用户名: 密码: 验证码:
南大西洋中脊14.0°S内角热液区成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南大西洋中脊14.0°S热液区是由中国科学家发现的、位于南大西洋中脊-转换断层内角高地的热液区。本文对14.0°S热液区表层所采集到的岩石及热液产物进行了详细的矿物学和地球化学分析,同时结合海底观测及地球物理资料,深入研究了14.0°S热液区的热液成矿作用,目的在于进一步了解慢速洋中脊内角构造环境下热液活动及相应的多金属硫化物成矿规律。本文创新性成果及结论如下:
     1、南大西洋14.0°S离轴内角高地包括近轴岩浆型高地和远轴OCC高地,热液区发育在近轴火山型高地上,岩浆作用对其发育具有决定性作用,这是14.0°S热液区有别于北大西洋内角高地热液区最显著的特征。
     2、14.0°S热液区产出的多金属硫化物主要由铁硫化物(黄铁矿/白铁矿)和非晶质硅组成,部分富含黄铜矿,但闪锌矿/纤锌矿等锌硫化物较少。本区海底至少存在三期次的热液活动,其中第一期和第三期为非晶质硅沉淀阶段,第二期为硫化物沉淀阶段,多期性的热液活动可能与深部岩体热破裂事件有关。
     3、14.0°S热液区洋壳遭受构造破裂程度强烈,导致热液释放区三维空间范围大,热液上升流主要以弥散流形式上涌,所形成的堆积矿-网脉矿复合矿体垂向分带性弱。而顶部热液点相对于斜坡热液点,其释放区海底渗透性相对较好。
     4、14.0°S热液区的主要热源为洋壳深部岩浆侵入体结晶形成的高温岩体,成矿流体来源为下渗的海水,成矿物质来源为铁镁质围岩,火山高地下部掩埋的拆离断层和高地内高角度正断层是两类可能的控矿构造。
The14.0°S hydrothermal field at South Mid-Atlantic Ridge (SMAR) is anhydrothermal field firstly found by Chinese scientists locating at the inside-cornerhigh of ridge-transform fault intersection SMAR. To understand the hydrothermalactivities further and the associated ore-forming regularities of polymetallic sulfidesunder the inside-corner high environment from a slow-spreading ridge, detailed studyof mineralogy and geochemistry on both rocks and hydrothermal products from thesurface of the14.0°S hydrothermal field have been carried out. Meanwhile, acomprehensive study on the hydrothermal mineralization was made with thecombination of seafloor observation and geophysical data. Innovative results andconclusions in this research are as follows:
     1. The SMAR14.0°S off-axis inside-corner high contains the near-axis volcanichigh and the abaxis oceanic core complex (OCC) high. While14.0°S hydrothermalvent field was located at the near-axis high, rather than the OCC structure, indicatingthat magmatic activities have conclusive effect on its development. This is the mostdistinctive feature from other hydrothermal vent fields at inside-corner high fromNorth mid-Atlantic ridge.
     2. The sulfide ores in14.0°S field are dominated by Pyrite-Marcasite-Amorphoussilica assemblages, several ores are enriched in chalcopyrite, but lack of zinc sulfideslike sphalerite/wurtzite etc. At least three stages of seafloor hydrothermal activitieswere identified in this field. The first and third stages were associated with amorphoussilica precipitations, while the second stage was associated with high temperaturesulfide precipitation. Multi-stages of hydrothermal activities are believed to becorrelated with the thermal cracking events of the deep rock bodies.
     3. The oceanic crust at14.0°S hydrothermal vent field suffered from strongtectonic cracking events, leading to the large3-dimensional spatial range ofhydrothermal release area. Hydrothermal upwellings are mainly diffusive flows andthe formed mound-stockwork complex thus shows weak vertical zonation. Comparingthe hydrothermal site1with that on the slop (site2), the former release area has a better seafloor permeability.
     4. The high temperature rock bodies due to the crystallization of the magmaticintrusions deep in the oceanic crust supplies the main heat source for the14.0°Shydrothermal field. While the ore-forming fluids and material is originated fromseawater and mafic wall-rock, respectively. We suggested that the overlaiddetachment fault under the volcanic highs and the high-angle normal faults in thehighs are probably two controlling-ore structures.
引文
Agranier A., Blichert-Toft J., Graham D., Debaille V., Schiano P. and Albarède F. Thespectra of isotopic heterogeneities along the mid-Atlantic Ridge. Earth andPlanetary Science Letters.2005(238):96-109.
    Allègre C.J., Moreira M. and Staudacher T.4He/3He dispersion and mantleconvection. Geophysical research letters.1995(22):2325-2328.
    Allègre C.J, Staudacher T. and Sarda P. Rare gas systematics: formation of theatmosphere, evolution and structure of the Earth′s mantle. Earth and PlanetaryScience Letters.1987(81):127-150.
    Allen D.E and Seyfried J.W. Serpentinization and heat generation: constraints fromLost City and Rainbow hydrothermal systems. Geochimica et CosmochimicaActa.2004(68):1347-1354.
    Alt J.C. Sulfur isotopic profile through the oceanic crust: Sulfur mobility andseawater-crustal sulfur exchange during hydrothermal alteration. Geology.1995(23):585-588.
