用户名: 密码: 验证码:
非视距环境下的无线定位算法及其性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用移动台的位置信息,除了可以为移动用户提供安全保障外,还可以增加系统性能,有效地管理网络资源、调节系统容量,提供基于位置信息的多种多样增值服务。实现移动台定位通常需要两步,首先根据不同的定位类型,估计相应的定位参数;然后根据估计出的定位参数,采用相应的定位算法进行移动台的位置估计。在现代无线通信环境(特别是城市移动环境)中,因受非视距(NLOS)多径传播、几何精度因子等多种不利因素的影响,使得现有各种移动终端(MS)定位方法都不可避免地受到很大影响,导致其定位性能显著下降,难以在非视距多径条件下达到E-911定位精度要求。本论文主要针对无线定位过程中的第二步,致力于克服非视距多径环境下的定位误差,提出了一些精度高的无线定位算法并对其性能进行了深入分析。
     本文首先在分析NLOS多径传播对TOA/TDOA定位算法影响的基础上,研究了克服NLOS误差的新型无线定位算法。第一种克服NLOS误差的定位算法是基于视距环境下经典Chan和Taylor算法的协同定位算法。其中,Chan是一种具有解析表达式解的非递归定位算法,具有计算量小的优点,而且在视距传播环境下是最大似然(ML)估计的高精度定位方法,但在NLOS多径环境下其定位精度显著下降。Taylor级数展开法是一种需要初始估计位置的递归算法,能够适用于各种信道环境,在初始估计位置与实际位置接近的情况下能较快地收敛,得到准确的计算结果,但当初始位置选择不好时算法将很难保证收敛。本文提出的协同定位算法,首先采用Chan氏算法进行定位计算,计算结果作为Taylor级数展开算法的初始值,然后采用Taylor级数展开算法再次对MS进行定位估计。为了避免少数情况下Taylor算法定位结果的发散问题,本文提出了根据Chan和Taylor级数展开算法的定位结果进行系数加权,然后根据加权系数对两种定位方法位置估计值进行处理,得出MS最终的位置估计值。研究结果表明,本文提出的协同定位方法在信道环境恶劣的情况下具有很高的定位精度,并能克服Taylor级数展开定位算法的发散问题。
     本文第二种克服NLOS多径影响的定位算法是基于几何约束关系的ML定位算法。该算法基于TOA测量值,首先利用任意3个TOA值,根据TOA值与移动台位置、基站位置之间的几何关系,估计得到移动台的所有可能位置。然后利用ML算法,从所有可能位置中选择出一个最有可能是移动台真实位置的估计值作为最后的定位结果。该算法能够获得最佳的估计值,可降低ML计算复杂性,不需要移动台初始位置,能有效抑制NLOS误差,从而提高定位精度。本算法不需要确切知道TOA的条件概率密度函数,而且对TOA的条件概率密度函数参数误差不敏感。
     由于受多径传播环境和功率控制等因素的影响,基于无线接收信号强度的定位算法精度受限。但由于其定位技术容易实施,费用较小,不需要对移动终端和基站硬件进行修改,仍然大量应用于GSM等无线通信网络。本文针对现有的GSM网络定位系统,重点讨论了在不改变蜂窝网络结构的情况下,如何利用现有网络提供的参数获得更高的定位精度。论文提出了基于场强差辅之以GDOP加权的数据融合定位方法,采用信号场强差作为基本的定位方法,采用GDOP加权对定位中间结果进行处理。通过利用某城市GSM网络的实际测试数据对模型进行了分析验证。结果表明,当定位误差小于300米时,采用本文提出的数据融合方法定位精度比常用的CI+TA方法提高了近8%。若对测量报告进行预处理后再进行定位,本文提出的方法在67%的概率下,定位误差小于225米,定位精度高于其它方法。论文还对基于场强差的标准定位算法定位精度进行了分析,得出了其CRLB界。
     接着,论文讨论了基于几何结构的单次反射圆环模型,该模型是一种适用于对各种定位算法进行分析的信道模型。通过对该模型的传播时延特征进行分析,本文提出了一种基于圆散射模型的TOA重构方法来克服非视距对定位的影响。研究结果表明,这种方法在信道环境差的情况下能够有效地提高无线定位精度。
     由于未来无线通信将是不同网络的融合与集成,网络中各无线终端可以通过高速无线链路进行互相协作以完成通信任务,也可能通过协作提高多径环境下的无线定位精度。为此,本文研究了无线传感器网络和无线蜂窝系统的协作定位问题。论文首先在分析现有无线传感器网络定位算法的基础上,针对其中的DV-Distance算法进行了研究,提出了一种改进的差分DV-Distance算法,使得算法定位精度明显提高。针对下一代蜂窝通信系统中的协作定位,论文提出了一种高精度协作定位算法,并对其性能进行仿真分析。
     最后,论文对无线定位系统平台进行了研究。由于未来多种移动通信网络并存是必然趋势,从定位服务而言,希望与具体移动通信物理网络无关,并希望充分利用现有的多种无线定位基础设施。为此,本文提出了一种新型开放式通用无线定位增值服务平台。该通用定位平台构架于现有多个无线定位网络,从而使定位功能和服务范围得到增强,适用于独立于无线通信网络的通用无线定位服务专业运营商。论文给出了通用无线定位增值服务平台的系统结构,探讨了基于GSM和3GPP Parlay API规范的无线定位增值服务平台中间件功能层的定义以及服务平台的功能。
In addition to provide security service to mobile subscribers, the location of mobile stations can be also applied to network performance enhancement, more effective resource management, system capacity adjustment, and other various value-added services. The mobile positioning normally consists of two steps, the first step provides estimates of location parameters according to different location methods, and the second step determines the MS position using appropriate positioning algorithms, based on the available location parameters. In modern wireless communication environment, especially in urban environment, due to the influence of several adverse factors, such as Non Line of Sight (NLOS) propagation and Geometric Dilution of Precision (GDOP), the performance of all existing position methods is inevitably influenced, and the position estimation of the mobile terminals may be significantly biased as well. Thus, it is difficult for current radio location systems to meet the E-911 location requirement under the NLOS propagation environment. It is therefore the purpose of this thesis to investigate and propose accurate positioning algorithms (the second step) and their performance evaluation, in order to mitigate the NLOS errors.
