptosis by Bcl-2family proteins. J Cell Mol Med.2003,7(3):249-257
    [4] Lindsten T,Ross AJ,King A,et a1. The combined functions of proapoptotic Bcl-2family members bak and bax are essential for normal development of multipletissues [J]. Mol Cell.2000,6(6):1389-1399
    [5] Kumarswamy R, Chandna S. Putative partners in Bax mediated cytochrome-crelease: ANT, CypD, VDAC or none of them [J]. Mitochondrion.2009,9(1):1-8
    [6] Jürgensmeier JM, Xie Z, Deveraux Q, et a1. Bax directly induces release ofcytochrome c from isolated mitochondria [J]. Proc Natl Acad Sci.1998,95(9):4997-5002
    [7] Xu SZ, Zhong W, Watson NM, et a1. Fluvastatin reduces oxidative damage inhuman vascular endothelial cells by upregulating Bcl-2[J]. J Thromb Haemost.2008,6(4):692-700
    [8] Purring-Koch C, McLendon G. Cytochrome c binding to Apaf-l: the effects of dATPand ionic strength [J]. Proc Natl Acad Sci USA.2000,97:11928-11931
    [9] Cain K, Bratton SB, Cohen GM. The Apaf-l apoptosome: a large caspase activatingcomplex [J]. Biochimie.2002,84:203-214
    [1] Shen X, Zhang K, Kaufman R J. The unfolded protein response—a stress signalingpathway of the endoplasmic reticulum [J]. Journal of chemical neuroanatomy.2004,28(1):79-92
    [2] Hu P, Han Z, Couvillon A D, et al. Critical role of endogenous Akt/IAPs andMEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced celldeath [J]. Journal of Biological Chemistry.2004,279(47):49420-49429
    [3] Breckenridge D G, Germain M, Mathai J P, et al. Regulation of apoptosis byendoplasmic reticulum pathways [J]. Oncogene.2003,22(53):8608-8618
    [4] Bánhegyi G, Baumeister P, Benedetti A, et al. Endoplasmic reticulum stress [J].Annals of the New York Academy of Sciences.2007,1113(1):58-71
    [5] Ma Y, Hendershot LM. Herp is dually regulated by both the endoplasmic reticulumstress-specific branch of the unfolded protein response and a branch that is sharedwith other cellular stress pathways [J]. Journal of Biological Chemistry.2004,279(14):13792-13799
    [6] Mori K. Tripartite Management Minireview of Unfolded Proteins in theEndoplasmic Reticulum [J]. Cell.2000,101(5):451-454
    [7] DuRose JB, Tam AB, Niwa M. Intrinsic capacities of molecular sensors of theunfolded protein response to sense alternate forms of endoplasmic reticulum stress[J]. Molecular biology of the cell.2006,17(7):3095-3107
    [8] Pavio N, Romano PR, Graczyk TM, et al. Protein synthesis and endoplasmicreticulum stress can be modulated by the hepatitis C virus envelope protein E2through the eukaryotic initiation factor2α kinase PERK [J]. Journal of virology.2003,77(6):3578-3585
    [9] Jiang HY, Wek RC. Phosphorylation of the alpha-subunit of the eukaryoticinitiation factor-2(elF2alpha) reduces protein synthesis and enhances apoptosis inresponse to proteasome inhibition [J]. J BiolChem.2005,280(5):14189-14202
    [10] Yoshida H, Matsui T, Yamamoto A, et al. XBP1mRNA is induced by ATF6andspliced by IRE1in response to ER stress to produce a highly active transcriptionfactor [J]. Cell.2001,107(7):881-892
    [11] Wang Y, Shen J, Arenzana N, et al. Activation of ATF6and an ATF6DNAbinding site by the endoplasmic reticulum stress response [J]. Journal of BiologicalChemistry.2000,275(35):27013-27020
    [12] Oyadomari S, Mori M. Roles of CHOP/GADD153in endoplasmic reticulumstress [J]. Cell Death Differ.2004,11(4):381-389
    [13] Szabadkai G. Rizzuto R. Participation of endop lasmic reticulum andmitochondrial calcium handling in apoptosis: more than just neighborhood [J]?FEBS Letters.2004,567(1):111-115
    [14] Verkhratsky A, Toescu EC. Endoplasmic reticulum Ca2+homeostasis andneuronal death [J]. Journal of cellular and molecular medicine.2003,7(4):351-361
    [15] Breckenridge DG, Germain M, Mathai JP, et al. Regulation of apoptosis byendoplasmic reticulum pathways [J]. Oncogene.2003,22(53):8608-8618
    [16] Ferri KF, Kroemer G. Organelle-specific of cell death pathways [J].Nat Cell Biol.2001,31(11):255-263
    [17] Rao RV, Pel A, Logvinova A, et al. Coupling endoplasmic reticulum stress to thecell death program: role of the ER chaperone GRP78[J]. FEBS Lett.2002,514(2-3):122-128
    [18] Chua BT, Guo K, Li P. Direct cleavage by the calcium-activated protease calpaincan lead to inactivation of caspases [J]. J Biol Chem.2000,275(7):5131-5135
    [19] Morishima N, Nakanishi K, Takenouchi H, et al. An endoplasmic reticulumstress-specific caspase cascade in apoptosis. Cytochrome cindependent activation ofcaspase-9by caspase-12[J]. J Biol Chem.2002,277(37):34287-34294
    [20] Nakagawa T, Zhu H, Morishima N, et al. Caspase-12mediatesendoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β [J]. Nature.2000,403(6765):98-103
    [21] Kalai M, Lamkanfi M, Denecker G, et al. Regulation of the expression andprocessing of caspase-12[J]. J Cell Biol.2003,162(3):457-467
    [22] Mehmet H. Apoptosis: Caspases find a new place to hide [J]. Nature.2000,403(6765):29-30.
    [23] Chen R, Valencia I, Zhong F, et al. Bcl-2functionally interacts with inositol1,4,5-trisphosphate receptors to regulate calcium release from the ER in response toinositol1,4,5-trisphosphate [J]. Cell Biol.2004,166(2):193-203
    [24] Mund T, Gewies A, Schoenfeld N, et al. Spike,a novel BH3-only protein,regulates apoptosis at the endoplasmie reticulum [J]. FASEB J.2003,17(6):696-698
    [25] Tian XM, Zhang ZX. Resveratrol promote permeability transition pore openingmediated by Ca2+[J]. Yan Xue Bao.2003,38(2):81-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700