用户名: 密码: 验证码:
去甲肾上腺素对耳蜗螺旋神经元GABA电流的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     作为听觉传导通路的第一级神经元,螺旋神经元(spiral ganglion neuron)接受来自脑干听觉核团——橄榄耳蜗核的外侧橄榄耳蜗传出系统神经纤维的支配和调控(GABA是其主要神经递质),同时接受来自颈交感神经节(颈上神经节和星状神经节)的纤维支配(Noradrenaline是其主要神经递质),但来自交感系统的纤维对耳蜗SGN电活动的调控机制尚不清楚。本课题主要研究交感纤维神经递质Noradrenaline对GABA在SGN诱发电流的影响及其胞内机制,以探讨交感系统调控SGN电活动进而调控听觉的可能机制。
     方法:
     1体外培养SGN细胞并进行形态和生理特性鉴定
     对出生后0~5d的SD大鼠的螺旋神经节细胞进行酶解分离与培养。用荧光倒置相差显微镜观察培养SGN细胞的活力以及生长与分化过程。应用免疫荧光染色方法对SGN进行免疫细胞化学染色鉴定。建立穿孔膜片钳记录SGN电生理的技术方法并记录SGN基本电生理特性。
     2 NA对GABA诱发SGN电流的作用
     利用穿孔膜片钳技术,观察去甲肾上腺素(Noradrenaline, NA)对培养SGN GABA诱发电流的作用,以及介导NA调控SGN GABA电流的肾上腺素受体和NA调控SGN GABA电流的胞内分子机制。
     结果:
     1新生SD大鼠SGN在酶解分离、体外培养条件下,可获得良好的细胞形态及表形分化,表现出稳定的神经元可塑性。本培养条件下细胞可存活7~10d。接种6h后,部分细胞贴壁,有少部分细胞可见小突起,培养12 h后贴壁完成并过渡为极性细胞,l8h后贴壁的SGN细胞多呈椭圆形,胞膜清晰、胞浆匀质、折光性好,胞体透明,周围有明显的光晕。24h后,大多数SGN呈双极神经元形态,胞体两极伸出神经元突起,长的达胞体的4~5倍,短的达胞体的2~4倍。SGN可以直接贴附于多聚赖氨酸基质表面生长,亦可附着在成纤维细胞形成的单层细胞“毯”的表面生长。48~72h后细胞进一步分化,神经细胞突起可为胞体的7~8倍。7d后细胞逐渐退变直至凋亡。除神经细胞外,胶质细胞、雪旺细胞多呈扁平、多角形或长梭形,比神经细胞胞体大,胞膜不清晰,无光晕。NeuN免疫细胞化学染色,SGN全细胞着色,呈绿色,椭圆形胞体和神经突起十分清晰,表明具有神经元的特征。
     2 NA可逆性抑制GABA在培养SGN细胞上诱发的电流反应,这种抑制作用具有浓度依赖型,且不影响GABA的反转电位和GABA与其受体的亲和力。α1肾上腺素受体拮抗剂哌唑嗪(Pra),能轻微阻断NA对IGABA的抑制效应,α2肾上腺素受体激动剂可乐定(Clo)和拮抗剂育亨宾(Yoh)能分别模拟和阻断NA对GABA的作用。而β肾上腺素受体激动剂异丙肾上腺素(Iso),不能模拟NA对IGABA的抑制效应。百日咳毒素(IAP)敏感的G蛋白参与了NA对SGN IGABA抑制性调控。NA对SGN IGABA的抑制作用是由蛋白激酶A(PKA)相关的胞内信号转导机制介导的,蛋白激酶A抑制剂H-89能模拟NA对GABA的作用,在加入cAMP和蛋白激酶A激动剂时NA对IGABA的作用消失,但是在加入蛋白激酶C的激动剂PMA和抑制剂白屈菜赤碱(Che)时的,NA仍可抑制SGN IGABA。
     结论
     1培养新生大鼠SGN细胞的方法可获得良好状态的SGN细胞,SGN存活细胞的数量和周期可以满足体外穿孔膜片钳电生理实验的需要。
     2穿孔膜片钳电生理结果表明NA对SGN细胞GABA电流的抑制作用是由α2肾上腺素受体介导的,α2肾上腺素受体激活后可通过抑制腺苷酸环化酶减少胞内cAMP含量,降低PKA活性,进而导致GABA对SGN的抑制作用减弱。表明源于交感系统的NA可通过抑制GABA反应来调控SGN的听觉信息传递。
Aim:
     Spiral ganglion neurons (SGNs) in the cochlea receiveγ-aminobutyric acid (GABA)-ergic modulation through the lateral olivocochlear system from the superior olivary complex, and noradrenaline (NA)-ergic innervation from the superior cervical ganglion. But the modulatory effects of NA on GABA-activated responses in the SGNs remain unknown. In the present study, the modulatory effects of NA on the GABA responses were investigated in the isolated cultured SGNs of rat.