     Based on the analysis of NLOS influence to the location algorithms, NLOS error mitigation algorithms in location estimation are investigated. The first algorithm proposed in this thesis is a hybrid location method based Chan and Taylor algorithms, where the Chan algorithm is a closed form non-iterative maximum likelihood (ML) algorithm under the line-of-sight (LOS) environment, but its performance degrades significantly under NLOS environment, and the Taylor algorithm is a Taylor series expansion method depending heavily on the initial values in order to guarantee convergence. The proposed hybrid location method first calculates the initial MS position using Chan algorithm, then calculates the intermediate MS position according Taylor algorithm using the obtained initial results as the its initial values. The final MS position is then the linear combination of the intermediate results based on certain carefully chosen weights. It is shown that the hybrid location method can significantly improve the location accuracy under bad channel environments, and can also overcome the divergence problem of Taylor algorithm.
     The second algorithm proposed is the Geometry-constrained NLOS mitigation algorithm based on ML-detection. The algorithm first computes the mobile position using arbitrary 3 TOA measurements according to their geometric relation, and then selects the most possible result from all computed results as the final MS estimated position using the ML algorithm. The proposed GML algorithm can achieve optimal estimate while preserving the computational efficiency of the ML detection algorithm and without requesting initial MS positions. It can restrain the NLOS errors effectively without knowing the exact conditional p.d.f.'s of the TOA measurements, resulting excellent positioning performance. The algorithm is also not sensitive to the standard deviation errors.
     Due to the influence of multipath propagation and power control, the location accuracy of signal strength based techniques is limited. However, because it is easy to implement, cost effective and not necessary to modify the base station and mobile station, it is still widely used in GSM and other location systems. This thesis addresses the problem of improving the location accuracy of GSM positioning system by employing the existing GSM data. Hence, there is no need for any additional hardware, network overlay or infrastructure change. A data fusion model based on Geometric Dilution of Precision (GDOP) weighting for GSM mobile position estimation is proposed. By applying a set of practical GSM system measurement data, it is shown that the location accuracy is improved by 8% compared with the conventional CI+TA when the location error is within 300m. If the measurement data is processed beforehand, the location error will be less than 225 meters in 67% of the time, better than other positioning algorithms. The thesis also investigates the performance of standard positioning algorithms based on received signal strength difference (RSSD) and derives the corresponding CRLB bound, together with the numerical results.
     Next, the single reflection ring of scatterer model is discussed, which is. suitable for analyzing many kinds of location algorithms. By analyzing the time delay characteristic of this model, a new TOA reconstruction method based on the ring of scatterer model and its improvement is proposed. The proposed method can significantly reduce the NLOS error and improve the location accuracy compared with the conventional method.
     Considering that the future wireless communications will ensure seamless service provisioning across a multitude of wireless networks, from private to public, from indoor to wide area, and be able to provide an optimum delivery via the most appropriate network available, mobile terminals can communicate with each other cooperatively using high-speed wireless links. It is hoped that the information between MSs can also be used cooperatively to enhance the location accuracy. In this thesis, the cooperative location of wireless sensor network and cellular-controlled short-range communication system is investigated. Firstly, aiming at the enhanced positioning accuracy of wireless sensor network node location, an improved DV-DISTANCE positioning algorithm, which uses a differential error correction scheme for reducing cumulative distance error and node location error accumulated over the multiple hops, is proposed. Then, a cooperative high accuracy positioning algorithm for 4G is proposed together with the simulation analysis.
     Finally, a general wireless location platform is discussed. As various wireless networks will co-exist in the future, a general platform built upon the existing independent mobile communication infrastructure is necessary. In this thesis, a new general value-added service platform for wireless location, suitable for specialized location service providers, is proposed to overcome the limitations of current individual location system with simplistic service and small coverage. The system architecture of the general platform is presented, and a concept of location middleware layer based on GSM and 3GPP Parlay API standard and other systems, is proposed, together with the possible location services which can be provided.
