用户名: 密码: 验证码:
甲磺隆降解菌与抗性菌的筛选及其相关基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从长期受甲磺隆污染的土壤中分离筛选获得一株能够高效降解甲磺隆的菌株S113。根据S113的表型特征、生理生化特性,16S rDNA同源性比较,系统进化分析将其鉴定为噬甲基菌Methylopila sp.。
     该菌能够能以甲磺隆为唯一碳源生长,72h对50mg L~(-1)甲磺隆的降解率达98%。S113的最适生长温度30℃,最适生长初始pH7.0。装液量小于100mL/250mL时,S113生长旺盛。在供试的几种碳源中,S113对丁二酸钠和淀粉利用较好。S113以有机氮为氮源生长较好,在供试的无机氮源中,S113对NH_4NO_3利用最好。
     降解谱实验结果表明,S113还可以降解噻吩磺隆,苄磺隆,胺苯磺隆,降解率都在95%以上。但在同样条件下,S113不能降解绿磺隆,吡嘧磺隆。S113降解甲磺隆的最适pH值为7.0。S113对甲磺隆的降解率和起始接种量呈正相关。改变通气量对S113降解甲磺隆没有显著影响。加入蛋白胨和酵母膏可以促进S113对甲磺隆的降解。
     在室内条件下对S113的水解酶进行了研究,发现该酶为胞内酶、非诱导酶。建立了甲磺隆水解酶的酶促反应体系:2830μL Na_2HPO_(4-)NaH_2PO_4缓冲液(0.2mol L~(-1),pH7.0),150μL甲磺隆(1000mg L~(-1)),20μL粗酶液(约1.2μg粗蛋白),30℃水浴30min。甲磺隆水解酶pH稳定范围为6-9,最适pH为8。水解酶热不稳定,45℃处理30min,酶活下降59.22%,70℃处理30min可完全灭活。测定了8种金属离子对水解酶的作用,发现1mmol L~(-1)的Ca~(2+)对酶活有促进作用。
     本论文工作中还筛选到一株降解甲磺隆的菌株FLDA,根据表型特征、生理生化特性及16SrDNA序列同源性分析,将FLDA鉴定为假单胞菌(Pseudomonassp.)。该菌降解30mg L~(-1)甲磺隆,5d降解率达72.6%。FLDA降解甲磺隆的最适pH为7.0,最适温度为30℃。该菌降解甲磺隆的速率和起始接种量呈正相关。酶的定域实验表明,该菌中甲磺隆水解酶为胞内酶。FLDA投加土壤,可提高土壤中甲磺隆的降解速率。
     本论文工作中还筛选到一株能高效降解噻吩磺隆的菌株FLX,根据表型特征、生理生化特性及16SrDNA序列同源性分析,将FLX鉴定为寡养单胞菌(Stenotrophomonas sp.)。FLX降解50mg L~(-1)噻吩磺隆,2d降解率达83.34%。FLX降解噻吩磺隆的最适pH为7.0,最适温度为35℃。在所试的金属离子中Zn~(2+),Al~(3+),Cu~(2+),Ba~(2+),Fe~(3+)等对FLX的降解没有影响;Hg~(2+),Co~(2+)则抑制FLX的生长与降解。酶的定域实验表明,该菌中噻吩磺隆水解酶为胞内酶。
     研究了S113对甲磺隆污染土壤的修复作用。甲磺隆浓度为10 mg kg~(-1)干土,S113接种量为10~8个g~(-1)干土时,第30d土壤中甲磺隆降解率为76.9%,而未接种降解菌土壤中甲磺隆降解率仅为11.9%。S113降解甲磺隆的速率和接种量呈正相关,S113的接种量减少为10~5个g~(-1)干土时,接种S113对土壤中甲磺隆降解无促进作用。土壤中初始甲磺隆浓度为50mg kg~(-1)时,S113对甲磺隆的降解率仅为39.6%。S113降解土壤中甲磺隆的最适温度是30℃。土壤中添加葡萄糖和尿素可以提高S113降解甲磺隆的速率。S113菌剂灌根、浸种,能不同程度地解除土壤中浓度为40、80μg kg~(-1)的甲磺隆对玉米生长的抑制作用,但当土壤甲磺隆浓度增加到120μgkg~(-1)时,接种S113对药害解除作用不显著。结果表明,人工接种降解菌S113,能有效去除土壤中甲磺隆残留。
     从长期受甲磺隆污染的土壤中分离,纯化了2株甲磺隆的抗性菌L6、L36。经形态、生理生化特性测定、16S rDNA序列同源性比较、系统进化树的分析和细胞脂肪酸分析,将甲磺隆抗性菌L6、L36鉴定为铜绿假单胞菌(Pseudomonasaeruginosa)。甲磺隆对铜绿假单胞菌敏感菌株PAO1及抗性菌株L6、L36的有效中浓度(Medium Effective Concentration,EC_(50))分别为0.36、2.75、2.89mM;最低抑制浓度(Minimal Inhibition Concentration,MIC)分别为1.31、6.03、6.03mM。L6、L36的EC_(50)值分别是PAO1的EC_(50)值的7.63、8.03倍。甲磺隆的抗性菌株与普施特无交互抗性。
     测定了甲磺隆对Pseudomonas aeruginosa敏感菌株PAO1及抗性菌株L6、L36的乙酰乳酸合酶(Acetolactate synthase,ALS)的抑制作用。发现抗性菌株L6、L36的ALS活性均显著低于敏感菌株PAO1的ALS活性,如在不加甲磺隆处理的情况下,PAO1、L6、L36的ALS活性分别为391.4、122.8、120.4U。同时发现L6、L36的ALS对甲磺隆抑制作用不敏感,如400nM甲磺隆对PAO1的ALS活性的抑制率为75.5%,而对L6、L36的ALS活性无抑制作用。与PAO1相比,L6、L36的ALS活性对pH敏感,pH为8.5时抗性菌株ALS酶活显著降低。PAO1、L6、L36的ALS对温度的敏感性无显著差异。ALS酶抑制剂Val对PAO1、L6、L36的ALS酶都有反馈抑制作用,500nM的Val对PAO1、L6、L36的抑制率分别为68.6%,45.3%,46.2%。
     通过PCR扩增的方法,得到了编码Pseudomonas aeruginosa乙酰乳酸合酶的两个亚基(IlvI,IlvH)的基因全序列,ilvl,ilvH基因序列全长分别为1725bp、492bp,分别编码含有575、164个氨基酸残基的多肽链。其中IlvI,IlvH亚基氨基酸序列在Pseudomonas sp.及其它许多生物中的保守性较高。通过序列比较,在IlvH亚基中未发现氨基酸突变,而在抗性菌株L36,L6的IlvI亚基中同时发现了单个氨基酸突变,高度保守的Ala29(GCC)变异为Val29(GTC)。通过功能互补实验,将含有这一突变的抗性菌株L36的ilvI基因与广宿主载体pBBR1-MCS5连接,通过三亲接合导入Pseudomonas aeruginosa的敏感菌株PAO1,结果转化子对甲磺隆产生抗性。实验结果证实了发生在ALS的IlvI亚基中的Ala_(29)变异为Val_(29)突变是导致Pseudomonas aeruginosa对甲磺隆产生抗药性的原因。
A bacterium S113 capable of degrading metsulfuron-methyl was isolated from metsulfuron-methyl contaminated soil. Based on the morphology, physiological and biochemical characteristics, and the homology analysis of its 16S rDNA sequence, S113 was identified preliminarily as Methylopila Sp.。
     S113 was capable of utilizing metsulfuron-methyl as the sole carbon source for its growth. This bacterium could degrade 98% of 50mg L~(-1) metsulfuron-methyl within 72h. Biological properties of S113 were studied. The optimal growth temperature and initial pH are 30℃, 7.0 respectively. The aeration had little effect on the growth of S113. The optimal medium for the growth of strain S113 was amylum as carbon source and organic nitrogen as nitrogen source.