     Methods:
     The culture of SGN was carried out with postnatal day 0~5 SD rats. The process of cellular growth and differentiation of SGN were observed by fluorescent inverted/phase contrast microscope. Immunocytochemical identification was performed on the cultured SGN of SD rats by methods of fluorescence and the antibody of neuron-specific nuclear protein (NeuN). The effect of NA on GABA responses in the SGN was studied by using nystatin perforated patch recording configuration under voltage-clamp conditions. Results:
     The trypsin dissociated and cultured SGN of SD rats could survive well and had a normal phenotypic differentiation in vitro. The stable neuronal plasticity of SGN existed in the postnatal SD rats under the present experimental conditions. NA reversibly depressed GABA responses in a concentration-dependent manner and neither changed the reversal potential of the GABA response nor affected the apparent affinity of GABA to its receptor.α2-adrenoceptor agonist and antagonist, clonidine and yohimbine mimicked and blocked the NA action on GABA response, respectively. N-[2(methylamino)ethyl]-5-isoquinoline sulfonamide dihydrochloride (H-89), a protein kinase A inhibitor, mimicked the effect of NA on GABA response. NA failed to affect the GABA response in the presence of both cyclic adenosine 5’-monophosphoric acid (cAMP) and protein kinase A modulators. However, NA still depressed the GABA response even in the presence of both phorbol-12-myristate-13-acetate (PMA), a protein kinase C activator and chelerythrine, a protein kinase C inhibitor.
     Conclusion:
     The cell amount and surviving period of cultured SGN were able to meet the requirements of cytological experiments. NA suppresses GABA response viaα2-adrenoceptor which reduces intracellular cAMP formation through the inhibition of adenyl cyclase. Therefore, NA input to the SGNs may modulate the auditory transmission by affecting the GABA responses.
引文
1. Mo ZL, Davis RL. Endogenous Firing Patterns of Murine Spiral Ganglion Neurons.J Neurophysiol. 1997; 77: 1294-305.
    2. Mo ZL, Davis RL. Heterogeneous voltage dependence of inward rectifier currents in spiral ganglion neurons.J Neurophysiol. 1997; 78: 3019-3027.
    3. Nakagawa T, Yamashita M, Hisashi K and et al.GABA-induced response in spiral ganglion cells acutely isolated from guinea pig cochlea.Neurosci Res. 2005 ;53 : 396–403.
    4. Maison SF, Adams JC, Liberman MC. Olivocochlear innervation in mouse: immunocytochemical maps, crossed vs. uncrossed contributions and colocalization of ACh, GABA, and CGRP. J Comp Neurol. 2003; 455: 406-416.
    5. Salih SG, Housley GD, Raybould NP, et al. ATP-gated ion channel expression in primary auditory neurons. Neuroreport. 1999; 10: 2579-2586.
    6. Nikohc P, Housley GD, Luo L, et al. Transient expression of P2X(1) receptor subunits of ATP-gated ion channels in the developing rat cochiea. Brain Res Dev Brain Res. 2001:126: 173-182.
    7. Housley GD, Kanjhan R, Raybould NP, et al. Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea;implications for sound transduction and auditory neumtransmission. J Neurosci; 1999: 19: 8377-8388.