    Alt J.C, Lonsdale P., Haymon R. and Muehlenbachs K. Hydrothermal sulfide andoxide deposits on seamounts near21°N, East Pacific Rise. Geological Society ofAmerica Bulletin.1987(98):157-168.
    Alt J.C. The chemistry and sulfur isotope composition of massive sulfide andassociated deposits on Green Seamount, Eastern Pacific. Economic geology.1988(83):1026-1033.
    Anderson D.L. Composition of the Earth. Science.1989(243):367-370.
    Bach W. and Früh-Green G.L. Alteration of the oceanic lithosphere and implicationsfor seafloor processes. Elements.2010(6):173-178.
    Bau M. and Koschinsky Aa. Oxidative scavenging of cerium on hydrous Fe oxide:evidence from the distribution of rare earth elements and yttrium between Feoxides and Mn oxides in hydrogenetic ferromanganese crusts. GeochemicalJournal.2009(43):37-47.
    Ben O.D., White W.M. and Patchett J. The geochemistry of marine sediments, islandarc magma genesis, and crust-mantle recycling. Earth and Planetary ScienceLetters.1989(94):1-21.
    Bischoff J.L., Rosenbauer R.J., Aruscavage P.J., Baedecker P.A. and Crock J.G.Sea-floor massive sulfide deposits from21°N East Pacific Rise, Juan de FucaRidge, and Galapagos Rift; bulk chemical composition and economicimplications. Economic geology.1983(78):1711-1720.
    Boynton W.V. Cosmochemistry of the rare earth elements: meteoric studies. Rareearth element geochemistry.1984:63-114.
    Brevart O., Dupré B. and Allègre C.J. Metallogenesis at spreading centers; leadisotope systematics for sulfides, manganese-rich crusts, basalts, and sedimentsfrom the Cyamex and Alvin areas (East Pacific Rise). Economic geology.1981(76):1205-1210.
    Cann J.R, Blackman D.K, Smith D.K, Mcallister E, Janssen B, Mello S, Avgerinos E,Pascoe A.R. and Escartin J. Corrugated slip surfaces formed at ridge-transformintersections on the Mid-Atlantic Ridge. Nature.1997(385):329-332
    Cannat M., Mevel C., Maia M., Deplus C., Durand C., Gente P., Agrinier P.,Belarouchi A., Dubuisson G. and Humler E. Thin crust, ultramafic exposures,and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology.1995(23):49-52.
    Cannat M., Lagabrielle Y., Bougault H., Casey J., De Coutures N., Dmitriev L. andFouquet Y. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge:Geological mapping in the15°N region. Tectonophysics.1997(279):193-213.
    Charlou J., Donval J., Fouquet Y., Jean-Baptiste P. and Holm N. Geochemistry of highH2and CH4vent fluids issuing from ultramafic rocks at the Rainbowhydrothermal field (36°14′N, MAR). Chemical Geology.2002(191):345-359.
    Cherkashov G, Bel′tenev V, Ivanov V, Lazareva L, Samovarov M, Shilov V,Stepanova T, Glasby G. and Kuznetsov V. Two new hydrothermal fields at theMid-Atlantic Ridge. Marine Georesources and Geotechnology.2008(26):308-316.
    Chiba H.and Sakai H. Oxygen isotope exchange rate between dissolved sulfate andwater at hydrothermal temperatures. Geochimica et Cosmochimica Acta.1985(49):993-1000.
    Clauer N., O′Neil J.R., Honnorez J.and Buatier M.87Sr/86Sr and18O/16O ratios ofclays from a hydrothermal area near the Galapagos rift as records of origin,crystallization temperature and fluid composition. Marine Geology.2011(288):32-42.
    Corliss J.B., Dymond J., Gordon L.I., Edmond J.M., Von Herzen R.P., Ballard R.D.,Green K., Williams D., Bainbridge A. and Crane K. Submarine thermal springson the Galapagos Rift. Science.1979(203):1073-1083.
    Coumou D., Driesner T. and Heinrich C. A. The structure and dynamics of mid-oceanridge hydrothermal systems. Science.2008(321):1825-1828.
    Dekov V.M., Boycheva T., H lenius U., Billstr m K., Kamenov G.D., Shanks W.C.and Stummeyer J. Mineralogical and geochemical evidence for hydrothermalactivity at the west wall of12°50′N core complex (Mid-Atlantic Ridge): A newultramafic-hosted seafloor hydrothermal deposit? Marine Geology.2011(288):90-102.
    Dekov V.M., Petersen S., Garbe-Sch nberg C., Kamenov G.D., Perner M., KuzmannE. and Schmidt M. Fe–Si-oxyhydroxide deposits at a slow-spreading centre withthickened oceanic crust: The Lilliput hydrothermal field (9°33′S, Mid-AtlanticRidge). Chemical Geology.2010(278):186-200.
    Delacour A., Früh-Green G.L., Bernasconi S.M. and Kelley D.S. Sulfur in peridotitesand gabbros at Lost City (30°N, MAR): Implications for hydrothermal alterationand microbial activity during serpentinization. Geochimica et CosmochimicaActa.2008(72):5090-5110.