引文
[1] 范平志,邓平,刘林,《蜂窝网络无线定位》[M],电子工业出版社,ISBN7-5053-8283-7/TN.1726,北京,2002年12月。
    [2] James M. Zagami, Steen A, Parl, Julian J. Bussgang, et al., Providing Universal location Services Using a Wireless E911 Location Network, IEEE Communications Magazine, Vol. 36, No. 4, pp.66-71, April 1998.
    [3] J. Reed and T. Rappaport, An Overview of the challenges and Progress in meeting the E-911 Requirement for Location Service, IEEE Communication Magazine, Vol. 36, No. 4, pp.30-37, April 1998.
    [4] M. Hata, Empirical Formula for Propagation Loss in Land Mobile Radio Service, IEEE Trans. on VT, Vol. VT-29, No. 3, pp. 317-325, 1980.
    [5] W. C. Y. Lee, Mobile Communications Engineering, McGraw-Hill, 1982.
    [6] P. Deng, P. Z. Fan, An Efficient Position-Based Dynamic Location Algorithm, 2000 Int. Workshop on Autonomous Decentralized System (IWADS'2000), Chengdu, PRC, Sept. 21-23, pp.36-39, 2000.
    [7] 邓平,蜂窝网络移动台定位技术研究,西南交通大学博士学位论文,2002.5.
    [8] 刘林,范平志,徐亮,一种新型通用无线定位增值服务平台,电讯技术,2005年4月,第45卷,第2期,第134-137页。
    [9] 沈晖,季承,傅海阳,无线通信中的定位技术及其业务,电力系统通信,2005年4月10日,第26卷,第150期,第1—3页。
    [10] Y.T. Chan and K.C. Ho, A Simple and Efficient Estimator for Hyperbolic Location, IEEE Trans. on Signal Processing, Vol. 42, No 8, pp. 1905-1915, August 1994.
    [11] W. H. Foy, Position Location Solutions by Taylor-Series Estimation, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-12, pp.187-193, March 1976.
    [12] J. Caffery, Wireless Location in CDMA Cellular Radio Systems, Kluwer Academic Publishers, 2001.
    [13] S. Venkatraman, J. Caffery, Heung-Ryeol You, A novel ToA location algorithm using LoS range estimation for NLoS environments, IEEE Transactions on VT, Vol.53, No.5, pp.1515-1524, September 2004.
    [14] S.Venkatraman, J. Caffery, statistical approach to non-line-of-sight BS identification, The 5th International Symposium on Wireless Personal Multimedia Communications, Vol. 1, pp.296-300, 27-30 October 2002.
    [15] S. Al-Jazzar, J. Caffery, ML and Bayesian TOA location estimators for NLOS environments, Proceedings of 56th Vehicular Technology Conference 2002, Vol.2, pp.1178-1181, 24-28 September 2002.
    [16] S. Al-Jazzar, J. Caffery, H.-R. You, A scattering model based approach to NLOS mitigation in TOA location systems, IEEE Vehicular Technology Conference, Vol.2, pp.861-865, 6-9 May 2002.
    [17] S. Venkatraman, J. Caffery, H.-R. You, Location using LOS range estimation in NLOS environments, IEEE Vehicular Technology Conference, Vol.2, pp.856-860,6-9 May 2002.
    [18] J. Caffery, A new approach to the geometry of TOA location, IEEE Vehicular Technology Conference, 2000, Vol.4, pp.1943-1949, 24-28 September 2000.
    [19] S.Al-Jazzar, J.Caffery, NLOS mitigation method for urban environments, IEEE Vehicular Technology Conference, Vol. 7, pp.5112-5115, 26-29 September 2004.
    [20] P. C. Chen, Mobile Position Location Estimation in Cellular Systems, PhD Thesis, The State University of New Jersey, May, 1999.
    [21] Yiu-Tong Chan, Wing-Yue Tsui, Hing-Cheung So, Pak-chung Ching, Time-of-arrival based localization under NLOS conditions, IEEE Trans. on Vehicular Technology, Vol. 55, No.1, pp. 17-24, January. 2006.
    [22] Yiu-Tong Chan, Yau Chin Hang, H., Pak-chung Ching, Exact and approximate maximum likelihood localization algorithms, IEEE Trans. on Vehicular Technology, Vol.55, No.1, pp.10-16, January 2006.
    [23] R. Schmidt, A New Approach to Geometry of Range Difference Location, IEEE Trans. on Aerospace and Electronic Systems, Vol. 8, pp.821-835, 1972.
    [24] M. P. Wylie, and J. Holtzman, The Non-Line-of-Sight Problems in Mobile Location Estimation, WINLAB TR-121, June 1996.
    [25] M. McGuire, et. al., Robust Estimation of Mobile Terminal Position, IEE Electronics Letters, Vol. 36, No.16, pp.1426-1428, 2000.
    [26] M. McGuire, et.al., Location of Mobile Terminals Using Time Measurements and Survey Points, PACRIM 2001, Victoria, BC, Canada, pp. 635-638, 2001.