    8. Moore EJ, Hall DB, Narahashi T. Sodium and potassium currents of type I spiral ganglion cells from rat. Acta Otolaryngol. 1996; 116: 552-560.
    9. Garcia-Diaz JF. Development of a fast transient potassium current in chick cochlear ganglion neurons. Hear Res. 1999;135: 124-134.
    10. Dulon D, Luo L, Zhang C, et al. Expression of small-conductance calcium- activated potassium channels(SK) in outer hair cells of the rat cochlea. Eur J Neurosci. 1998; 10: 907-915.
    11. Santos-Sacchi J. Voltage-dependent ionic conductances of type I spiralganglion cells from the guinea pig inner ear. J Neurosci. 1993; 13: 3599-3611.
    12. Hisashi K, Nakagawa T, Yasuda T, et al. Voltage-dependent Ca2+ channels in the spiral ganglion cells of guinea pig cochlea.Hear Res.1995; 91: 196-201.
    13. Lin X, Chen S. Endogenously generated spontaneous spiking activities recorded from postnatal spiral gangnon neurons in vitro.Brain Res Dev . 2000; 119: 297-305.
    14. Lin X. Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil. Hear Res. 1997; 108: 157-179.
    15. Chen C. Hyperpolarization-activated current(Ih) in primary auditory neuron. Hear Res. 1997; 110: 179-190.
    16. Han DY, Harada N, Tomoda K, et a1. Characterization of the calcium influx induced by depolarization of guinea pig cochlear spiral ganglion cells. J Otorhinolaryngol Relat Spec. 1994; 56: 125-129.
    17. Shimozono M, Tono T, Morimitsu T, et al. Measurement of intracellular free Ca2+ concentration in guinea pig spiral ganglion cells. Neuroreport. 1995; 6: 421-424.
    18. Ruel J, Chen C, Pujol R, et a1. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig . J Physiol. 1999; 518(pt3): 667-680.
    19. Sun W, Salvi RJ. Dopamine modulates sodium currents in cochlear spiral ganglion neurons. Neuroreport. 2001; 12: 803-807.
    20. Malgrange B, Rigo JM, Lefebvre PP, et al. Diazepam-insensitive GABAA receptors on postnatal spiral ganglion neurons in culture. Neuroreport. 1997; 8:591-596.
    21. Yamaguchi K, Ohmori H. Suppression of the slow K+ current by cholinergic agonists in cultured chick cochlear ganglion. J Physiol. 1993; 464: 2l3-228.
    22. SCHUKNECHT HF, CHURCHILL JA, DORAN R.. The localization of acetylcholinesterase in the cochlea. AMA Arch Otolaryngol. 1959; 69(5): 549-59.
    23. Plinkert PK, Gitter AH, Mohler H, Zenner HP. Structure, pharmacology and function of GABA-A receptors in cochlear outer hair cells. Eur Arch Otorhinolaryngol. 1993;250(6):351-357.
    24. Rasmussen GL. J Comp Neurol, 1946; 84: 141-220.
    25. Warr WB, Guinan JJ Jr. Efferent innervation of the organ of corti: two separate systems. Brain Res. 1979; 173(1): 152-155.
    26. Aschoff A, Ostwald J. Different origins of cochlear efferents in some bat species, rats, and guinea pigs. J Comp Neurol. 1987; 264(1):56-72.
    27. Henson MM, Xie DH, Wynne RH, Wilson JL, Henson OW Jr.. The course and distribution of medial efferent fibers in the cochlea of the mustached bat. Hear Res. 1996; 102(1-2): 99-115.
    28. Xie DH, Henson MM, Bishop AL, Henson OW Jr. Efferent terminals in the cochlea of the mustached bat: quantitative data. Hear Res. 1993; 66(1): 81-90.
    29. Brown MC, Pierce S, Berglund AM. Cochlear-nucleus branches of thick (medial) olivocochlear fibers in the mouse: a cochleotopic projection.J Comp Neurol. 1991; 303(2): 300-15.