    Delacour A., Früh-Green G.L., Bernasconi S.M., Schaeffer P. and Kelley D. S. Carbongeochemistry of serpentinites in the Lost City hydrothermal system (30°N,MAR). Geochimica et Cosmochimica Acta.2008(72):3681-3702.
    Demartin B.J., Sohn R.A., Canales J.P. and Humphris S.E. Kinematics and geometryof active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG)hydrothermal field on the Mid-Atlantic Ridge. Geology.2007(35):711-714.
    Detrick R.S., Mutter J.C., Buhl P. and Kim I.I. No evidence from multichannelreflection data for a crustal magma chamber in the MARK area on theMid-Atlantic Ridge. Nature.1990(347):61-64.
    Devey C.W., German C., Haase K., Lackschewitz K., Melchert B. and Connelly D.P.The relationships between volcanism, tectonism, and hydrothermal activity onthe southern equatorial Mid-Atlantic Ridge. Geophysical Monograph Series.2010(188):133-152.
    Dias á.S., Früh-Green G.L., Bernasconi S. and Barriga F. Geochemistry and stableisotope constraints on high-temperature activity from sediment cores of theSaldanha hydrothermal field. Marine Geology.2011(279):128-140.
    Dick H.J.B., Lin J. and Schouten H. An ultraslow-spreading class of ocean ridge.Nature.2003(426):405-412.
    Dick H.J.B, Tivey M.A. and Tucholke B.E. Plutonic foundation of a slow-spreadingridge segment: Oceanic core complex at Kane Megamullion,23°30′N,45°20′W.Geochemistry Geophysics Geosystems.2008(9): Q05014.
    Dosso L., Bougault H., Langmuir C., Bollinger C., Bonnier O. and Etoubleau J. Theage and distribution of mantle heterogeneity along the Mid-Atlantic Ridge(31–41°N). Earth and Planetary Science Letters.1999(170):269-286.
    Edmond J. The chemistry of the350°C hot springs at21°N on the East Pacific Rise.Eos.1980(61):10.
    Escartin J., Smith D.K., Cann J., Schouten H., Langmuir C.H. and Escrig S. Centralrole of detachment faults in accretion of slow-spreading oceanic lithosphere.Nature.2008(455):790-794.
    Evans W.C., White L.D. and Rapp J.B. Geochemistry of some gases in hydrothermalfluids from the southern Juan de Fuca Ridge. Journal of Geophysical Research:Solid Earth.1988(93):15305-15313.
    Fouquet Y., Cambon P., Etoubleau J., Charlou J.L., Ondréas H., Barriga F.J.,Cherkashov G., Semkova T., Poroshina I. and Bohn M. Geodiversity ofhydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hostedmineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massivesulfide deposit. Geophysical Monograph Series.2010(188):321-367.
    Fouquet Y., Charlou J., Donval J., Radford-Knoery J, PelléH, Ondreas H, SégonzasM, Costa I, Louren o N and Tivey M.A. Geological setting and comparison ofthe Menez-Gwen and Lucky Strike vent fields at37°17′N and37°50′N on theMid-Atlantic Ridge (MAR, DIVA1diving cruise). Eos Trans. AGU.1994(75):44.
    Fouquet Y. and Marcoux E. Lead isotope systematics in Pacific hydrothermal sulfidedeposits. Journal of Geophysical Research: Solid Earth (1978–2012).1995(100):6025-6040.
    Fouquet Y. Where are the large hydrothermal sulphide deposits in the oceans?[J].Philosophical Transactions of the Royal Society A: Mathematical, Physical andEngineering Sciences.1997(355):427-441.
    Foustoukos D.I., Savov I.P. and Janecky D.R. Chemical and isotopic constraints onwater/rock interactions at the Lost City hydrothermal field,30°N Mid-AtlanticRidge. Geochimica et Cosmochimica Acta.2008(72):5457-5474.
    Francheteau J., Needham H., Choukroune P., Juteau T., Seguret M., Ballard R., Fox P.,Normark W., Carranza X. and Cordoba D. Massive deep-sea sulphide oredeposits discovered on the East Pacific Rise. Nature.1979(277):523-528.
    German C.R., Bowen A., Coleman M., Honig D., Huber J.A., Jakuba M.V., KinseyJ.C., Kurz M.D., Leroy S. and Mcdermott J.M. Diverse styles of submarineventing on the ultraslow spreading Mid-Cayman Rise. Proceedings of theNational Academy of Sciences.2010(107):14020-14025.
    German C.R., Higgs N., Thomson J, Mills R, Elderfield H, Blusztajn J, Fleer A. andBacon M. A geochemical study of metalliferous sediment from the TAGHydrothermal Mound,26°08′N, Mid‐Atlantic Ridge. Journal of GeophysicalResearch: Solid Earth (1978–2012).1993(98):9683-9692.
    German C.R. and Lin J. The thermal structure of the oceanic crust, ridge-spreadingand hydrothermal circulation: How well do we understand theirinter-connections. Mid-Ocean Ridges: Hydrothermal Interactions Between theLithosphere and Oceans, Geophys. Monogr. Ser.2004(148):1-18.
    Gràcia E., Charlou J.L., Radford-Knoery J. and Parson L.M. Non-transform offsetsalong the Mid-Atlantic Ridge south of the Azores (38°N–34°N): ultramaficexposures and hosting of hydrothermal vents. Earth and Planetary ScienceLetters.2000(177):89-103.