     S113 could also degrade thifensulfuron-methy, bensulfuron, ethametsulfuron, but could not degrade chlorsulfuron and pyrazosulfuron. The optimal pH of S113 for degrading metsulfuron-methyl was 7.0. The degradation rate of metsulfuron-methyl by S113 was related positively to initial amount of inoculation. The aeration has little effect on degrading ability of S113。The speed of degradation of metsulfuron-methyl by S113 was related positively to initial amount of inoculum size. Peptone and yeast extract at certain concentration could promote the degradation of the strain.
     Metsulfuron-methyl hydrolase from metsulfuron-methyl degrading strain S113 was studied. The hydrolase in the bacterium was endoemzyme. The enzymatic reaction system was found as follows: Na_2HPO_4-NaH_2PO_4 buffer 2830μL, metsulfuron-methyl (1000 mg L~(-1)) 150μL, crude enzyme 20μL (about 1.2μg crude protein), 30℃water bathing 30 min. The characteristics of metsulfuron-methyl hydrolase were determined. The pH suitable for keeping enzyme was 6-9, with the optimum pH 8.0. The activity of enzyme was down to 59.22% and zero when treated at 45℃for 30 min and 70℃for 30min respectively. Eight metal ions were chosen to study their effects on the metsulfuron-methyl hydrolase activity, and the results showed that 1 mmol L~(-1) Ca~(2+) could enhance the enzyme activity.
     A Strain of FLDA capable of degrading metsulfuron-methyl was isolated from sludge collected from a pesticide (metsulfuron-methyl) plant. Based on its morphology, physiological and biochemical characteristics, and the homology analysis of its 16S rDNA sequence, FLDA was identified preliminarily as Pseudomonas sp. FLDA could degrade 72.6% of 30 mg L~(-1) metsulfuron-methyl in liquid medium within 5 days. The optimal pH and temperature of FLDA for degrading metsulfuron-methyl was 7.0 and 30℃respectively. The degradation rate was related positively to initial inoculation rate. Enzyme distribution experiment showed that the metsulfuron-methyl degradeing enzyme in the bacterium was endoenzyme. The addition of strain FLDA could accelerate the degradation of metsulfuron-methyl in soil.
     A Strain of FLX capable of highly degrading thifensulfuron-methyl was isolated from the soil sample collected from a producing thifensulfuron-methyl pesticide plant after taming and enrichment. Based on analysis of phenotype, physiological and biochemical characteristics, and the homology analysis of its 16S rDNA sequence, FLX was identified preliminarily as Stenotrophomonas sp. FLX could degrade thifensulfuron-methyl in its 50 mg L~(-1) liquor medium, with 83.34% degrading rate in 48h. The optimal pH and temperature of FLX for degrading thifensulfuron-methyl were 7.0 and 35℃respectively. In the tested metal ions, Zn~(2+)、Al~(3+)、Cu~(2+)、Ba~(2+)、Fe~(3+) had little influence on FLX, while Hg~(2+)、Co~(2+) inhibited its growth and degradation. The distribution experiment showed that the thifensulfuron-methyl hydrolysis enzyme in the bacterium was endoenzyme.
     The bioremediation of metsulfuron-methyl contaminated soil by inoculating S113 was studied under laboratory conditions. After addition of 10~8 cells g~(-1) dry soil into soil, 76.9% of metsulfuron-methyl at concentration of 10 mg kg~(-1) dry soil was degraded at 30d, whereas only 11.9% of metsulfuron-methyl was degraded in uninoculated soil. The degradation rate was related positively to the amount of inoculation. Only 39.6% of metsulfuron-methyl was degraded when the concentration of metsulfuron-methyl was 50 mg kg~(-1) dry soil. The optimal temperature for metsulfuron-methyl degradation by S113 in soil was 30℃. The addition of glucose and urea could accelerate the degradation of metsulfuron-methyl. Pour root and seed soaked with S113 could protect maize from the phytotoxicity of metsulfuron-methyl of 40, 80μg kg~(-1) in varying degrees. When the concentration of metsulfuron-methyl increased to 120μg kg~(-1), the effects were not distinct. It suggested that the metsulfuron-methyl in soil could be degraded effectively by inoculating S113.
     Two metsulfuron-methyl resistant strains, L6 and L36 were isolated from metsulfuron-methyl contaminated soil. Based on the homology analysis of its 16S rDNA sequence, morphology, physiological and biochemical characteristics, the L6, L36 were identified as Pseudomonas aeruginosa . Medium effective concentration (EC_(50)) of metsulfuron-methyl against the growth of wild-type isolate PAO1 and resistant isolates L6, L36 were 0.36, 2.75, 2.89mM respectively; and the minimal inhibition concentrations (MICs) were 1.31mM, 6.03mM, 6.03mM respectively. The metsulfuron-methyl resistant strains showed no cross resistance with imazethapyr.
     Inhibition by metsulfuron-methyl of acetolactate synthase (ALS) activities of Pseudomonas aeruginosa wild-type isolate PAO1 and two resistant strains were assayed. The ALS activities of PAO1、L6、L36 were 391.4、122.8、120.4U respectively, the results showed ALS activities of resistant strains were significantly lower than that of PAO1. The activity of PAO1 ALS was inhibited 75.5% by 400nM SM, whereas the ALS produced by the resistant strains was not affected, which suggested that the occurrence of metsulfuron-methyl resistance were related to the decreased sensitivity of ALS to it. The ALS of L6 and L36 were not sensitive to metsulfuron-methyl. The ALS of L6 and L36 were sensitive to pH compared with that of PAO1.There was no difference among the sensitive of ALS produced by the SM sensitive or resistant strains to temperature. The ALS of PAO1, L6 and L36 were inhibited 68.6%, 45.3%, 46.2% by 500nM Val.
     The complete nucleotide sequences of two subunits (IlvI, IlvH) of acetolactate synthase (ALS) were cloned by PCR arnplification. The entire nucleotide sequences of ilvI, ilvH were 1725bp, 492bp in length, which encoded two polypeptides of 575, 164 amino acid residues respectively. The IlvI and IlvH subunits were highly conserved not only in Pseudomonas sp., but also in other organisms. By sequence blasting, an amino acid mutation Ala29(GCC)→Va129 (GTC) in IlvI subunit was found in L6 and L36, which might confer resistance of Pseudomonas aeruginosa to metsulfuron-methyl. The mutant ilvI gene from a resistant strain L36, containing the Ala29(GCC)→Va129 (GTC)mutation, was cloned by PCR amplification. The mutant ilvI gene was then ligated into vector pBBR1-MCS5, and shown to confer metsulfuron-methyl resistance in Pseudomonas aeruginosa when transfer into the wild-type sensitive strain PAO1. It was confirmed that the substitution of Ala to Val in the IlvI of ALS conferred metsulfuron-methyl resistance to Pseudomonas aeruginosa.