    30. Guinan, JJ. The physiology of olivocochlear efferents. In: Dallos, PJ.; Popper, AN.; Fay, RR., editors. The Springer Verlag Handbook of Auditory Research:The Cochlea. VIII. Springer Verlag; New York:1996.
    31. Smith DW, Mount RJ. Damage to cochlear efferents following AF64A intoxication. Acta Otolaryngol. 1993; 113(4): 512-8.
    32. Kujawa SG, Glattke TJ, Fallon M, Bobbin RP. Contralateral sound suppresses distortion product otoacoustic emissions through cholinergic mechanisms. Hear Res. 1993; 68(1): 97-106
    33. Plinkert PK, Zenner HP, Heilbronn E. A nicotinic acetylcholine receptor -like alpha-bungarotoxin-binding site on outer hair cells. Hear Res. 1991; 53(1): 123-30.
    34. Housley GD, Batcher S, Kraft M, Ryan AF. Nicotinic acetylcholine receptor subunits expressed in rat cochlea detected by the polymerase chain reaction. Hear Res. 1994; 75(1-2): 47-53.
    35. Plinkert PK, Gitter AH, Mohler H, Zenner HP. Structure, pharmacology and function of GABA-A receptors in cochlear outer hair cells. Eur Arch Otorhinolaryngol. 1993;250(6):351-357.
    36. Groff JA, Liberman MC. Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol. 2003; 90(5): 3178-200
    37. Guinan JJ Jr, Stankovic KM. Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers. J Acoust Soc Am. 1996; 100(3):1680-1690.
    38. Avan P, Erre JP, da Costa DL, Aran JM, Popelar J. The efferent-mediated suppression of otoacoustic emissions in awake guinea pigs and its reversible blockage by gentamicin. Exp Brain Res. 1996; 109(1): 9-16.
    39. Kujawa SG, Fallon M, Bobbin RP. Time-varying alterations in the f2-f1 DPOAE response to continuous primary stimulation. I: Response characterization and contribution of the olivocochlear efferents. Hear Res. 1995; 85(1-2): 142-54.
    40. Williams EA, Brookes GB, Prasher DK. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects. Acta Otolaryngol. 1994; 114(2): 121-129.
    41. Henson OW Jr, Xie DH, Keating AW, Henson MM. The effect of contralateral stimulation on cochlear resonance and damping in the mustached bat: the role of the medial efferent system. Hear Res. 1995; 86(1-2):111-24.
    42. Rajan R. The effect of upper pontine transections on normal cochlear responses and on the protective effects of contralateral acoustic stimulation in barbiturate-anaesthetized normal-hearing guinea pigs. Hear Res. 1990; 45(1-2): 137-44.
    43. Puel JL, Bonfils P, Pujol R. Selective attention modifies the active micromechanical properties of the cochlea. Brain Res. 1988; 447(2): 380-383.
    44. Ruel J, Nouvian R, Gervais d’Aldin C, Pujol R, Eybalin M, Puel JL. Dopamine inhibition of auditory nerve activity in the adult mammalian cochlea. Eur J Neurosci. , 2001; 14: 977–986
    45. d’Aldin C, Puel JL, Leducq R, Crambes O, Eybalin M, Pujol R. Effects of a dopaminergic agonist in the guinea pig cochlea. Hear Res. 1995; 90: 202–211.
    46. Liberman MC, Mulroy MJ. Acute and chronic effects of acoustic trauma: cochlear pathology and auditory-nerve pathophysiology. In: New Perspectiveson Noise-Induced Hearing Loss, edited by Hamernik RP, Henderson D, Salvi R. New York: Raven Press, 1982, p. 105–135.