    Graham D.W. Noble gas isotope geochemistry of mid-ocean ridge and ocean islandbasalts: Characterization of mantle source reservoirs. Reviews in Mineralogy andGeochemistry.2002(47):247-317.
    Graham D.W., Jenkins W.J., Schilling J.-G., Thompson G., Kurz M.D. and HumphrisS.E. Helium isotope geochemistry of mid-ocean ridge basalts from the SouthAtlantic. Earth and Planetary Science Letters.1992(110):133-147.
    Grindlay N., Fox P. and Macdonald K. Second-order ridge axis discontinuities in thesouth Atlantic: Morphology, structure, and evolution. Marine GeophysicalResearches.1991(13):21-49.
    Haase K.M., Petersen S., Koschinsky A., Seifert R., Devey C.W., Keir R.,Lackschewitz K.S., Melchert B., Perner M., Schmale O., Süling J., Dubilier N.,Zielinski F., Fretzdorff S., Garbe-Sch nberg D., Westernstr er U., German C.R.,Shank T. M., Yoerger D., Giere O., Kuever J., Marbler H., Mawick J., Mertens C.,St ber U., Walter M., Ostertag-Henning C., Paulick H., Peters M., Strauss H.,Sander S., Stecher J., Warmuth M. and Weber S. Young volcanism and relatedhydrothermal activity at5°S on the slow-spreading southern Mid-Atlantic Ridge.Geochemistry Geophysics Geosystems.2007(8). Doi:10.1029/2006gc001509.
    Haase K., Koschinsky A., Petersen S., Devey C.W., German C., Lackschewitz K.,Melchert B., Seifert R., Borowski C. and Giere O. Diking, young volcanism anddiffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliputfield at9°33′S. Marine Geology.2009(266):52-64.
    Halbach M, Halbach P and Lüders V. Sulfide-impregnated and pure silica precipitatesof hydrothermal origin from the Central Indian Ocean. Chemical Geology.2002(182):357-375.
    Hannington M., Herzig P., Scott S., Thompson G. and Rona P. Comparativemineralogy and geochemistry of gold-bearing sulfide deposits on the mid-oceanridges. Marine Geology.1991(101):217-248.
    Hannington M., Alan G. G., Peter M.H.,and Sven P. Comparation of the TAG moundand stockwork complex with cyprus-type[J]. Proceedings of the Ocean DrillingProgram, Scientific Results,.1998(158):389-415.
    Hannington M. The formation of atacamite during weathering of sulfides on themodern seafloor. The Canadian Mineralogist.1993(31):945-956.
    Hannington M., Ronde C. and Petersen S. Seafloor tectonics and submarinehydrothermal systems. Economic Geology2005(Economic Geology100thAnniversary Volume):111–141.
    Hannington M., Jamieson. J.P. Thomas M.S. and Beaulieu S. The abundance ofseafloor massive sulfide deposits. Geology.2011(39):1155–1158.
    Hart S.R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature.1984(309):753-757.
    Haymon R.M. and Kastner M. Hot spring deposits on the East Pacific Rise at21°N:preliminary description of mineralogy and genesis. Earth and Planetary ScienceLetters.1981(53):363-381.
    Haymon R.M. Growth history of hydrothermal black smoker chimneys. Nature.1983(301):695-698.
    Haymon R.M. and Kastner M. Hot spring deposits on the East Pacific Rise at21°N:preliminary description of mineralogy and genesis. Earth and Planetary ScienceLetters.1981(53):363-381.
    Hegner E. and Tatsumoto M. Pb, Sr, and Nd isotopes in basalts and sulfides from theJuan de Fuca Ridge. Journal of Geophysical Research: Solid Earth (1978–2012).1987(92):11380-11386.
    Hékinian R. and Fouquet Y. Volcanism and metallogenesis of axial and off-axialstructures on the East Pacific Rise near13°N. Economic geology.1985(80):221-249.
    Hékinian R., Francheteau J., Renard V., Ballard Rd, Choukroune P., Cheminee Jl,Albarede F., Minster Jf, Charlou Jl and Marty Jc. Intense hydrothermal activity atthe axis of the east pacific rise near13°N: Sumbersible witnesses the growth ofsulfide chimney. Marine Geophysical Research.1983(6):1-14.
    Herzig P.M, Becker Klaus P, Stoffers Peter, B cker Harald and Blum Norbert.Hydrothermal silica chimney fields in the Galapagos Spreading Center at86°W.Earth and Planetary Science Letters.1988(89):261-272.
    Herzig P.M. and Plueger W.L. Exploration for hydrothermal activity near theRodriguez triple junction, Indian Ocean. The Canadian Mineralogist.1988(26):721-736.
    Hiyagon, Ozima M, Marty B, Zashu S and Sakai H. Noble gases in submarine glassesfrom mid-oceanic ridges and Loihi seamount: constraints on the early history ofthe Earth. Geochimica et Cosmochimica Acta.1992(56):1301-1316.
    Hoagland P., Beaulieu S., Tivey M.A., Eggert R.G., German C., Glowka L. and Lin J.Deep-sea mining of seafloor massive sulfides. Marine Policy.2010(34):728-732.