引文
1. Ahan T, Kim D, Choi J. Inhibition of acetohydroxyacid synthase by sulfonylureas and imidazolinones. Korean Biochem J 1992, 25:636-641.
    2. Ahmed J, et al., Trace residue analysis of the herbicide chlorsulfuron in soil by gas chromatography-electron capture detection.J Agric Food Chem,1990,38:138-141.
    3. Albanis TA, Bochicchio D, Bufo, SA, et al.,Surface absorption and photo-reactivity of sulfonylurea herbicides. International Journal of Environmental Analytical Chemistry, 2002,82(1):1561-569.
    4. Alister MB, Timothy D, Martin A. Review of the Activity,Fate and Mode of Action of Sulfonlurea Herbicides. Pestic. Sci.1988, 22:195-219
    5. Allievi L, Gigliotti C. Response of the bacteria and fungi of two soils to the sulfonylrea herbicide cinosulfuron. J. Environ. Sci. Health, Part B 2001, 36,161-175.
    6. Andreae MO. The ocean as a source of atmospheric sulphur compounds. In: The Role of A ir-Sea Exchange in Geochem ical Cycling. Reidel, Dordrecht, 1986.331- 62.
    7. Andson JJ, Dulka JJ. Environmental fate of sulfometuron-methyl in aerobic soils. J Agric Food Chem, 1985, 33:596-602
    8. Aubert S, Richard B et al., Induction ofalternatisu oxidase synthesis by herbicides inhibiting branched-chain amino acid synthesis.Plant Journal,1997,11:649-657
    9. Baker, SC, Kelly DP, Murrell JC. Microbial degradation of methanesulfonic acid—a missing link in the biogeochemical sulfur cycle. Nature 1991, 350:627-628.
    10. Barak Z, Calvo JM, Schloss JV. Methods Enzymol. 166(1988); 455-45
    11. Barak ZN, Kogan N,Gollop DM et al, (Eds.), Biosynthesis of Branched Chain Amino Acids, VCH, Weinheim, Germany, 1990, pp. 91-107.
    12. Bayer E M, Duffy M J,Hay JV,et al. Herbicides,Chemistry,Degradation and Mode of Action. PC Kearney & DD Kaufinan Marcel Deller Inc New York 1987,117-180
    13. Beckie HJ, Thomas AG, Tevenson FC. Survey of herbicide2resistant wild oat (Avena fatua )in two tow nships in Saskatchewan . Canadian Journal of Plant Science, 2002, 82 (20): 463-471.
    14. Bernasconi P, Woodworth AR, Rosen BA et al. J. Biol. Chem, 1995, 270 (29): 17381-17385
    15. Blacklow WM, Phenloung PC, Aust.J.Agric.Res, 42(7),1205-1216
    16. Blacklow WM, Phenloung PC. Sulfonylurea herbicides applied to acidic sandy soil: movement, persistence and activity within the growing season.Aust J Agric Res,1992 ,43 :1157-1167
    17. Blair AM, Marten D.A review of the activity, fate and mode of action of sulfonylurea herbicides. Pestic Sci, 1988,22 (3) :195-219
    18. Boldt TS, Jacobsen CS. Different toxic effects of the sulfonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent Pseudomonads isolated from an agricultural soil. FEMS Microbiol. Lett. 1998,161, 29-35.
    19. Boschin G, Agostina A,Arnoldi A.Biodegradtion of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions.J Environ Sci Health B,2003,38:737-746
    20. Bowen TL, Union J, Tumbula DL et al, Gene 188 (1997) 77-84.
    21. Brown HM. Modes of action, crop selectivity, and soil relations of the sulfonylurea herbicides.Pesticide Science, 1990, 29:263-281.
    22. Brown M, Hugh M.Degradation of thifensulfuron-methyl in soil: role of microbial carboxyesterase activity. J Agric.Food. Chem., 1997, 45 (5):995-961.
    23. Buchanan R E, Gibbons N E. Bergey's manual of determinative bacteriology.8th edition. USA: The Williams & wilkins Company, 1986.
    24. Burnet M, Hodgson B.Differential effects of the sulfonylurea herbicides chlorsulfuron and sulfometuron methyl on microorganisms. Archives of Microbiology, 1991,155: 521-525.
    25. Burton JD, Maness EP. Constitutive and inducible bentazon hydroxylation in Shat tercane (Sorghum bicolor) and Johnsongrass (S.halapense). Pestic Biochem Phy siol, 1992, 44: 40-49.
    26. Cambon JP. Bastide J,Vega D.Mechanism of thifensulfuron-methyl transformation in soil. Journal of Agriculture and Food Chemistry, 1998, 46:1210-1216.
    27. Cambon JP, Bastide J. Hydrolysis kinetics of thifensulfuron-methyl in aqueous buffer solutions. J Agric Food Chem, 1996, 44:333-337.
    28. Chivanov VD, Mishnev AK, et al., Agrokhimiya, 1995,10,114-125
    29. Chivanov VD, Mishnev AK et al., Agrokhimiya, 1995,11,108-118
    30. Christoffoletia PJ. Bioassay to determine weed biotype resistance to ALS inhibiting herbicide . Bragantia, 2001, 60 (3): 261-265.
    31. Choudhury PP, Dureja P. Photolysis of chlorimuron-ethyl.Toxicological and Environmental Chemistry,1997, 63 (1-4) : 71-81
    32. Claus J, Jens A J, Lise L.Potential mineralization of four herbicides in a ground water-fed wetland area. J Environ. Qual., 2001,30(1):24-31.
    33. Cole DJ. Detoxification and activation of agrochemicale in plants. Pesticide Science, 1994, 42:209-221
    34. Cotterill EG.Determination of the sulfonylurea herbicides chlorsulfuron and metsulfuron-methyl in soil,water and plant material by gas chromatography of their pentafluorobenzyl derivatives.Pestic Sci,1992,34:291-296.
    35. De Marco PP,Moradas F, Higgins TP et al, Molecular analysis of a novel methanesulfonic acid monooxygenase from the methylotroph Methylosulfonomonas methylovora. J. Bacteriol. 1999,181:2244-2251.
    36. Dinelli G, Vicari A. et al, J. Chromatogr. A, 1995,70,195-200
    37. Dinelli,et al.,Detection and quantitation of sulfony-lurea herbicides in soil at the ppb level by capillary electro phoresis.J Chromatogr,1995,70:201-207
    38. Dinelli G, Vicari A, Bonetti A, et a., Hydrolytic dissipation of four sulfonylurea herbicides . J Agric Food Chem, 1997,45:1940-1945
    39. Duggleby RG, Gene 190 (1997) 245-249.
    40. Duggleby RG, Pang SS, Yu H et al, Systematic characterization of mutations in yeast acetohydroxyacid synthase. Eur J Biochem 2003, 270:2895-2904..
    41. Durner J, Gailus V, Boger P. New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiol 1991, 95:1144-1149.
    42. Eoyang L, Silverman PM: Purification and subunit composition of acetohydroxyacid synthase I from Escherichia coli K-12.J Bacteriol 1984, 157:184-189.
    43. Eoyang L, Silverman PM. J. Bacteriol. 166 (1986) 901-904.
    44. Flaburiari, A., Kristen, U.The in.uence of chlorsulfuron and metsulfuron methyl on root growth and on the ultrastructure of root tips of germinating maize seeds. Plant Soil 1996,180,19-28.