    [27] T. Kleine-Ostamann and A. Bell, A Data Fusion Architecture for Enhanced Position Estimation in Wireless Networks, IEEE communications letters, Vol. 5, No.8, pp. 343-345, 2001.
    [28]Y. T. Huang et.al., An Efficient Linear-correction Least-squares Approach to Source Localization, IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, New Paltz, New York, pp.67-70,21-24 October 2001.
    [29] S. Mangold, Applying Pattern Recognition Techniques based on Hidden Markov Models for Vehicular Position Location in Cellular Networks, IEEE VTC'99, Boston, pp.780-784,1999.
    [30] D. H. Shin, et.al., Comparisons of Error Characteristics between TOA and TDOA Positioning, IEEE Trans, on Aerospace and Electronic Systems, Vol.38, pp. 307-311, 2002.
    [31]Lei Mu; Geng-Sheng Kuo; Ningning Tao, A Novel Location Algorithm Based on Dynamic Compensation Using Linear Location Prediction in NLOS Situations, IEEE Vehicular Technology Conference, Vol. 2, pp.594 - 598,2006.
    [32]Cha-Hwa Lin, Juin-Yi Cheng, Chien-Nan Wu, Mobile location estimation by density-based clustering for NLoS environments, International Conference on Advanced Information Networking and Applications, Vol.1, pp.295-300, 18-20 April 2006.
    [33] Lei Mu, Geng-Sheng Kuo, Ningning Tao, A Novel Location Algorithm Based on Dynamic Compensation Using Linear Location Prediction in NLOS Situations, IEEE Vehicular Technology Conference, Vol.2, pp.594 - 598,2006.
    [34]L. Cong, et. al., Non-Line-of Sihgt Error Mitigation in TDOA Mobile Location, Proc. IEEE Globecom 2001, San Antonio, pp. 680-684,2001.
    [35] S. S. Wang and M. Green, Mobile Location Method for Non-Line-of-Sight Situation, IEEE VTC2000, Vol.2, pp.608-612,2000.
    
    [36]G. Wylie, et.al., Robust Range Estimation in the Presence of the Non-Line-of-Sight Error, IEEE VTC, pp.101-105, 2001.
    [37]Cha-Hwa Lin, Juin-Yi Cheng, Chien-Nan Wu, Mobile location estimation by density-based clustering for NLoS environments, International Conference on Advanced Information Networking and Applications, Vol.1, pp.295-300, 18-20 April 2006.
    [38]Jung-Feng Liao, Bor-Sen Chen, Robust Mobile Location Estimator with NLOS Mitigation using Interacting Multiple Model Algorithm, IEEE Trans, on Wireless Communications, Vol.5, No.11, pp.3002 - 3006, November 2006.
    [39]Wuk Kim, J.G.Lee, G-I.Jee, The interior-point method for an optimal treatment of bias in trilateration location, IEEE Trans. on Vehicular Technology, Vol.55, No.4, pp.1291 - 1301, July 2006.
    [40] N. Khajehnouri, A. H. Sayed, A non-line-of-sight equalization scheme for wireless cellular location, IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP '03). Vol.6, 6-10, pp.549-552, April 2003.
     [41]S.Venkatesh, R.M.Buehrer, A linear programming approach to NLOS error mitigation in sensor networks, The Fifth International Conference on Information Processing in Sensor Networks, 2006. (IPSN 2006), pp.301 - 308,19-21 April 2006.
    [42]J. Riba, A. Urruela, A non-line-of-sight mitigation technique based on ML-detection, IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP '04). Vol.2, pp.ii -153-6,17-21 May 2004.
    [43]A. Urruela, H. Morata, J. Riba, NLOS mitigation based on a Trellis search for wirelesslocation, 2005 IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, pp.665 - 669,5-8 June 2005.
    [44] S. Gezici, H. Kobayashi, H.V. Poor, Nonparametric non-line-of-sight identification, 2003 IEEE 58th Vehicular Technology Conference, Vol.4, pp.2544 - 2548,. 6-9 Oct. 2003.
    
    [45]Jing Li, Ju Liu, Hongji Xu, Jiande Sun, NLOS error mitigation and mobile tracking, 2004 7th International Conference on Signal Processing(ICSP '04), Vol.3, pp.2453 - 2456, 31 August -4 September 2004.
    
    [46] He Yan, Hu Han-Ying, Zhou Shan, A TOA based believable factor mobile location algorithm, IEEE Wireless Communications and Networking Conference, 2004(WCNC 2004), Piscataway, Vol.1, pp.260 - 263,21-25 March 2004.
    [47]Wang Wei, Xiong Jin-Yu, Zhu Zhong-Liang, A new NLOS error mitigation algorithm in location estimation, IEEE Trans. on Vehicular Technology, Vol.54, No.6, pp.2048 - 2053, November 2005.
    [48]Jun Liu, Qimei Cui, Xiaofeng Tao, Ping Zhang, A Method to Enhance the Accuracy of Location Systems Based on TOA-Location Algorithms, 2006 6th International Conference on ITS Telecommunications Proceedings, pp.979 - 982, June 2006.