    Honda, M.I., Patterson D.B., Doulgeris Anthony and Clague David A. Noble gases insubmarine pillow basalt glasses from Loihi and Kilauea, Hawaii: a solarcomponent in the Earth. Geochimica et Cosmochimica Acta.1993(57):859-874.
    Humphris S.E., Herzig P., Miller D., Alt J., Becker K., Brown D., Brugmann G.,Chiba H., Fouquet Y. and Gemmell Jb. The internal structure of an activesea-floor massive sulfide deposit. Nature.1995(377):713-716.
    Janecky D.R. and Seyfried J.W. Formation of massive sulfide deposits on oceanicridge crests: Incremental reaction models for mixing between hydrothermalsolutions and seawater. Geochimica et Cosmochimica Acta.1984(48):2723-2738.
    Jean-Baptiste P., Charlou J. L., Stievenard M., Donval J. P., Bougault H. and Mevel C.Helium and methane measurements in hydrothermal fluids from the mid-Atlanticridge: The Snake Pit site at23°N. Earth and Planetary Science Letters.1991(106):17-28.
    Jean-Baptiste P. and Fouquet Y. Abundance and isotopic composition of helium inhydrothermal sulfides from the East Pacific Rise at13°N. Geochimica etCosmochimica Acta.1996(60):87-93.
    Jean-Baptiste P., FourréE., Charlou J.L., German C.R. and Radford-Knoery J. Heliumisotopes at the Rainbow hydrothermal site (Mid-Atlantic Ridge,36°14′N). Earthand Planetary Science Letters.2004(221):325-335.
    Jenkins W.J., Edmond J.M. and Corliss J.B. Excess3He and4He in Galapagossubmarine hydrothermal waters. Nature.1978(272):156-158.
    Kato Y, Fujinaga K., Nakamura K., Takaya Y., Kitamura K., Ohta J., Toda R.,Nakashima T. and Iwamori H. Deep-sea mud in the Pacific Ocean as a potentialresource for rare-earth elements. Nature Geoscience.2011(4):535-539.
    Kelley D.S. and Karson J.A. An off-axis hydrothermal vent field near theMid-Atlantic Ridge at30°N [J]. Nature.2001(412):145-149.
    Kendrick M., Burgess R., Pattrick R. and Turner G. Hydrothermal fluid origins in afluorite-rich Mississippi valley-type district: combined noble gas (He, Ar, Kr)and Halogen (Cl, Br, I) analysis of fluid inclusions from the south Pennine orefield, united Kingdom. Economic geology.2002(97):435-451.
    Kennedy G.C. A portion of the system silica-water. Economic geology.1950(45):629-653.
    Kerr R.C. Heat transfer and hydrothermal fluid flow at flanges on large seafloorsulphide structures. Earth and Planetary Science Letters.1997(152):93-99.
    Kerridge J.F., Haymon R.M. and Kastner M. Sulfur isotope systematics at the21°Nsite, East Pacific Rise. Earth and Planetary Science Letters.1983(66):91-100.
    Kimura M., Uyeda S., Kato Y., Tanaka T., Yamano M., Gamo T., Sakai H., Kato S.,Izawa E. and Oomori T. Active hydrothermal mounds in the Okinawa Troughbackarc basin, Japan. Tectonophysics.1988(145):319-324.
    Klinkhammer G., Elderfield H. and Hudson A. Rare earth elements in seawater nearshydrothermal vents [J]. Nature.1983(305):185-188.
    Klinkhammer G., Elderfield H., Edmond J. and Mitra A. Geochemical implications ofrare earth element patterns in hydrothermal fluids from mid-ocean ridges.Geochimica et Cosmochimica Acta.1994(58):5105-5113.
    Krasnov S., Cherkashev G., Stepanova T., Batuyev B., Krotov A., Malin B., MaslovM., Markov V., Poroshina I. and Samovarov M. Detailed geological studies ofhydrothermal fields in the North Atlantic. Geological Society, London, SpecialPublications.1995(87):43-64.
    Langmuir C, Humphris S, Fornari D, Van D.C., Von Damm K., Tivey M.K., ColodnerD., Charlou J.-L., Desonie D. and Wilson C. Hydrothermal vents near a mantlehot spot: the Lucky Strike vent field at37°N on the Mid-Atlantic Ridge. Earthand Planetary Science Letters.1997(148):69-91.
    Langmuir C.H., Vocke J. Robert D., Hanson G.N. and Hart S.R. A general mixingequation with applications to Icelandic basalts. Earth and Planetary ScienceLetters.1978(37):380-392.
    Leclerc A.J. and Labeyrie L. Temperature dependence of the oxygen isotopicfractionation between diatom silica and water. Earth and Planetary ScienceLetters.1987(84):69-74.
    Lehuray A.P., Church S., Koski R. and Bouse R. Pb isotopes in sulfides frommid-ocean ridge hydrothermal sites. Geology.1988(16):362-365.
    Li B., Yang Y.M., Shi X.F., Ye J., Gao J.J., Zhu A.M. and Shao M.J.. Characteristics ofa ridge-transform inside corner intersection and associated mafic-hosted seafloorhydrothermal field (14.0°S, Mid-Atlantic Ridge). Marine Geophysical Research.2014(35):55-68.