    45. Frear DS, Swanson HR, Thalacker FW. Induced microsoma oxidation of diclofopt riasulfuron, chlorsulfuron, and linuron in wheat. Pestic Biochem Physiol, 1991,41: 274-287.
    46. Frear DS, Swanson HR, Tanaka FS. Metabolism of flumetsulam (DE2498) in wheat, corn, and barly. Pestic Biochem Phy siol, 1993,45:178-192.
    47. F Dastgheib,M Andrews,J D Morton,et al., Mode of Action of Chlorsulfuron in a Sensitive Wheat (Triticum awstivum) Cultivar: Primary and Secondary Effect on Nitrogen Assimilation. Ann Appl Biol, 1995,127:125-135
    48. F, Bastide J, Hawkes T.Comparison between thifensulfuron methyl-induced inactivation of barley acetohydroxyacid synthase and Escherichia coli acetohydroxyacid synthase isozyme II. Pestic Biochem Physio 1996, 56:231-242.
    49. Foes MJ, Liu LX, Tranel PJ et a., Weed Science, 1998, 46 (5) : 514-5201
    50. Friendrich F, SpatnyN.et al., Ecoinforma Fachtad. Ausstellung Umweltinf. Umweltkommun. 3rd, 6,263 - 267 (1994)
    51. Friden P, Donegan J, Mullen J et al, The ilvB locus of Escherichia coli K-12 is an operon encoding both subunits of acetohydroxyacid synthase I. Nucleic Acids Res 1985, 13:3979-3993.
    52. Fuesler TP, Hanafey MK. Effect of moisture on chlorimuron degradation in Soil. Weed Sci ,1990,38:256-261
    53. Garcia F, et al., Fast capillary electrophoresision spray mass spetrometric determination of sulfonylureas. J Chromatogr, 1992, 606(1992):237-247.
    54. Gelmini GA, Victoria F R, et al. Resistance of Euphorbia heterophylla L.biotyps to ALS enzyme inhibitor herbicides used in soybean crop. Bragantia, 2001, 60 (2): 93-99.
    55. Geraldine P, Danielle V, Jean B.Microbial hydrolysis of methyl aromatic esters by Burkholderia cepacia isolated from soil.FEMS Microbiology Ecology.2001 (37)251-258.
    56. Ghamry AM, Xu JM, Huang CY, et al., M icrobial response to bensulfuron-methyl treatment in soil. Journal of Agriculture and Food Chemistry, 2002, 50: 136-139.
    57. Halpern YS, Even-Shoshan A. Biochim. Biophys. Acta 139(1967) 502-504.
    58. Harder PH et al, Isolation and characterization of streptomyces griseclus deletion mutants affected in cytochrome P450 mediated herbicide metabolism Mol Gen Genet 1991 (227) : 238- 244
    59. Harold C Neu, Leon A Heppel. The release of enzymes from Escherichia coli by osmoic shock and during the formation of spheroplasts. J Biol Chem,1965,240(9):3685-3692
    60. Hartvig P, et al., Electron capture gas chromatography of plasma sulfonylureas after extractive methylation.J Chromatogr, 1980,181:17.
    61. Harvey JR, Dulka JJ, Anderson JJ.Properties of sulfometuron-methyl affecting its environmental fate: aqueous hydrolysis and Photolysis, mobility and adsorption on soil, and bioaccumulation potential.J.Agric.food chem., 1985, 33:590-596.
    62. Hattori J, Rutledge R, Labbe H et al., Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxyacid synthase gene with separate mutations for selective resistance. Mol Gen Genet. 1991, 229(1):31-40.
    63. Hawkes TR, Howard JL, Pontin SE. in: A.D. Dodge (Ed.), Herbicides and Plant Metabolism, Cambridge UniversityPress Singh, Cambridge, 1989, pp. 113-137.
    64. Hemmamda S, Calmon M, Calmon JP. Kinetics and hydrolysis mechanism of chlorsulfuron and metsulfuron-methyl. Weed Sci, 1994, 40:71-76.
    65. Higgins, TP, Marco PD, Murrell JC.Purification and molecular characterization of the electron transfer protein of methanesulfonic acid monooxygnease. J. Bacteriol. 1997.179:1974-1979.
    66. Hill CM, Duggleby RGMutagenesis of Escherichia coli acetohydroxyacid synthase isoenzyme II and characterization of three herbicide-insensitive forms. J. Biochem. 1998, 333:765-770.
    67. Holmes, AJ, Kelly DP, Baker SC, et al., Methylosulfonomonas methylovora gen. nov., sp., nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. Arch. Microbiol. 167:46-53.
    68. HongS, Myung UC et al., Chemical modification and feedback inhibition of arabidopsis thaliana acetolacse synthase.Agricultural Chemistry and Biotechnology, 1997,40:277-282
    69. Howard AL, Yoo WJ et al., J. Chromatogr. Sci, 1993,31 (10),401-408
    70. Howard AL, Taylor LT. Anal. Chem., 1993,65 (6),724-729
    71. Hugh M, Brown M, Mode of Action, Crop Selectivity,and Soil Relation of the Sulfonylurea herbicides.pestic.1990,29:263-281
    72. Hugh M, Brown M.Degradation of Thifensulfuron Methyl in Soil: Role of Microbial Carboxyesterase Activity JAgric Food Chem, 1997, 45:995-961.
    73. Inui H,Ueyama Y,Shiota N,et al.Herbicide metabolism and cross tolerance in transgenic potato plants expressing human CYP1A11 Pesticide Biochemistry and Physiology,1999,64 :33-46
    74. Itoh K, Wang GX, Ohba S. Sulfonylurea Resistance in Lindernia micrantha, an Annual Paddy Weed in Japan, Weed Res. 1999, (39): 413-423
    75. James V Hay. Chemistry of Sulfonylurea Herbicides. Pestle. Sci., 1990,29:247-248
    76. Jean P, Cambon J B. Mechanism of thifensulfuron-methyl transformation in soil.J AgricFood. Chem., 1998, 46(3):1210-1216.
    77. Jeffry J, Andresson JJ, Dulka JJ. Environmental fate of sulfometuron-methyl in aerobic soils. J Agric Food Chem, 1985,33:596-602.
    78. Jnderson M,Hertz PB, et al., Mineralisation studies of 14c-labelled metsulruron-methyl, tribenuron-methyl,chlorsulfuron and thifensulfuron-methyl in one Smith.Biodegradation of suironylurea herbicide 14c-amidosulfuron in Saskatchewan soil under laboratory conditions.J.Agric.Food Chem,1992,40:2500-2504.
    79. Joanna D, John C. Caseley Herbicide safeners: a review. Pesticide Science, 1999,55:1043-1058
    80. John S F, Thomas G P, HUman CR. Potential Environmental Risks Associated with the New Sulfonylurea Herbicides. Environ Sci Technol, 1993,(27): 2250-2254
    81. Joseph S, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual, 2nd. New York: Cold Spring Harbor Laboratory Press, 1989.
    82. Joshi Madan, Brown.HM. Degradation of Chlorsulfuron by Soil Microorganism. Weed Science, 1985,33: 888 - 893.
    83. Kelley MM, Zahnow EW. et al., J.Agric.Food Chem, 1985,33,962-965
    84. Kelly DP, Baker SC,TrickettJ Methanesulphonae utilization by a novel methyltrophic bacterium involves an unusual monooxygenase Microbiology 1994(140)1419-1426
    85. Kelly, DP, and Murrell JC. 1996. Metabolism of methanesulfonate, p.33-40. In M. E. Lidstrom and F. R. Tabita (ed.), Microbial growth on Clcompounds. Kluwer Academic Publishers, Amsterdam. The Netherlands.