    [49]Zhang-Xin Chen, Q. Wan, W. L. Yang, Y. N. Peng, Mobile Location Based on Scatterer Information, 2006 International Conference on Communications, Circuits and Systems Proceedings, Vol.2, pp.1415 - 1418, June 2006.
    [50]Qingming Huang, Ju Liu, Mobile Tracking Using Hybrid Measurements in NLOS Environments, 2006 6th International Conference on ITS Telecommunications Proceedings, pp. 1075-1078, June 2006
    [51] Zhang-Xin Chen; Wan, Q.; Yang, W.L.; Peng, Y.N.; Mobile Location Based on Scatterer Information, 2006 International Conference on Communications, Circuits and Systems Proceedings, Vol. 2, pp.1415-1418, June 2006.
    [52] 王巍,熊瑾煜,朱中梁,考虑非视距误差的一种新定位算法,通信学报,2005年1月,第26卷,第1期,第59—65页。
    [53] 王昕,王宗欣,刘石,一种考虑非视线传播影响的TOA定位算法,通信学报,2001年3月,第22卷,第3期,第1—8页。
    [54] 林基明,刘涓,王玫,郑继禹,非视距传播环境下的一种TDOA定位算法,桂林电子工业学院学报,2004年10月,第24卷,第5期,第1—4页。
    [55] 倪巍,王宗欣,两种非视线传播环境下的蜂窝系统定位算法,电子学报,2003年10月,第31卷,第10期,第1469-1472页。
    [56] 田孝华,廖桂生,一种有效减小非视距传播影响的TOA定位方法,电子学报,2003年9月,第31卷,第9期,第1430-1432页。
    [57] 甄杰,马晓红,张淑芳,非视线传播环境下基于TOA的综合无线定位算法,大连理工大学学报,2005年7月,第45卷,第4期,第599-602页。
    [58] 袁登科,冯全源,一种非视距传播下的TDOA定位算法,电子科技大学学报,2006年12月,第35卷,第06期,第890-893页。
    [59] 李圣,徐志强,基于卡尔曼滤波器消除NLOS影响的移动定位,南华大学学报(自然科学版),2006年3月,第20卷,第3期,第74-78页。
    [60] 李圣,马霏霏,万晓榆,数字蜂窝系统中的基于时间的定位算法,重庆邮电学院学报,2002年4月,第14卷,第4期,第37-41页。
    [61] 张扬柏,周贤伟,张兰,一种结合LOS/NLOS识别的非视距距离比例缩放定位算法,电子与信息学报,2006年1月,第28卷,第1期,第108—111页。
    [62] 刘琚,李静,一种在非视距环境中的TDOA/AOA混合定位方法,通信学报,2005年5月,第26卷,第5期,第63—67页。
    [63] 李静,刘琚,用卡尔曼滤波器消除TOA中NLOS误差的三种方法,通信学报,2005年1月,第26卷,第1期,第130—135,141页。
    [64] 李立春,冉崇森,魏峰,一种抗NLOS的TDOA定位算法,电路与系统学报,2005年3月,第10卷,第3期,第21—24页。
    [65] J.O. Smith, Closed-Form Least-Squares Source Location Estimation from Range-Difference Measurements, IEEE Trans. on Acoustics Speech and Signal Processing, Vol. ASSP-35, No.12, pp.1661-1669, December 1987.
    [66] 刘林,邓平,范平志,基于Chan氏算法和泰勒级数展开法的协同定位方法,电子与信息学报,2004年1月,第26卷,第1期,第41—46页。
    [67] L. Liu, P. Fan, An Efficient Geometry-constrained NLOS Mitigation Algorithm Based on ML-detection, Submitted to IEEE Trans. On VT.
    [68] S.-S. Woo, H. R. You, and L.-S. Koh, The NLOS mitigation technique for position location using IS-95 CDMA networks, in proc. IEEE Veh.Technol. Conf., Vol. 4, pp. 2556-2560, September 2000.
    [69] M.P.Wylie and J.Holtzman, Non-line of sight problem in mobile location estimation, IEEE International conference on Universal Personal Communications, Vol.2, pp.827-831, September, 1996.
    [70] J.Borras, P.Hatrac, and N.B.Mandayam, decision theoretic framework for nlos identification, IEEE Vehicular Technology Conference, Vol.2, pp.1583-1587, May 1998.
    [71] J.Caffery, Subscriber Location in CDMA Cellular Networks, IEEE Trans.on VT, Vol.47, No.5, pp.406-416, 1998.
    [72] 邓平,刘林,范平志,An NLOS error mitigation scheme based on TDOA reconstruction for cellular location services,电波科学学报(英文),2003年3月,第18卷,第3期,第311-316页。
    [73] P. C. Chen, A non-line-of-sight error mitigation algorithm in location estimation, IEEE Wireles Communications and Networking Conference(WCNC'99), Vol.1, USA, pp.316-320, September 21-24, 1999.
    [74] N. Khajehnouri and A. H. Sayed, A non-line-of-sight equalization scheme for wireless cellular location, in Proc. ICASSP-03, Vol. 6, pp. 549-552, Apr. 2003.