    47. Puel JL, Ruel J, Gervais d’aldin C, Pujol R. Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. Neuroreport. 1998; 9: 2109–2114
    48. Robertson D. Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hear Res. 1983; 9: 263–278
    49. Le Prell CG, Shore SE, Hughes LF, Bledsoe SC Jr. Disruption of lateral efferent pathways: functional changes in auditory evoked responses. J Assoc Res Otolaryngol. 2003; 4: 276–290
    50. Groff JA, Liberman MC. Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol. , 2003; 90: 3178–3200
    51. Darrow KN, Simons EJ, Dodds L, Liberman MC. Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. J Comp Neurol. 2006; 498: 403–414
    52. Eybalin M. Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev. 1993; 73: 309–373
    53. Sahley TL, Kalish RB, Musiek FE, Hoffman DW. Effects of opioid drugs in auditory evoked potentials suggests a role of lateral olivocochlear dynorphins in auditory function. Hear Res. 1991; 55: 133–142
    54. Felix D, Ehrenberger K. The efferent modulation of mammalian inner hair cell afferents. Hear Res. 1992; 64: 1–5
    55. Arnold T, Oestreicher E, Ehrenberger K, Felix D. GABAA receptormodulates the activity of inner hair cell afferents in guinea pig cochlea. Hear Res. 1998; 125: 147–153
    56. Oestreicher E, Arnold W, Ehrenberger K, Felix D. Dopamine regulates the glutamatergic inner hair cell activity in guinea pigs. Hear Res. 1997; 107: 46–52.
    57. Bailey GP, Sewell WF. Calcitonin gene-related peptide suppresses hair cell responses to mechanical stimulation in the Xenopus lateral line organ. J Neurosci. 2000; 20: 5163–5169
    58. Maison SF, Emeson RB, Adams JC, Luebke AE, Liberman MC. Loss of alpha CGRP reduces sound-evoked activity in the cochlear nerve. J Neurophysiol. , 2003; 90: 2941–2949.
    59. Liberman MC. Effects of chronic cochlear de-efferentation on auditory-nerve response. Hear Res. 1990; 49: 209–224.
    60. Zheng XY, Henderson D, McFadden SL, Ding DL, Salvi RJ. Auditory nerve fiber responses following chronic cochlear de-efferentation. J Comp Neurol. 1999; 406: 72–86.
    61. Kujawa SG, Liberman MC. Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery. J Neurophysiol. 1997; 78: 3095–3106.
    62. Le Prell CG, Halsey K, Hughes LF, Dolan DF, Bledsoe SC Jr. Disruption of lateral olivocochlear neurons via a dopaminergic neurotoxin depresses soundevoked auditory nerve activity. J Assoc Res Otolaryngol. 2005; 6: 48–62.
    63. Walsh EJ, McGee J, McFadden SL, Liberman MC. Long-term effects ofsectioning the olivocochlear bundle in neonatal cats. J Neurosci. 1998; 18: 3859–3869.
    64. Mulders WH, Robertson D. Dopaminergic olivocochlear neurons originate in the high frequency region of the lateral superior olive of guinea pigs. Hear Res. 2004; 187: 122–130.
    65. Reiter ER, Liberman MC. Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. J Neurophysiol. 1995; 73(2): 506-514.
    66. Kawase T, Liberman MC. Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. J Neurophysiol. 1993; 70(6): 2519-2532.
    67. Chery-Croze S, Collet L, Morgon A. Medial olivo-cochlear system and tinnitus. Acta Otolaryngol. 1993; 113(3): 285-290.
    68. Rossi G, Actis R, Solero P, Rolando M, Pejrone MD. Cochlear interdependence and micromechanics in man and their relations with the activity of the medial olivocochlear efferent system (MOES). J Laryngol Otol. 1993; 107(10): 883-891.
    69. Lyon MJ, Payman RN. Comparison of the vascular innervation of the rat cochlea and vestibular system. Hear Res 2000; 141(1-2): 189-198.
    70. Hozawa K, Kimura RS.Cholinergic and noradrenergic nervous systems in the cynomolgus monkey cochlea.Acta Otolaryngol. 1990; 110(1-2): 46-55.
    71. Shibamori Y, Tamamaki N, Saito H. The trajectory of the sympathetic nerve fibers to the rat cochlea as revealed by anterograde and retrograde WGA-HRP tracing. Brain Res. 1994; 646(2): 223-229.
    72. Vicente-Torres MA, Gil-Loyzaga P. Age- and gender-related changes in the cochlear sympathetic system of the rat. Neurosci Lett. 2002; 319(3): 177-179.