    86. Kelly, DP, and Murrell, JC. Microbial metabolism of methanesulfonic acid. Arch. Microbiol. 1999.172:341-348.
    87. Kelly, DP, Baker SC, Trickett J, et al, Methanesulfonate utilization by novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology, 1994. 140:1419-1426.
    88. Kendig JA, Kendig JA et al. ALS resistant cocklebur (Xanthium strumarium L.) in Missouri. Abstr Weed Sci Soc Am, 1994; 12
    89. Kerry K, Eric LZ, Bruce MT, et al, Microbial Transformations of Prosulfuron. Agric. Food Chem., 1997,45:1479-1483.
    90. Kevin LA. Pesticide hydroxyl radical rate constants: measurements and estimates of their importance in aquatic environments.Environmental Toxicology and Chemistry , 2000,19 (9):2175 -2180
    91. Kishor G.M., Shah D.M., Annu. Rev. Biochem. 57 (1988) 627-663.
    92. Kleber JW,et al.,GLC determination of acetohexamide and hydroxyhexamide in biological fluids.J Pharm Sci,1977,66:635-639
    93. Kleffenbach P, Hollan T.Analysis of sufonylurea Herbicides Gs-Liquid chromatography. 1. Formation of thmostable derivetives of chlosulfuron and metsulfuron-methyle. Jf.Agric.Fssd Chem.,1993,:388-395
    94. Krynitsky AJ, Douglas MS.Determination of Sulfonylurea Herbicides in Grains by Capillary Electrophoresis .J.AOAC International 1995,78(4): 1091-1096
    95. Kudsk P et al, Sulfonylurea resistance in Stellaria media (L.) Vill. Weed Resarch, 1995; 35 (1): 19- 24
    96. Kuk YL, Kuk Y I. Control of sulfonylurea herbicide resistant Lind ernia d ubia in Korean rice culture. Korean J ournal of Crop Science, 2002, 47 (4): 428-434.
    97. Kulowski, Eric LZ, Bruce MT, et al, Microbial Transformations of Prosulfuron. Agric. Food Chem., 1997,45:1479.
    98. Landstein D, Arad S, Barak Z, Chipman D. Relationships among the herbicide and functional sites of acetohydroxy acidsynthase from Chlorella emersonii. Planta 1993,191:1-6.
    99. LaRossa R, Schloss J. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem 1984, 259:8753-8757.
    100. Lawther RP, Wek RC, Lopes JM et al, The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucleic Acids Res 1987,15:2137-2155.
    101. Lawther RP. Point mutations in the regulatory region of the ilvGMEDA operon of Escherichia coli K-12. J Bacteriol 1989,171:1188-1191.
    102. Lawther RP, Lopes JM, Ortuno MJ, White MC. Analysis or regulation of the ilvGMEDA operon by using leaderattenuator-galK gene fusions. J Bacteriol 1990,172:2320-2327.
    103. Lee YT, Duggleby RG. Identification of the regulatory subunit of Arabidopsis thaliana acetohydroxyacid synthase and reconstitution with its catalytic subunit. Biochemistry 2001, 40: 6836-6844.
    104. Lee YT, Duggleby RG. Regulatory interactions in Arabidopsis thaliana acetohydroxyacid synthase. FEBS Lett 2002,512:180-184.
    105. Lu MF, Umbarger HE, J Bacteriol. 1987,169,600-604.
    106. Mallory Smith CA, Thill, Dial MJ. Identification of sulfonylurea herbicide resistant prickly lettuc (Lantuca serriola). Weed Technol, 1990, (4): 163-168.
    107. Maurino V, Minero C, Pelizzetti E, et al.,. Photocatalytic transformation of sulfonylurea herbicides over irradiated titanium dioxide particles. Colloids and Surfaces A : Physicochemical and Engineering Aspects ,1999,151 (1-2) :329-338
    108. Mazur BJ, Chui CF,Smith JK. Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol., 1987 , 85 :1110-1117
    109. McCourt JA, Pang SS, Guddat LW et al, Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochemistry 2005,44:2330-2338.
    110. Mendel S, Elkayam T, Sella C et al, Acetohydroxyacid synthase: a proposed structure for regulatory subunits supported by evidence from mutagenesis. J Mol Biol 2001, 307:465-477.
    111. Mendel S, Vinogradov M, Vyazmensky M et al., The N-terminal domain of the regulatory subunit is sufficient for complete activation of acetohydroxyacid synthase III from Escherichia coli. J Mol Biol 2003, 325:275-284.
    112. Miller S A, Dykes D D, Polesky H F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res, 1988,16:1215.
    113. Mojasevic M, Szekacs A. et al, Pesticide, 1996,11(1), 23-35
    114. Muhitch M, Shaner D, Stidham M: Imidazolinones and acetohydroxyacid synthase from higher plants. Properties of the enzyme from maize suspension culture cells and evidence for the binding of imazapyr to acetohydroxyacid synthase in vivo. Plant Physiol 1987, 83:451-456.
    115. Murrell, JC, Higgins T, Kelly DP. Bacterial utilization of methanesulfonate, p. 243-253. In J. C. Murrell and D. P. Kelly (ed). 1996. The microbiology of atmospheric trace gases: sources, sinks, and global change processes. NATO ASI Series. Springer-Verlag, New York, N.Y.
    116. Nicholls, PH, Evans, AA.The behavior of chlorsulfuron and metsulfuron in soils in relation to incidents of injury to sugar beet. Proc. Brighton Crop Protec. Conf.Weeds, 1998, 549-556.
    117. Reiser RW, et al., Application of microcolumn liquid chromatography continuous flow fast bombardment MS in environmental studies of sulfonylurea herbicides J Chromatogr.1991.554:91-101.
    118. Ohkawa H. et al., The Use of Cytochrome P450 genes to Introduce Herbicide Tolerance in Crops; a Review. Pestic. Sci. 1999,55:867-874
    119. O' Keefe et al Identification of Constitutive ancl herbicide induoible cytochrome P450 in streptomyes griseolusl. Archl Microbioll. 1988,149:406-412.
    120.O'Keefe D P et al., Plant and bacterial cytochromes P450: involvement in herbicide metabolism Recent AdvPhytochem 1987 (21):151-173
    121.O'keef DP. Ferredoxins from two sulfonylurea herbicide monooxyfenase systems in streptomyces griseolus Biochemistry,1991 (30): 447- 455
    122. O'keef DP. Efficiency and Sunstrate Specificity of Streptomyces griseolus P450 sul and P450su2 monooxygenase reations. Biochem Trans 1993 (21): 1073-1077
    123. O'keef DP. Plant Expression a Bacterial cytochrome P450 That Catalyzes A ctivation of Sulfonylarea Pro Herbicide Plant Physio 1994,105: 473-482
    124. Osuna MD, VidottoF, Fischer AJ, et al., Cross resistance to bispyribac-sodium and bensulfuron-methyl in Echinochloaphyllopog on and Cyperus difformis. Pesticide Biochemistry and Phy siology, 2002,73 (1): 9-17.
    125. Pang SS, Duggleby RG, Guddat LW. Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors.J Mol Biol 2002, 317:249-262.
    126. Pang SS, Guddat LW, Duggleby RG. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J Biol Chem 2003, 278:7639-7644.