    Lin J. and Morgan J.P. The spreading rate dependence of three-dimensionalmid-ocean ridge gravity structure. Geophys. Res. Lett.1992(19):13-16.
    Lin J. and Chen Y.J. Mechanisms for the formation of ridge-axis topography atslow-spreading ridges: a lithospheric-plate flexural model. Geophysics JournalInternational.1999(136):8-18.
    Lowell R.P. Hydrothermal circulation at slow spreading ridges: Analysis of heatsources and heat transfer processes. Geophysical Monograph Series.2010(188):11-26.
    Ludwig K.A., Kelley D.S., Butterfield D.A., Nelson B.K. and Früh-Green G.L.Formation and evolution of carbonate chimneys at the Lost City HydrothermalField. Geochimica et Cosmochimica Acta.2006(70):3625-3645.
    Macdonald K.C. Mid-ocean ridge tectonics, volcanism and geomorphology.Encyclopedia of Ocean Sciences.2001:1798-1813.
    Macdonald K.C. and Fox P.J. The mid-ocean ridge. Scientific American;(UnitedStates).1990(262):72-79.
    Macdonald K.C., Becker K., Spiess Fn and Ballard Rd. Hydrothermal heat flux of the“black smoker” vents on the East Pacific Rise. Earth and Planetary ScienceLetters.1980(48):1-7.
    Marques A.F.A., Barriga F., Chavagnac V. and Fouquet Y. Mineralogy, geochemistry,and Nd isotope composition of the Rainbow hydrothermal field, Mid-AtlanticRidge. Mineralium Deposita.2006(41):52-67
    McCaig A.M., Delacour A., Fallick A.E., Castelain T. and Früh-Green G.L.Detachment fault control on hydrothermal circulation systems: Interpreting thesubsurface beneath the TAG hydrotherma Agranier, Blichert-Toft Janne, GrahamDavid, Debaille Vinciane, Schiano Pierre and Albarède Francis. The spectra ofisotopic heterogeneities along the mid-Atlantic Ridge. Earth and PlanetaryScience Letters.2005(238):96-109.
    Mccaig A.M., Cliff R.A., Escartin J., Fallick A.E. and Macleod C.J. Oceanicdetachment faults focus very large volumes of black smoker fluids. Geology.2007(35):935-938.
    Mccaig A.M, Andrew M and Harris Michelle. Hydrothermal circulation and thedike-gabbro transition in the detachment mode of slow seafloor spreading.Geology.2012(40):367-370.
    Melchert B., Devey C.W., German C., Lackschewitz K., Seifert R., Walter M.,Mertens C., Yoerger D., Baker E. and Paulick H. First evidence forhigh-temperature off-axis venting of deep crustal/mantle heat: The Nibelungenhydrothermal field, southern Mid-Atlantic Ridge. Earth and Planetary ScienceLetters.2008(275):61-69.
    Michard A. Rare earth element systematics in hydrothermal fluids. Geochimica etCosmochimica Acta.1989(53):745-750.
    Michard A. and Albarède F. The REE content of some hydrothermal fluids. ChemicalGeology.1986(55):51-60.
    Mills R., Elderfield H. and Thomson J.. A dual origin for the hydrothermal componentin a metalliferous sediment core from the Mid‐Atlantic Ridge. Journal ofGeophysical Research: Solid Earth (1978–2012).1993(98):9671-9681.
    Mozgova N.N., Trubkin N.V., Borodaev Y.S., Cherkashev G.A., Stepanova T.V.,Semkova T.A. and Uspenskaya T.Y. Mineralogy of massive sulfides from theAshadze hydrothermal field,13°N, Mid-Atlantic Ridge. The CanadianMineralogist.2008(46):545-567.
    Myers J.T. and Eugster H. The system Fe-Si-O: Oxygen buffer calibrations to1,500K.Contributions to mineralogy and petrology.1983(82):75-90.
    Niu Y.L.and O′hara M.J. Global correlations of ocean ridge basalt chemistry withaxial depth: a new perspective. Journal of Petrology.2008(49):633-664.
    Niu Y.L., O′hara, M.J. Origin of ocean island basalts: A new perspective frompetrology, geochemistry, and mineral physics considerations. Journal ofGeophysical Research.2003(108). Doi:10.1029/2002JB002048.
    O’Nions R.K. and Tolstikhin IN. Behaviour and residence times of lithophile and raregas tracers in the upper mantle. Earth and Planetary Science Letters.1994(124):131-138.
    Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.Economic geology.1972(67):551-578.
    Olivarez A.M. and Owen R.M. REE/Fe variations in hydrothermal sediments:Implications for the REE content of seawater. Geochimica et CosmochimicaActa.1989(53):757-762.
    Olive J.–A., Behn M.D. and Tucholke B.E. The structure of oceanic core complexescontrolled by the depth distribution of magma emplacement. Nature Geoscience.2010(3):491-495.
    Ono S., Shanks W.C., Rouxel O.J. and Rumble D. S-33constraints on the seawatersulfate contribution in modern seafloor hydrothermal vent sulfides. Geochimicaet Cosmochimica Acta.2007(71):1170-1182.
    Owen R.M. and Olivarez A.M. Geochemistry of rare earth elements in Pacifichydrothermal sediments. Marine Chemistry.1988(25):183-196.