    73. Ren TY, Laurikainen E, Quirk WS, Effects of electrical stimulation of the superior cervical ganglion on cochlear blood flow in guinea pig. Acta Otolaryngol. 1993; 113(2): 146-151.
    74. Ren T, Laurikainen E, Quirk WS.Effects of stellate ganglion stimulation on bilateral cochlear blood flow. Ann Otol Rhinol Laryngol. 1993; 102(5): 378-384.
    75. Spoendlin H, Lichtensteiger W. The adrenergic innervation of the labyrinth. Acta Otolaryngol 1966;61:423–434.
    76. Spoendlin H, Lichtensteiger W. The sympathetic nerve supply to the inner ear. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 1967;189: 346–359.
    77. Ohlsen KA, Baldwin DL, Nuttall AL, Miller JM. Influence of topically applied adrenergic agents on cochlear blood flow. Circ Res.1991; 69: 509–518.
    78. Laurikainen EA, Costa O, Miller JM, Nuttall AL, Ren TY, Masta R, Quirk WS, Robinson PJ. Neuronal regulation of cochlear blood flow in the guinea-pig. J Physiol 1994;480:563–573.
    79. Gruber DD, Dang H, Shimozono M, Scofield MA, Wangemann P. Alpha1A-adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro. Hear Res 1998;119: 113–124.
    80. Birgersson L, Friberg U, Rask-Andersen H, Erwall C, Widenfalk B. Origin of sympathetic and sensory innervation of the endolymphatic sac. A retrogradeaxonal tracing study in the guinea pig. ORL J Otorhinolaryngol Relat Spec 1992; 54: 188–190.
    81. Hozawa K, Takasaka T. Sympathetic and CGRP-positive nerve supply to the endolymphatic sac of guinea pig. Acta Otolaryngol Suppl 1993;506:14–17.
    82. Rask-Andersen H, Stahle J. Immunodefence of the inner ear? Lymphocyte –macrophage interaction in the endolymphatic sac. Acta Otolaryngol 1980; 89:283–294.
    83. Benschop RJ, Rodriguez-Feuerhahn M, Schedlowski M. Catecholamine -induced leukocytosis, early observations, current research, and future directions. Brain Behav Immun 1996; 10:77–91.
    84. Muchnik C, Rosenthal T, Peleg E, Hildesheimer M. Stress reaction to intense sound exposure under different arousal levels in guinea pigs. Acta Otolaryngol 1998;118:646–650.
    85. Giraudet F, Horner KC, Cazals Y. Similar half-octave TTS protection of the cochlea by xylazine/ketamine or sympathectomy. Hear Res 2002; 174: 239 –248.
    86. Gil-Loyzaga P, Vicente-Torres MA, Arce A, Cardinali DP, Esquifino A Effect of superior cervical ganglionectomy on catecholamine concentration in rat cochlea. Brain Res 1998;779:53–57.
    87. Hultcrantz E, Nuttall AL, Brown MC, Lawrence M. The effect of cervical sympathectomy on cochlear electrophysiology. Acta Otolaryngol 1982; 94: 439–444.
    88. Horner KC, Giraudet F, Lucciano M, Cazals Y. Sympathectomy improves the ear’s resistance to acoustic trauma—could stress render the ear more sensitive?Eur J Neurosci 2001;13:405–408.
    89. Pickles JO. An investigation of sympathetic effects on hearing. Acta Otolaryngol 1979;87:69–71.
    90. Borg E. Susceptibility of the sympathectomized ear to noise-induced hearing loss. Acta Physiol Scand 1982; 114: 387–391.
    91. Hildesheimer M, Henkin Y, Pye A, Heled S, Sahartov E, Shabtai EL, Muchnik C. Bilateral superior cervical sympathectomy and noiseinduced, permanent threshold shift in guinea pigs. Hear Res 2002; 163: 46–52.
    92. Gil-Loyzaga P, Vicente-Torres MA, Arce A. Effect of superior cervical ganglionectomy on catecholamine concentration in rat cochlea. Brain Res. 1998; 779:53-57.