    127. Petra D, JeanW, Reinhard N et al., Development of a Class Specific ELISA for Sulfonylurea Herbicides (Sulfuron Screen). Environ. Sci. Technol. 2004, 38: 6795 -6802
    128. Perston C, Powles SB. Evolution of herbicide resistance in w eeds: init ial frequency of target site based resistance to aceto lactate synthase inhibiting herbicides in Loliumrigidum. H eredity, 2002,88:8-13.
    129. Pons N, Barriubo E. Fate of metsulfuron-methyl in soils in relation to pedoclimatic conditions. Pesticide Science, 1998, 53:311-323
    130. Poston D, Wu JR, Hmatzios K, et al, Enhanced sensit ivity to cloransulam-methyl in imidazo linone resistant smooth pigweed. Weed Science, 2001, 49(6): 711-716.
    131. Proteau G., Silver M., Biomed. Lett. 46 (1991) 121-127.
    132. Rahman A, Aames TK, Proc. Asian Pac.Weed Sci.Soc.Conf.12th, 1989,213-217
    133. Reichenbecher, W, Murrell JC. 2000. Purification and characterization of the hydroxylase component of the methanesulfonic acid mono-oxygenase from Methylosulfonomonas methylovora strain M2. Eur. J. Biochem. 267:4763-4769.
    134. Ronald G. Duggleby, Siew Siew Pang, Hongqi Yu et al, Systematic characterization of mutations in yeast acetohydroxyacid synthase Eur. J. Biochem. 2003,270:2895-2904.
    135. Rossana BK,Carsten SJ.Determination of sulfonylurea degradation products in soil by liquide chromatography-ultravet detection followed by confirmatory liquide chromatography-tandem mass spectrometry Journal of chromatography A, 1999,855:575-582
    136. Rutledge RG, Miki BL. Characterization of the acetolactate synthase genes from B rassica. Genome, 1988, 30(Suppl. 1): 454
    137. Rutledge RG, Quellet T, Hattori J et al, Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol. Gen. Genet., 1991, 229 : 31-40
    138. Sabadie J.Behavior of four sulfonylurea herbicides in the presence of hydroxy compounds. J Agric Food Chem, 2000,48:4752-4756
    139. Sabadie J. Nicosulfuron alcoholysis, chemical hydrolysis and degradation on various minereals. J Agric Food Chem, 2002, 50(3): 526-531.
    140. Sabadie J. Hydrolyse chimique acidedu metslfuron-methyle. Weed Res, 1990, 30:413-419.
    141. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning [M]. A Laboratory Manual, 2nd ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
    142. Sarmah KA, Kookana RS, Michael JD. Hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in alkaline soil andaqueous solutions. Pest Manag Sci, 2000,56(5): 463-471
    143. Shalaby LM,et al.,Application of thermospray LC/MS for residue analysis of sulfonylurea herbicides and their degradation ProductsJ Agric Food Chem,1992,40:513-517.
    144. Shah DM, Horshch RB, Klee HJ. Engineering herbicide to lerance in t ransgenic plant. Science, 1986, 233: 478-491.
    145. Shaner D, Anderson P, Stidham M. Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol 1984, 76:545-546.
    146. Schloss J V, van Dyk J V, Vasta J F. Purification and properties of Salmonella typhimurium acetolactate synthase isozyme II from Escherichia coli HB101/ pDU9. Biochemistry, 1985, 24:4952-4959.
    147. Scoloss JV, Ciskanik LM et al., Origin of the herbicide binding site of acetolactate synthase. Nature, 1988,331:360-362
    148. Schloss JV, VanDyk DE. Methods Enzymol. 166 (1988) 445-454.
    149. Schloss JV. in: Boger P, Sandman G. (Eds.), Target Sites of Herbicide Action, CRC Press, Boca Raton, FL, 1989, pp.165-245.
    150. Schloss J, Ciskanik L, van Dyk JV. Origin of the herbicide binding site of acetolactate synthase. Nature 1988, 311:360-366.
    151. Schloss J. Acetolactate synthase mechanism of action and its herbicide binding site. Pestic Sci 1990, 29:283-292.
    152. Schloss JV, Dyk JV, Vasta JF. Purification and properties of Salmonella typhimurium acetolactate synthase isozyme II from Escherichia coli HB101/ pDU9. Biochemistry, 1985, 24: 4952-4959.
    153. Schmitzer PR, Schmitzer PR et al., Lock of cross resistance of imazaquin resistant X anthium strumarium acetolactate synthase to flumetsulam and chlorimuron.Plant Physiology 1993; 103: 281- 283
    154. Schneiders GE, Koeppe MK, Naidu MV, et al. Fate of rimsulfuron in the environment. J Agric Food Chem, 1993,41:2404-2410
    155. Singh BK, Shaner DL, Plant Cell7 (1995) 935-944.
    156. Smith AE, Sharma MP, Aubin AJ. Soil persistence of thiameturon (DPXM6316) and phototoxicity of the major degradation product. Can J Soil Sci, 1990, 70:485-491.
    157. Sozeri, SE.ects of some sulfonylurea group herbicides on growth of melon, water melon, cucumber, tomato and pepper. J. urkish Phytopath: 1996, 25, 83-88.
    158. Squires CH, DeFelice M, Devereux J et al., Nucleic Acids Res, 11 (1983) 299-313.
    159. Stalker DM, McBride KE. Cloning and expressing in Escheriohia coli of a Klebsiell ozaenae plasmid borne gene encoding a nitrilase specific for the herbicide bromoxynil. Journal of Bacteriology, 1987,169 (3): 955-960.
    160. Stormer FC. J. Biol. Chem. 242 (1967) 1756-1759.
    161. Stormer FC. J. Biol. Chem. 243 (1968) 3740-3741.
    162. Struthers J K, Jayachandram K, Moorman T B. Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol, 1998,64(9):3368-3375
    163. Strek J H. Fate of chlorsulfuron in the enviroment 1. Laboratory evaluations. Pestic Sci, 1998,52 :29-51
    164. Strek J H. Fate of chlorsulfuron in the enviroment 2. Field Evaluations. Pestic Sci, 1999,53 : 52-70
    165. Thompson, AS, Owens NJP, Murrell JC. Isolation and characterization of methanesulfonic acid-degrading bacteria from the marine environment. Appl. Environ. Microbiol. 1995.61:2388-2393.
    166. ThomPson DG, et al, Trace level quantitation of sulfonylurea herbicide in natural water.J AOAC Int, 1992,75 (6): 1084-1090.
    167. Thompson DG, Holmes SB, Thomas D et al, Impact of hexazinone and metsulfuron methyl on the phytoplankton community of a mixed-wood boreal forest lake. Environ. Toxicol. Chem. 1993,12, 1695-1707.
    168. Tranel PJ, Wright TR, Heap IM. Online. Internet. Monday, November 15, 2004 Available http: PPwww.weedscience.com
    169. Ukrainczy KL, Ajwa HA. Primisulfuron sorption on minerals and soil. Sci Soc AMJ. 1996,60:460-467
    170. Umbarger HE, in: F.C. Neidhardt, J.L. Ingraham, B.L.Low, B. Magasanik, M. Schaechter, H.E. Umbarger, (Eds.), Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Vol. 1, American Society for Microbiology, Washington, DC, 1987, pp. 352-367.