    [75] 田孝华,DS-CDMA蜂窝网中无线定位与参数估计技术,西安电子科大博士论文,2003年6月。
    [76] B.T.Fang, Simple solutions for hyperbolic and related position fixes, IEEE Tran AES, Vol 26, pp748-753, September 1990.
    [77] J.O.Smith, Closed-Form Least-Squares Source Location Estimation from Range-Differehce Measurements, IEEE Trans. on Acoustics Speech and Signal Processing, Vol. ASSP-35, No. 12, pp.1661-1669, December 1987.
    [78] Ericsson, Evaluation of Positioning Measurement System, TIP1.5/98-110, http://www.T1.org.
    [79] Wang Wei, Xiong Jin-Yu, and Zhu Zhong-Liang, A New NLOS Error Mitigation Algorithm in Location Estimation, IEEE Trans. on Vehicular Techriology, Vol.54, No. 6, pp2048-2053, November 2005.
    [80] J. Caffery, A new approach to the geometry of TOA location, in Proc. IEEE Veh. Technol. Conf., Vol. 4, pp. 1943-1949, 2000.
    [81] ETSI, Digital cellular telecommunications system (Phase 2+); Radio subsystem synchronization (GSM 05.10 version 7.3.0 Release 1998), May 2000.
    [82] YD/T 855.22-96,900MHz TDMA数字蜂窝移动通信网无线接口物理层规范。
    [83] YD/T 855.21-96,900MHz TDMA数字蜂窝移动通信网无线接口信令部分。
    [84] ETSI EN 300 523, Digital cellular telecommunications system (Phase 2); Numbering, addressing and identification (GSM 03.03 version 4.11.1).
    [85] M.N. Borenovic, M.I. Simic, A.M.Neskovic, M.M. Petrovic, Enhanced Cell-ID+TA GSM Positioning Technique, The International Conference on Computer as a Tool, 2005. EUROCON 2005.Vol. 2, pp.1176-1179, 21-24 November 2005
    [86] S. Charitanetra, S. Noppanakeepong, Mobile positioning location using E-OTD method for GSM network, Student Conference on Research and Development, 2003. SCORED 2003. Proceedings. 25-26, pp.319-324, August 2003.
    [87] C. Drane and M. Macnaughtan, Positioning GSM Telephones, IEEE Communication Magazine, Vol. 36, No.4, pp.46-54, 1998.
    [88] M. Laoufi et. al., Positioning Emergency Calls along Roads and Motorways Using a GSM Dedicated Cellular Radio Network, IEEE VTC, pp. 2039-2046, 2000.
    [89] 02136549,一种用于提高确定移动台位置精度的移动定位方法,中兴公司.
    [90] 刘海翔,陈惠民,徐西宝,基于GSM网络实用定位技术研究,上海大学学报,2002年6月,第8卷,第3期,第193-195,199页。
    [91] 王建军,邓平,李金伦,一种基于场强差的GSM网络移动台定位法,信息技术,2006年第1期,第24—26页。
    [92] M. A. Spirito, Preliminary Experimental Results of a GSM Mobile Phones Positioning System Based on Timing Advance, in Proceedings of the 50th IEEE Vehicular Technology Conference, Vol. 4, pp. 2072-2076, September, 1999.
    [93] M. Silventoinen and T. Rantalainen, Mobile Station Emergency Locating in GSM, IEEE International Conference on Personal Wireless communications, India, pp.232-238, 1996.
    [94] M. A. Spirito, et. al., On the Hyperbolic Positioning of GSM Mobile Stations, ISSSE 98, pp.173-177, 1998.
    [95] M. A. Spirito, Further Results on GSM Mobile Station Location, Electron. Lett., Vol.35, No.11, pp.867-869, 1999.
    [96] M. A. Spirito and M. P. Wylie-Green, Time of Arrival(TOA) Estimation in the GSM and EDGE Mobile Communication Systems, Proc.1999 Finnish Signal Processing Symp (FINSIG'99), pp.64-68, 1999.
    [97] 彭木根,刘萍等译,GSM、GPRS和EDGE系统及其关键技术—向3G/UMTS系统演化,中国铁道出版社,2004。
    [98] M. Pent, M.A. Spirito and E. Turco, Method for positioning GSM mobile stations using absolute time delay measurements, Electronics Letters, Vol. 33, No. 24, pp. 2019-2020, 1997.
    [99] Ding-Bing Lin, Rong-Tcmg Juang, Hsin-Pia0 Lin, Cheng-Yi Ke, Mobile Location Estimation Based on Differences of Signal Attenuations for GSM Systems, IEEE Trans. On Vehicular Technology, Vol. 54, No. 4, pp. 1447-1454, July 2005.
    [100] Anthony J. Weiss, On the Accuracy of a Cellular Location System Based on RSS Measurements, IEEE Trans on Vehicular Technology, Vol. 52, No. 6, pp.1508-1518, November 2003.