    93. Horner KC, Giraudet F, Lucciano M.Sympathectomy improves the ear's resistance to acoustic trauma--could stress render the ear more sensitive? Eur J Neurosci. 2001; 13(2): 405-408.
    94. Hildesheimer M, Sharon R, Muchnik C. The effect of bilateral sympathectomy on noise induced temporary threshold shift. Hear Res. 1991; 51(1): 49-53.
    95. Giraudet F, Horner KC, Cazals Y. Similar half-octave TTS protection of the cochlea by xylazine/ketamine or sympathectomy. Hear Res. 2002; 174 (1-2): 239-248.
    96. Comis SD, Whitfield IC. Influence of centrifugal pathways on unit activity in the cochlear nucleus. J Neurophysiol 1968;31:62–68.
    97. Anden NE, Fuxe K, Larsson K. Effect of large mesencephalic–diencephalic lesions on the noradrenalin, dopamine and 5-hydroxytryptamine neurons ofthe central nervous system. Experientia 1966; 22: 842–843.
    98. Woods CI, Azeredo WJ. Noradrenergic and serotonergic projections to the superior olive, potential for modulation of olivocochlear neurons. Brain Res 1999;836:9–18.
    99. Wynne B, Robertson D. Localization of dopamine-beta-hydroxylase-like immunoreactivity in the superior olivary complex of the rat. Audiol Neurootol 1996;1:54–64.
    100. Mulders WH, Robertson D. Origin of the noradrenergic innervation of the superior olivary complex in the rat. J Chem Neuroanat 2001; 21:313–322.
    101. Klepper A, Herbert H. Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat. Brain Res 1991;557:190–201.
    102. Pickles JO. The noradrenaline-containing innervation of the cochlear nucleus and the detection of signals in noise. Brain Res 1976;105: 591–596.
    103. Wang X, Robertson D. Two types of actions of norepinephrine on identified auditory efferent neurons in rat brain stem slices. J Neurophysiol 1997;78:1800–1810.
    1. Bianchi LM,Cohan CS.Developmental regulation of a neurite-promoting factor influencing statoacoustic neurons[J].Devel Brain Res.1991.64 (1-2):167-174.
    2. Lefebvre pp,Weber T,Rigo JM,et al. Peripheral and central target-derived trophic factors effect on auditory neurons[J]. Hear Res,1992,58 (2):185-192.
    3. Lefebvre PP,Malgrange B,Staecher H,et a1.Neurotrophins affect survival and neuritogenesis by adult injured auditory neurons in vitro[J].Nero Report,1994,5 (8):865-868.
    4. Russeup S.Preparation of highly purified population of neurons astrocytes and oligoclendrocytes[J].Meth Neuroscie,1990, 2(2):119-124.
    l. Hecheler J, Trautwine W. Modification of L-type calcium current by intracellurlarly applied trypsin in guinea-pig ventricular myocytes. J Physiol Lond.1988;404:259~274
    2. Shuba YM,Hesslinger B,Trautwein W,et a1.Whole-cell calcium in guinea-pig ventricular myocyte dialysed with guanine nucleotides.J Physiol Lond,1990;424:205~228
    3. 陈军.膜片钳实验技术系列讲座.神经解剖学杂志.1995; ll(2):170 ~ l84
    4. Dallos P. The active cochlea[J].J neurosci, 1992; 12:4575
    5. Ryugo DK. The Mammalian Auditory Pathway:Neuroanatomy.New York: Springer-Verlag,1992.23-65
    6. Spoendlin HH.Neural anatomy of the inner ear.In: Jahn AF, Santos-Sacchi J,eds. Physiology of the Ear.New York: Raven Press,1988;201-219
    7. Mo ZL, Davis RL. Endogenous firing patterns of murine spiral ganglion neurons[J]. J Neurophysiol .1997,77:1294
    1 Eybalin M, Charachon G & Renard N (1993). Dopaminergic lateral efferent innervation of the guinea-pig cochlea: immunoelectron microscopy of catecholamine -synthesizing enzymes and effect of 6-hydroxydopamine. Neuroscience 54, 133-142.