    171. Volmer D, et al, ThermosPray liquid chromatogra Phicmass Pectrometric multiresidue determination of 128 Polar Pesticides in aqueous environmental samples.J Chromatogr,1994, A660:231-24827
    172. Vyazmensky M, Sella C, Barak Z et al, Biochemistry 35 (1996) 10339-10346.
    173. Walker A,Cotterili EG.Sarah J et al.,Adsorption and Degradation of Chlorsulfuron and Metsulfuron-methyl in soil from Different Depths.Weed Res.,1989(29):281-287
    174. Wang GX et al, Response of a Sulfonylurea (SU)-Resistant Biotype of Limnophila Sessiliflora to Selected SU and Alternative Herbicides, Pestic. Biochem. Physiol, 2000 , (68) :59-66
    175. Weinstock O, Sella C, Chipman DM et al, J. Bacteriol.174 (1992) 5560-5566. Umbarger HE. (Eds.). Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, Vol. 1, American Society for Microbiology, Washington, DC, 1987, pp. 352-367.
    176. Weinstock O, Sella C, Chipman DM et al, J. Bacteriol.174 (1992) 5560-5566.
    177. Werck RD, Hehn A, Didierjean L. Cytochromes P450 for engineering herbicide tolerance. Trends in Plant Science, 2000, 5(3): 116-123
    178. Wei L, Yu H, Sun Y, et al. The effects of three sulfonylurea herbicides and their degradation productson the green algae Chlorellapy renoidosa. Chemosphere, 1998, 37: 747-751.
    179. Wei L, Yu H, Cao J, et al. Determination and prediction of partition coefficient and toxicity for sulfonylurea herbicides and their degradation products. Chemosphere, 1999, 38: 1713-1719.
    180. Wiersma PA, Schiemann MG, Condie JA et al., Isolation, expression and phylogenetic inheritance of an acetolactate synthase gene from B rassica napus. Mol. Gen Genet., 1989, 219: 413-420
    181. WD, Chapman LF. J. Bacteriol. 121 (1975) 917-922.
    182. Yang JH, Kim SS, Biochim. Biophys. Acta 1993, 11(57):178-184.
    183. Yoon TY, Chung SM, Chang SI et al., Biochemical and Biophysical Research Communications, 2002, 293(1): 433-4391
    184. Yun LY, Xiao W, Yong ML.Fungal degradation of metsulfuron-methyl in pure cultures and soil. Chemosphere, 2005, 60(4), 460-466
    185. Yu Q, Friesen LJS, Zhang XQ, et al., Tolerance to acetolactate synthase and acetyl coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two coexisting resistancemechanisms. Pesticide Biochemistry and Physiology, 2004, 78:21-30.
    186. Zanardini E, Amoldi A, Boschin A.Degradation Pathways of chlorsulfuron and metsulfuron-methyl by a Pseudomonas sp strain.Annals of Microbiology, 2002,52,25-37.
    187. Zanhow EW.Analysis of the herbicide chlorsulfuron in soil by liquid chromatography.J Agric Food Chem,1982,30:854-857
    188.艾应伟,范志金,钱传范.磺酰脲类除草剂特点及其环境归宿.沈阳农业大学学报,1999,30(5);539-543.
    189.曹坳程.乙酰乳酸合酶抑制剂开发中的问题及对策.植物保护.1997,23(5):38-42
    190.程薇,陈祖义,洪良平.苄嘧磺隆在土壤中的吸附与解吸研究.南京农业大学学报,1994,18(4);100-104
    191.陈石根,周润琦.酶学,上海:复旦大学出版社,2001,307.
    192.柴超,叶非.除草剂安全剂的研究进展.农药科学与管理,2003,24(4):23-26
    193.邓金保.磺酰脲类除草剂综述.世界农药,2003,25(3):24-32.
    194.东秀珠,蔡妙英,等.常见细菌系统鉴定手册.北京:科学出版社,2001.
    195.戴树桂,庄源益,陈勇生,等.两种假单胞菌中二氯酚降解酶活性及其定域研究.环境科学学报,1996,16(2):173-178.
    196.F.奥斯伯,R.布伦特,R.E.金斯顿等.精编分子生物学指南.北京:科学技术出版社,1999.36~40.
    197.范秀容,李广武,沈萍.微生物学实验.北京:高等教育出版社,1988.75~78.
    198.范志金,刘丰茂,钱传范.磺酰脲类除草剂的现状和发展趋势分析.农药,1999,38(5):6-9.
    199.范志金,钱传范,于维强,陈俊鹏,李正名,王玲秀.氯磺隆和苯磺隆对玉米乙酰乳酸合酶抑制作用的研究.中国农业科学,2003,36(2):173-178.
    200.方程冉,沈东升,贺永华.有机毒物甲磺隆胁迫下根际微生物种群生态的动态变化研究.土壤通报,28(2);79-84
    201.高玉杰.植物基因工程的应用与研究进展.辽宁农业科学,2003,(1):28-30.
    202.胡江,代先祝,李顺鹏.两株降解菌对阿特拉津污染土壤的修复效果研究.土壤学报,2005,42(2):323~327.
    203.黄春艳,陈铁保,王宇,孙宝宏.磺酰脲类除草剂对禾谷类作物的安全性及药害研究.植物保护,2005,31(1);50-54
    204.黄建中.农田杂草抗药性.北京:中国农业出版社,1995.
    205.黄明智,邓金保.磺酰脲类除草剂的作用方式及其对作物的选择性,农药译丛,1997,19(3);14-18
    206.姜林,李长城,张玉镭,谢协忠.磺酰脲类除草剂的研制与应用.山东农业大学学报(自然科学版),2003,34(4):597~599
    207.贺永华.根际土壤中甲磺隆除草剂快速降解及其生态化学机制.浙江大学.博士学位论文,2006
    208.J.萨姆布鲁克,DW拉塞尔.分子克隆(第三版).北京:科学出版社,2003:611-618.
    209.姜林,李正名.除草剂安全剂应用研究近况.农药学学报,1999,1(2):12-18
    210.李和阳,王大志,林益明,洪华生.海洋二甲基硫的研究进展.厦门大学学报(自然科学版) 2001,40(3))。
    211.刘智,马爱芝,张晓舟,等.甲基对硫磷水解酶酶促反应体系建立及特性研究.南京农业大学学报,2003,26(4):60~63.
    212.刘智,张晓舟,李顺鹏.利用甲基对硫磷降解菌DLL-E4消除农产品表面农药污染的研究.应用生态学报,2003,14(10):1770~1774.
    213.刘辉,陶波.土壤微生物对氯磺隆降解的研究.农业与技术,2003,23(1):36-39.
    214.刘祥英,柏连阳.土壤微生物降解磺酰脲类除草剂的研究进展.现代农药,2006,5(1);18-22
    215.刘长令.磺酰脲类除草剂.农药,2002,41(3);44-45.
    216.刘长令.磺酰脲类除草剂开发的新进展.农药快讯,2001,2,14-15
    217.刘东卫,李宜慰,刘振海,等.农田杂草对除草剂的抗性.世界农业,1993,(12):37-38
    218.刘伟,王金信,杨广玲,鲁梅.杂草对乙酰乳酸合成酶抑制剂抗药性研究进展农药学学 报,2004,6(4):07-12
    219.李得平.磺酰脲类除草剂在土壤中的物理化学行为.土壤,1996,(3):128-134
    220.李景,李秀峰.磺酰脲除草剂的研发进展.河北化工,2005(5):4-7
    221.李国圣,毕玉平,杨爱芳.玉米愈伤组织的遗传转化及抗除草剂植株再生.科学通报,2000,45(20):2181-2184.