    [101] 刘林,范平志,基于信号场强差的位置估计精度分析,已投西南交大学报。
    [102] Chin-Der Wann, Ming-Hui Lin, Data Fusion Methods for Accuracy Improvement in Wireless Location Systems, Wireless Communications and Networking Conference, 2004, (WCNC 2004)/IEEE Communications Society, Vol.1, pp. 471-476, 21-25 March 2004.
    [103] Chen Zhang, Jun-min Liu, Shi Liu, Wu-han Li, Research on Improving TDOA Location Accuracy Based on Data Fusion, IEEE 6th CAS Symp. On Emerging Technologies: Mobile and Wireless Comm., Shanghai, China, pp. 761-764, May 3-June 2, 2004.
    [104] 刘林,范平志,基于GDOP加权的GSM移动台位置估计数据融合,电波科学学报,已录用。
    [105] 田孝华,廖桂生,王少龙,利用GDOP对蜂窝移动通信系统移动台定位的方法,系统工程与电子技术,2002年,第24卷,第11期,第104—107页。
    [106] 邓平等,蜂窝定位系统GDOP性能分析,西南交通大学学报,2005年4月,第40卷,第2期(总第162期),第184—188页。
    [107] 钱镱,陆明泉,冯振明,基于TDOA原理的地面定位系统中HDOP的研究, 电讯技术,第135—138页。
    [108] Sauoradeep Venkatraman and James Caffery JR, a statistical approach to non-line-of-sight BS identification, IEEE Wireless Personal Multimedia Communications (WPMC) Conference, pp. 296-300, October 2002.
    [109] L. Cong, et. al., Non-Line-of Sihgt Error Mitigation in TDOA Mobile Location, Proc. IEEE Globecom 2001, San Antonio, pp. 680-684, 2001.
    [110] Y. Jeong et.al., Calibration of NLOS Error for Positioning Systems, IEEE Vehicular Technology Conference, pp. 2605-2608, 2001.
    [111] Xin Wang and Zongxin Wang, A TOA-based location algorithm reducing the errors due to non-line-of-sight(NLOS) propagation, IEEE Vehicular Technology Conference, pp. 97-100, January 2001.
    [112] P. Deng, L. Liu, P. Z. Fan, An NLOS Error Mitigation Method Based on TDOA Reconstruction for Cellular Location Services, Journal of Radio Science, Vol.16, No.4, pp.7-9, 2002.
    [113] S.Al-Jazzar, J.Caffery, Jr, A scattering model based approach to NLOS mitigation in TOA location systems, IEEE Vehicular Technology Conference, Birmingham, pp.861-865, 2002.
    [114] S.Venkatraman, J.Caffery, Jr. A location using LOS range estimation in NLOS environments, IEEE Vehicular Technology Conference, Birmingham., UK, pp. 856-860, 2002.
    [115] Ertel R, Cardieri P, Sowerby KW, et al. Overview of Spatial Channel Models for Antenna Array Communication Systems[J], IEEE Personal Communications, Vol.5, No.1, pp.10-22, 1998.
    [116] 田孝华等,非视距传播环境下对移动用户定位的AOA方法,西安电子科技大学学报(自然科学版),2003年12月,第30卷,第6期,第775—779页。
    [117] S. Frattasi, H. Fathi, F.H.P. Fitzek, M. Katz, R. Prasad, Defining 4G Technology from the User Perspective, IEEE Network Magazine, Vol.20, No.1, pp.35-41, January, 2006.
    [118] S. Frattasi, H. Fathi, F. Fitzek, K. Chung, R. Prasad, 4G: The User-Centric System, Mobile e-Conference (Me), Electronic Conference, August, 2004.
    [119] P. Deng, P.Z. Fan, An AOA Assisted TOA Positioning System, inCroceedings of the World Computer Congress/International Conferenceon Communication Technology (WCC/ICCT 2000), Beijing, China, Vol. 2, pp. 1501-1504, August 22-25, 2000.
    [120] L. Cong, W. Zhuang, Hybrid TDOA/AOA Mobile User Locationfor Wideband CDMA Cellular Systems, IEEE Trans. on Wireless Communications, Vol.1, No.3, pp. 439-447, July, 2002.
    [121] S. Venkatraman, J. Caffery, Hybrid TOA/AOA Techniques for Mobile Location in Non-Line-of-Sight Environments, in Proceedings of the Wireless Communications and Networking Conference (WCNC), IEEE, Atlanta, GA USA, Vol.1, pp. 274-278, March 21-25, 2004.
    [122] S. Frattasi, H. Fathi, F.H.P. Fitzek, M. Katz, R. Prasad, Defining 4G Technology from the User Perspective, Network Magazine, IEEE, vol. 20, no. 1, pp. 35-41, January, 2006.
    [123] N. Patwari, J.N. Ash, S. Kyperountas, A.O. Hero, R.L. Moses, N.S. Correal, Locating the Nodes: Cooperative Localization in Wireless Sensor Networks, Signal Processing Magazine, IEEE, vol. 22, no. 4, pp. 54-69, July, 2005.
    [124] Charalampos Fretzagias, Maria Papadopouli, Cooperative Location-Sensing for Wireless Networks, Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM'04), pp.11, 2004.