    Patterson D.B., Honda M. and Mcdougall I. Atmospheric contamination: A possiblesource for heavy noble gases in basalts from Loihi seamount, Hawaii.Geophysical research letters.1990(17):705-708.
    Paul K.L. and Epstein S. Hydrogen and oxygen isotope ratios in silica from theJOIDES Deep Sea Drilling Project. Earth and Planetary Science Letters.1975(25):1-10.
    Petersen S., Kuhn K., Kuhn T., Augustin N., Hékinian R., Franz L. and Borowski C.The geological setting of the ultramafic-hosted Logatchev hydrothermal field(14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation.Lithos.2009(112):40-56.
    Proskurowski G., Lilley M.D., Kelley D.S. and Olson E.J. Low temperature volatileproduction at the Lost City Hydrothermal Field, evidence from a hydrogen stableisotope geothermometer. Chemical Geology.2006(229):331-343.
    Rees C.E., Jenkins.W. and Monster J. The sulphur isotopic composition of oceanwater sulphate. Geochimica et Cosmochimica Acta.1978(42):377-381.
    Reston Tim J. and Mcdermott Ken G. Successive detachment faults and mantleunroofing at magma-poor rifted margins. Geology.2011(39):1071-1074.
    Rimstidt J.D. and Barnes H. The kinetics of silica-water reactions. Geochimica etCosmochimica Acta.1980(44):1683-1699.
    Roeder P. and Emslie R. Olivine-liquid equilibrium. Contributions to mineralogy andpetrology.1970(29):275-289.
    Rona P.A. Scott S.D. A special issue on seafloor hydrothermal mineralization--newperspectives. Economy Geology.1993(88):1935-1976.
    Rona P.A. Hydrothermal mineralization at oceanic ridges. The Canadian Mineralogist.1988(26):431-465.
    Rona P.A., Bogdanov Y.A., Gurvich E.G., Rimski-Korsakov N.A., Sagalevitch A.M.,Hannington M.D. and Thompson G. Relict hydrothermal zones in the TAGhydrothermal field, Mid-Atlantic Ridge26°N,45°W. Journal of GeophysicalResearch.1993(98):9715-9730.
    Rouxel O., Fouquet Y. and Ludden J.N. Subsurface processes at the Lucky Strikehydrothermal field, Mid-Atlantic Ridge: evidence from sulfur, selenium, and ironisotopes. Geochimica et Cosmochimica Acta.2004(68):2295-2311.
    Ruhlin D.E. and Owen R.M. The rare earth element geochemistry of hydrothermalsediments from the East Pacific Rise: Examination of a seawater scavengingmechanism. Geochimica et Cosmochimica Acta.1986(50):393-400.
    Schmidt K., Koschinsky A., Garbe-Sch nberg D., De Carvalho L.M. and Seifert R.Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchevhydrothermal field,15°N on the Mid-Atlantic Ridge: Temporal and spatialinvestigation. Chemical Geology.2007(242):1-21.
    Scott R.B., Rona P.A., Mcgregor B.A. and Scott M.R. The TAG hydrothermal field.Nature.1974(251):301-302.
    Severinghaus J.P. and Macdonald K.C. High inside corners at ridge-transformintersections. Marine Geophysical Research.1988(9):353-367.
    Shanks W.C. Stable isotopes in seafloor hydrothermal systems: vent fluids,hydrothermal deposits, hydrothermal alteration, and microbial processes.Reviews in Mineralogy and Geochemistry.2001(43):469-525.
    Shanks, B.J. and Seal R. Stable isotopes in mid-ocean ridge hydrothermal systems:Interactions between fluids, minerals, and organisms. Geophysical MonographSeries.1995(91):194-221.
    Shields G.A. and Webb G.E. Has the REE composition of seawater changed overgeological time? Chemical Geology.2004(204):103-107.
    Singh S.C., Crawford W.C., Carton H., Seher T., Combier V., Cannat M., Canales J.P.,Düsünür D., Escartin J. and Miranda J.M. Discovery of a magma chamber andfaults beneath a Mid-Atlantic Ridge hydrothermal field. Nature.2006(442):1029-1032.
    Smith D.K., Cann J.R. and Escartín J. Widespread active detachment faulting and corecomplex formation near13°N on the Mid-Atlantic Ridge. Nature.2006(442):440-443.
    Solomon M and Walshe J. The formation of massive sulfide deposits on the seafloor.Economic geology.1979(74):797-813.
    Spencer S., Smith D.K., Cann J.R., Lin J. and Mcallister E. Structure and stability ofnon-transform discontinuities on the Mid-Atlantic Ridge between24°N and30°N. Marine Geophysical Researches.1997(19):339-362.
    Spooner E. and Bray C. Hydrothermal fluids of seawater salinity in ophioliticsulphide ore deposits in Cyprus. Nature.1977(266):808-812.
    Stüben D., Taibi N.E., McMurtry G.M., Scholten J., Stoffers P. and Zhang D.Y.Growth history of a hydrothermal silica chimney from the Mariana backarcspreading center (southwest Pacific,18°13′N). Chemical Geology.1994(113):273-296.
    Stone S. and Niu Y.L. Origin of compositional trends in clinopyroxene of oceanicgabbros and gabbroic rocks: A case study using data from ODP Hole735B.Journal of volcanology and geothermal research.2009(184):313-322.