    2 Jones N, Fex J & Altschuler RA (1987). Tyrosine hydroxylase immunoreactivity identifies possible catecholaminergic fibers in the organ of Corti. Hear Res 30, 33-38.
    3 Spoendlin H (1984). Primary neurons and synapses, pp. 133-164. In: Friedmann I, Ballantyne J (Eds.), Ultrastructural Atlas of The Inner Ear. Butterworths, London, UK
    4 Felix D & Ehrenberger K (1992). The efferent modulation of mammalianinner hair cell afferents. Hear Res 64, 1-5.
    5 Vicente-Torres MA & Gil-Loyzaga P (1999). Noise stimulation decreases the concentration of norepinephrine in the rat cochlea. Neurosci Lett 266, 217-219.
    6 Muchnik C, Rosenthal T, Peleg E & Hildesheimer M (1998). Stress reaction to intense sound exposure under different arousal levels in guinea pigs. Acta Otolaryngol 118, 646-650.
    7 Malgrange B, Rigo JM, Lefebvre PP, Coucke P, Goffin F, Xhauflaire G, Belachew S, Van de Water TR & Moonen G (1997). Diazepam-insensitive GABAA receptors on postnatal spiral ganglion neurons in culture. Neuroreport 8, 591-596.
    8 Lin X & Chen S (2000). Endogenously generated spontaneous spiking activities recorded from postnatal spiral ganglion neurons in vitro. Brain Res Dev Brain Res, 119, 297-305.
    9 Lee AH & Moller AR (1985). Effects of sympathetic stimulation on the round window compound action potential in the rat. Hear Res 19, 127-134.
    10 Akaike N & Harata N (1994). Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. Jpn J Physiol 44, 433-473.
    1 Hein L & Kobilka BK. Adrenergic receptor signal transduction and regulation. Neuropharmacology, (1995); 34:57-366.
    2 Mackinnon AC,Spedding M,Brown CM,et a1.Alpha 2-adrenoceptors:more subtypes but fewer functional diferences.Trends pharmcsol Sci, 1994; 15(4): 119-123.
    3 徐世元.α2型肾上腺素与咪唑啉受体激动剂的分子药理学,《国外医学·麻醉学与复苏分册》,2000; 21(3):137-138.
    4 Hayashi M.A1pha2 adrenoeeptor agonists and anaesIlhesia.Br J Anaesth, 1993; 71: 108-1l8.
    1.Smart TG (1997). Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr Opin Neurobiol 7, 358-367.
    2. Hein L & Kobilka BK (1995). Adrenergic receptor signal transduction and regulation. Neuropharmacology 34, 357-366.
    3. Tretter V, Ehya N, Fuchs K et al. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci, 1997;17(8):2728~37
    4. Sieghart W. Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol Rev, 1995;47(2):182~234
    5. Alexander S, Petes JA. GABAA receptor. TiPS, 1997(Suppl):S42~43
    6. Wilke K, Gaul R, Klauk SM et al. A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABAA neurotransmitter receptor. Genomics, 1997;45:1~10
    7. Mckernan RM, Whiting PJ. Which GABAA-receptor subtypes really occur in the brain? Trends in Neuro Sci, 1996;19(4):139~43
    8. Raymond LA, Blackstone CD & Huganir RL (1993). Phosphorylation of aminoacid neurotransmitter receptors in synaptic plasticity. Trends Neurosci 16, 147-153.
    9. Krishek BJ, Xie X, Blackstone C, Huganir RL, Moss SJ & Smart TG (1994). Regulation of GABAA receptor function by protein kinase C phosphorylation. Neuron 12, 1081-1095.
    10. Hinkle DJ, Macdonald RL (2003). β subunit phosphorylation selectively increases fast desensitization and prolongs deactivation of α1β1γ2L and α1β3γ2L GABAA receptor currents. J Neurosci 23, 11698-11710.
    11. Loebrich S, Bahring R, Katsuno T, Tsukita S & Kneussel M (2006). Activated radixin is essential for GABAA receptor alpha 5 subunit anchoring at the actin cytoskeleton. EMBO J 25, 987-999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700