    [125] 王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J],软件学报,2005年5月,第16卷,第5期,第857-868页。
    [126] 陈维克,李文锋,首珩,袁兵,基于RSSI的无线传感器网络加权质心定位算法,武汉理工大学学报(交通科学与工程版),2006年4月,第30卷,第2期,第265—268页。
    [127] 贾广新,皮兴宇,无线传感器网络节点的协作式定位,传感器与仪器仪表,2006年第22卷第9-1期,第155—157页。
    [128] He T, Huang CD, Blum BM, Stankovic JA, Abdeizaher T. Range-Free localization schemes in large scale sensor networks, In: Proc.of the 9th Annual Int'l Conf. on Mobile Computing and Networking. San Diego: ACM Press, 2003. 81-95. http://www.cs.virginia.edu/~th7c/paper/APIT_CS-2003-06.pdf
    [129] Nicolescu D, Nath B. Ad-Hoc positioning systems (APS). In: Proc. of the 2001 IEEE Global Telecommunications Conf. Vol.5, San Antonio: IEEE Communications Society, 2001. 2926 —2931. http://paul.rutgers.edu/~dnicules/research/aps/aoa-infocom.pdf
    [130] Niculescu D, Nath B. DV based positioning in ad hoc networks. Journal of Telecommunication Systems, Vol. 22,No.4, pp.267 - 280,2003.
    [131] R.C. Luo, Ogst Chen; L.C. Tu, Nodes localization through data fusion in sensor network, 19th International Conference on Information Networking and Applications, 2005, Vol.1, pp.337-342,28-30 March 2005.
    [132] L.M. Kaplan, Local node selection for localization in a distributed sensor network, IEEE Trans, on Aerospace and Electronic Systems, Vol. 42, No.1, pp.136 - 146, January 2006.
    [133] N. Patwari, A.O. Hero, M. Perkins, N.S. Correal, Relative location estimation in wireless sensor networks, IEEE Transactions on Signal Processing, Vol. 51, No. 8, pp.2137 - 2148, August 2003.
    [134] Min Yin, Jian Shu, Linlan Liu, Hengfeng Zhang, The Influence of Beacon on DV-hop in Wireless Sensor Networks, 2006 Fifth International Conference on Grid and Cooperative Computing Workshops, pp.459 - 462, October 2006.
    [135] M. Terwilliger, A. Gupta, A. Khokhar, G Greenwood, Localization using evolution strategies in sensornets, The 2005 IEEE Congress on Evolutionary Computation, Vol.1, pp.322-327, 2-5 September 2005.
    [136] X. Ji, H. Zha, Robust sensor localization algorithm in wireless ad-hoc sensor networks, The 12th International Conference on Computer Communications and Networks, 2003. pp.527-532,20-22 October 2003.
    [137] Dmitri Perkins and Ranesh Tumati, Reducing localization errors in sensor ad hoc networks, IEEE Int. Conf. on Performance, Computing, and Communications (IPCCC 2004), Phoenix, Arizona, pp.723 - 729, April 15-17, 2004.
    [138] Simone Frattasi, Basak Can, Frank Fitzek, Ramjee Prasad, Cooperative Services for 4G, http://kom.aau.dk/~ff/documents/IST2005sf.pdf
    [139] Song Li, Gang Zhao and Lin Liao, User Location Service over an 802.11 Ad-Hoc Network, http://www.cs.washington.edu/homes/liaolin/Courses/
    [140] Simone Frattasil, Marco Monti2, and Ramjee Prasadl, Cooperative Mobile User Location for Next-Generation Wireless Cellular Networks, in Proceedings of the International Conference on Communications (ICC), IEEE, Instanbul, Turkey, June 2006.
    [141] S. Venkatraman, J. Caffery, Hybrid TOA/AOA Techniques for Mobile Location in Non-Line-of-Sight Environments, in Proceedings of the Wireless Communications and Networking Conference (WCNC), IEEE, Atlanta, GA USA, Vol. 1, pp. 274-278, March 21-25, 2004.
    [142] M. Porretta, P.Nepa, G. Manara, A Novel Single base station mobile loction algorithm, description and validation using a deterministic propagation model, 2003 4th International Conference on 3G Mobile Communication Technologies, pp.277- 281, 25-27 June 2003.
    [143] 孙国林,郭伟,3G系统中定位服务的体系与结构,广东通信技术,2001年11月,第21卷,第11期,第7—11页。
    [144] 郭之晓,胡捍英,第三代移动通信网的位置服务体系结构,通信技术,2002年第5期总第125期,第69-72页。
    [145] 3GPP TS 25.305, 3GPP TS Group Radio Access Network; Functional Specification of Location Services -stage 2, http://www.3gpp.org/ftp/specs
    [146] 3GPP TS 22.071, 3GPP TS Group Services and System Aspects; Location Services (LCS); Services Description -stage 1, http://www.3gpp.org/ftp/specs.
    [147] 3GPP TS 23.171: 3GPP TS Group Services and System Aspects; Functional Specification of Location Services -stage 2, http://www.3gpp.org/ftp/specs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700