    Stuart F.M., Turner G, Duckworth R.C. and Fallick A.E. Helium isotopes as tracers oftrapped hydrothermal fluids in ocean-floor sulfides. Geology.1994(22):823-826.
    Styrt M.M., Brackmann A. J., Holland H. D., Clark B. C., Pisutha-Arnond V.,Eldridge C. S. and Ohmoto H. The mineralogy and the isotopic composition ofsulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise,21°N.Earth and Planetary Science Letters.1981(53):382-390.
    Thompson G., Humphris S.E., Schroeder B., Sulanowska M. and Rona P.A. Activevents and massive sulfides at26°N (TAG) and23°N (Snakepit) on theMid-Atlantic Ridge. The Canadian Mineralogist.1988(26):697-711.
    Tivey M.K. Generation of seafloor hydrothermal vent fluids and associated mineraldeposits.2007(20):50-65.
    Tivey M.A. and Delaney J.R. Growth of large sulfide structures on the endeavoursegment of the Juan de Fuca ridge. Earth and Planetary Science Letters.1986(77):303-317.
    Trieloff, Kunz J., Clague D.A, Harrison D. and Allègre C.J. The nature of pristinenoble gases in mantle plumes. Science.2000(288):1036-1038.
    Tucholke B.E., Behn M.D., Buck W. R. and Lin J. Role of melt supply in oceanicdetachment faulting and formation of megamullions. Geology.2008(36):455-458.
    Tucholke B.E, Lin J.and Kleinrock M.C. Megamullions and mullion structuredefining oceanic metamorphic core complexes on the Mid-Atlantic Ridge.Journal of Geophysical Research: Solid Earth (1978–2012).1998(103):9857-9866.
    Tucholke B.E. and Lin J. A geological model for the structure of ridge segments inslow spreading ocean crust. Journal of Geophysical Research.1994(99):11937-11911,11958.
    Tunnicliffe V., Botros M., De Burgh M.E., Dinet A., Johnson H.P., Juniper S.K. andMcduff R.E. Hydrothermal vents of Explorer ridge, northeast Pacific. Deep SeaResearch Part A. Oceanographic Research Papers.1986(33):401-412.
    Von Damm K.L. Lost city found. Nature.2001(412):127-128.
    Von Stackelberg U. Active hydrothermalism in the Lau back-arc basin (SW Pacific):First results from the SONNE cruise48. Mar. Min.1988(7):431-442.
    Walther and Helgeson Hc. Calculation of the thermodynamic properties of aqueoussilica and the solubility of quartz and its polymorphs at high pressures andtemperatures. American Journal of Science.1977(277):1315-1351
    Welhan J.A. and Craig H. Methane and hydrogen in East Pacific Rise hydrothermalfluids. Geophysical research letters.1979(6):829-831
    White R.S., Mckenzie D. and O′nions R.K. Oceanic crustal thickness from seismicmeasurements and rare earth element inversions. J. geophys. Res.1992(97):683-619.
    Wilcock W. and Delaney J.R. Mid-ocean ridge sulfide deposits: Evidence for heatextraction from magma chambers or cracking fronts? Earth and PlanetaryScience Letters.1996(145):49-64.
    Wilcock W., Hooft E.E.E., Toomey D.R., Mcgill P.R., Barclay A.H., Stakes D.S. andRamirez T.M. The role of magma injection in localizing black-smoker activity.Nature Geoscience.2009(2):509-513.
    Winckler G., Kipfer R., Aeschbach–Hertig W., Botz R., Schmidt M., Schuler S. andBayer R. Sub sea floor boiling of Red Sea brines: new indication from noble gasdata. Geochimica et Cosmochimica Acta.2000(64):1567-1575.
    Woodruff L.G. and Shanks W.C. Sulfur isotope study of chimney minerals and ventfluids from21°N, East Pacific Rise: Hydrothermal sulfur sources anddisequilibrium sulfate reduction. Journal of Geophysical Research: Solid Earth(1978–2012).1988(93):4562-4572.
    Yang K. and Scott S.D. Possible contribution of a metal-rich magmatic fluid to asea-floor hydrothermal system. Nature.1996(383):420-423。
    Zeng Z.G., Qin Y.S. and Zhai S.K.. He, Ne and Ar isotope compositions of fluidinclusions in hydrothermal sulfides from the TAG hydrothermal fieldMid-Atlantic Ridge. Science in China Series D: Earth Sciences.2001(44):221-228.
    Zierenberg R.A., Fouquet Y., Miller Dj, Bahr Jm, Baker Pa, Bjerkgard T., Brunner Ca,Duckworth Rc, Gable R. and Gieskes J. The deep structure of a sea-floorhydrothermal deposit.1998(392):485-488.
    Zindler A. and Hart S. Chemical geodynamics. Annual Review of Earth and PlanetarySciences.1986(14):493-571.
    陶春辉,李怀明,杨耀民,倪建宇,崔汝勇,陈永顺,何拥华,李家彪,黄威,雷吉江,王叶剑,DY115-21航次科考队.我国在南大西洋中脊发现两个海底热液活动区.中国科学D辑:地球科学.2011(41):887-889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700