    222.李国圣,张卿伟,张举仁.玉米丛生芽体系的建立及抗除草剂转基因植株再生.中国科学(C辑),2001,(5):213-217.
    223.李汝刚.乙酰乳酸合成酶基因在芸苔属栽培种内的遗传变异.生物多样性,1998,6(1):6-12.
    224.刘曙照,袁树忠,徐暄.固相抗体直接竞争ELISA法测定氯黄隆在土壤中的残留动态.农药学学报,2(2):57-62
    225.李秉华,王贵启,李香菊.磺酰脲类除草剂土壤残留的治理.云南农业大学学报.2005,(20),6,835-840
    226.刘长令.磺酰脲类除草剂.农药 27(1);28-31
    227.郎印海,蒋新,赵其国.土壤中磺酰脲除草剂降解机制研究进展.中国生态农业学报,2003,11(1):98-101.
    228.马晓源.抗药性杂草种群的发展及其治理对策.杂草科学,1994,(1):1-4.
    229.欧阳天蛰,谢九皋,李学垣.磺酰脲类除草剂在土壤中的吸附与降解研究进展.华中农业大学学报.2004,23(3),375-379
    230.仇宏伟,胡继业,周革菲.磺酰脲类除草剂在土壤及植物中行为综述.莱阳农学院学报,2000,17(2):132-138.
    231.任江萍,王爱萍,王智琴,李志岗.植物抗除草剂基因研究进展.山西农业大学学报,2001,21(2):168-172.
    232.孙丙耀,叶建强,黄建中,李扬汉.磺酰脲类除草剂在土壤中的行为.农药译丛.1996,18(2),35-39
    233.沈标,邵劲松,李顺鹏,等.假单胞菌DLL-1在土壤生物修复中的作用.中国环境科学,2002,22(4):365~369.
    234.沈东升,方程冉,周旭辉.土壤中降解甲磺隆除草剂的微生物的分离与筛选.上海交通大学学报(农业科学版),2002,20(3):186-190.
    235.石桂珍,王兴涌.磺酰脲类除草剂的研究进展.淮阴工学院学报,2005,14(3):35-38.
    236.马文漪,孔志明,尹大强.微生物降解四种农药的毒性效应.南京大学学报(自然科学),1993,29(4):631-636.
    237.苏少泉,周景恺.噻磺隆在土壤中降解的研究.杂草学报,1990,4(1):1-7
    238.苏少泉.除草剂作用机制的生物化学与生物技术的应用.生物工程进展,1993,14(2):30
    239.苏少泉.除草剂作用靶标与新品种创制.北京:化学工业出版社,2001:57.
    240.苏少泉.支链氨基酸生物合成与除草剂品种开发.农药译丛,1992,14(2):1-6
    241.苏少泉.除草剂在植物体内的代谢与选择性及使用.现代农药,2003,2(6);14-18
    242.苏少泉.超高效除草剂磺酰脲类述评.农药科学与管理,1990,2,10-21.
    243.邵劲松,沈标,李顺鹏.一株绿磺隆降解菌的分离鉴定及其性状研究.土壤学报,2003,40(6):952-956.
    244.沈东升,方程冉,周旭辉.土壤中降解甲磺隆除草剂的微生物的分离与筛选.上海交通大学学报(农业科学版),2002,20(3):186-190.
    245.沈东升,方程冉,周旭辉.土壤中结合残留态甲磺隆的微生物降解研究.土壤学报,2002,139(15):714-719.
    246.司友斌,岳永德,汤锋.磺酰脲类除草剂在硅胶G表面的光解.环境科学学报,2002,22(2):270-272
    247.隋凯,李军,卫锋,储小刚,赵守成,王玉萍.固相萃取-高效液相色谱法同时检测大米中12种磺酰脲类除草剂的残留.色谱,24(2):152-156
    248.尤民生,刘新.农药污染的生物降解与生物修复.生态学杂志,2004,23(1):73-77.
    249.汪海珍,徐建民,谢正苗.甲磺隆污染土壤生物修复的初步探索.农药学学报,2003,5(4):54~58.
    250.闻长虹.磺酰脲类除草剂的微生物降解与转化.池州师专学报,2004,18(5)43-46.
    251.王小军,刘玉乐.可育的抗除草剂溴苯腈转基因小麦.植物学报,1996,38(12):942-948.
    252.王敏强,李远想.玉米对磺酰脲类除草剂敏感性及土壤残留的研究.玉米科学,2006,14(2);78-80
    253.汪海珍.甲磺隆除草剂在土壤中的结合残留及其微生物降解研究.浙江大学.博士学位论文,2003
    254.王松文,施利利,孙宗修,蔡宝立.农杆菌介导的细菌阿特拉津氯水解酶基因对水稻的遗传转化.中国农业科学,2004,37(8):1093-1098.
    255.王忠武.农田杂草抗药性研究进展.杂粮作物,2006,26(1):130-132
    256.韦丽萍,孙越,于红霞,王连生,冯建舫.甲磺隆、氯磺隆、苄嘧磺隆及其降解产物对蛋白核小球藻生长的效应.环境化学,17(3),260-264
    257.魏东斌,张爱茜,韩朔睽,王连生.磺酰脲类除草剂研究进展.环境科学进展,1999,7(5)34-39
    258.愈尔敏.全球抗除草剂杂草的发生情况.世界农药,1998,20(3):10-17.
    259.姚东瑞,陈杰等.农药.1997,36(7),32-37
    260.徐建民,黄昌勇,安曼,等.磺酰脲类除草剂对土壤质量生物学指标的影响.中国环境科学,2000,20(6):491-494.
    261.许阳光,李学锋,吕明明.除草剂中的安全剂研究进展.中国植保导刊,2004,24(1):8-11
    262.向文胜,苏少泉,赵长山.植物细胞色素P-450(CytP450)对除草剂的代谢作用.东北农业大学学报,1997,28(2):193-200
    263.向文胜,肖振平,赵长山.抗除草剂转基因作物.东北农业大学学报,1998,29(2):201-208.
    264.杨曦,孟庆昱,孔令仁,王连生.甲黄隆在有机溶剂中的光解.环境科学.1999,(5)66-70
    265.杨曦,王晓书,朱春媚,孔令仁,王连生.磺酰脲类除草剂在环境中的光降解研究水溶液中的光解动力学环境科学1998(6)29-32
    266.杨基峰,虞云龙,方华,等.甲磺隆污染土壤的生物修复.环境化学,2006,25(1),76-79.
    267.张新萍,胡先文,岳霞丽,董元彦.甲磺隆对水华鱼腥藻作用机理初探.农药,44(10):452-456
    268.张荣全.除草剂安全剂的研究进展.世界农业,2001,(7):382-401
    269.周旭辉.土壤中甲磺隆微生物降解研究.浙江大学硕士论文.2000.
    270.张玉聚,张德胜,张俊涛,刘周扬,潘同霞,李菊梅.磺酰脲类除草剂的药害与安全应用.农药,42(6)42-44
    271.朱玉,于中连,林敏.草甘膦生物抗性和生物降解及其转基因研究.分子植物育种,2003年,1(4):435-441.
    272.张玉聚,张德胜,张俊涛.磺酰脲类除草剂的药害与安全应用.农药,2003(1);25-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700