用户名: 密码: 验证码:
玉米大斑病菌PKC基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白激酶C(protein kinase C,PKC)是一种依赖磷脂和钙的蛋白激酶,是Ca2+信号途径中的成员。为了明确蛋白激酶C与分生孢子萌发、附着胞形成及致病性之间的关系,本文利用PKC特异性抑制剂—白屈菜赤碱(chelerythrine)研究了玉米大斑病菌分生孢子萌发、附着胞形成以及对玉米叶片表皮细胞的侵入等主要致病过程;利用Genome Walking技术克隆了PKC基因5’端上游约1.5 kb的DNA序列,采用生物信息学技术分析了该区域含有的主要元件,预测了该基因的功能;进一步优化了玉米大斑病菌原生质体的制备条件,构建了PKC基因同源重组载体和反义诱导表达载体,利用PEG介导系统转化玉米大斑病菌原生质体,获得转化菌株。
     利用PKC特异性抑制剂—白屈菜赤碱(chelerythrine)的研究发现,在含有10μmol/L抑制剂的PDA培养基上,玉米大斑病菌菌丝的生长受到了明显抑制,菌落的颜色没有变化,仍为灰黑色;抑制剂处理的分生孢子能正常萌发,形成的附着胞颜色与形状都没有变化,但是附着胞不能直接穿透玉米叶片的表皮细胞,而是趋向于从气孔侵入叶片内部;抑制剂处理后的孢悬液接种玉米叶片3周后没有呈现出病害症状。从含有10μmol/L抑制剂的PDA培养基上培养的玉米大斑病菌菌丝中提取的HT-毒素在玉米叶片上仍显示出较强的致病活性,表明白屈菜赤碱对玉米大斑病菌产生HT-毒素没有明显影响。
     基于pBS和pSO1质粒分别构建了玉米大斑病菌PKC基因敲除载体和反义表达载体。利用PEG介导的转化系统,转化玉米大斑病菌原生质体获得27个基因敲除阳性转化子。对继代培养后的阳性转化子进行PCR验证,获得12个潮酶素磷酸转移酶基因插入的转化菌株。转化菌株的菌落平坦、菌丝纤细,产孢能力降低。
     获得质量高、数量多的原生质体是遗传转化的关键技术之一。在稳渗剂较适宜的条件下,菌龄、酶种类与浓度配比、酶解温度及酶解时间是影响原生质体形成的最重要的5个因素,所以本文研究了这5个因素对玉米大斑病菌原生质体制备的影响。结果表明,制备玉米大斑病菌原生质体最佳条件为菌龄24 h,酶组合与酶浓度为1%溶壁酶+1%蜗牛酶+1%崩溃酶,酶解温度30℃,酶解时间4 h。在此条件下,可以产生10个左右原生质体(显微镜×400),约6×105个/mL。
     利用Genome Walking技术获得PKC基因5’端上游约1.5 kb的DNA序列。生物信息学分析没有发现类似TATA盒的元件,存在热激转录因子(HSF)结合元件和SP1、AP1等结合元件,推测PKC基因在该菌耐热性、交配型基因表达和寄主信号识别等方面发挥作用。
     以上结果初步明确了玉米大斑病菌PKC基因与病菌分生孢子萌发、附着胞形成、侵入及菌丝生长之间的关系。为进一步研究玉米大斑病菌的致病机理以及植物与病原物分子互作和开发新的植物病害防治方法奠定了基础。
Protein kinase C (PKC) located in the middle of Ca2+ signaling pathways. It is a phospholipid and calcium-dependent protein kinase that might play an important role in the processes of conidium germination, appressorium formation and pathogenicity. The functional analysis of PKC gene in Setosphaeria turcica were done by gene-specific inhibitor analysis, constructing PKC gene knock-out mutants based on the gene homologous combination theory and PEG gene transformation system, 5’upstream analysis of PKC gene and the function prediction.
     It was found by PKC gene-specific inhibitor (chelerythrine) analysis that the color of the colony growing on the PDA containing 10μmol/L inhibitor was still normal, but the mycelial growth was inhibited. There also wasn’t any change in the color and shape of appressorium while treated with inhibitor. After inoculating maize seedlings with the spore suspension containing specific inhibitor, the appressorium formed from germinating spore on the leaf could not penetrate directly through the skin of epidermal cells and only to invade leaf tissue from the stoma. It was found that 10μmol/L inhibitor didn’t significantly affect the activity of HT-toxin and no lesions appeared on the leaf after three weeks inoculation.
     High quality and large quantity of protoplasts was one of the key technologies of genetic transformation. The yield of protoplasts was significantly correlated with the age of hyphae, enzyme system, concentration, temperature and treatment time. The optimum condition for preparing protoplasts was that the conidia cultured for 24 h was digested in enzyme mixture of 1% Lywallzyme, 1% Snailase and 1% Drislase for 4 h in 30℃, and about 10 protoplasts could be produced under above conditions (microscope×400).
     The PKC gene knock-out vector was constructed based on the gene homologous combination theory, then transformed into S. turcica protoplasts and 12 mutants were screened by hygromycin B resistance from 27 transformants. In contrast to the wild strain 01-23, these mutants had smooth colony, slender hyphae and sporulation ability.
     A 1.5kb gene flank region was obtained by Genome Walking. Bioinformatic analysis showed that it had a lot of cis-acting elements corresponding SP1、AP1 and HSF, but no typical TATA box. It was calculated that PKC gene perhaps played an important role in the regulation of mating type gene expression, host signal identification and hot tolerance.
     These results indicated that PKC gene played an important role in the processes of conidium germination, appressorium formation and pathogenicity of S. turcica, Which laid a foundation for investigating pathogenic mechanism of S. turcica, molecular interaction between plant and pathogen, and new methods of disease prevention.
引文
[1]周永力, Tanaka C, Matsus H S,等.玉米大斑病菌(Exserohilum turcicum)原生质体的分离及转化[J].生物工程学报, 2003, 19(3): 364~367.
    [2] Degefu Y. Cloning and characterisation of xylanase genes from phytopathogenic fungi with aspecial reference to Helminthosporium turcicum, the cause of northern leaf blight of maize[D]. Finland: University of Helsinki, 2003.
    [3]董金皋.农业植物病理学[M].北京:中国农业出版社, 2001, 5.
    [4]李洪连,徐敬友.农业植物病理学实验实习指导[M].北京:中国农业出版社, 2001, 12.
    [5]曹志艳,杨胜勇,董金皋.植物病原真菌黑色素与致病性关系的研究进展[J].微生物学通报, 2006, 33(1). 154~158.
    [6] Klaus B, Lengeler R C, Davidson C D, et al. Signal transduction cascades regulating fungal development and virulence[J]. Microbiology Molecular Biology Reviews, 2000, 64(4): 746~785.
    [7]范永山.玉米大斑病菌MAPK基因的克隆和功能分析[D].河北:河北农业大学博士学位论文, 2004.
    [8]谷守琴.调控玉米大斑病菌生长发育和致病性的STK基因的克隆与功能分析[D].河北:河北农业大学博士学位论文, 2007
    [9] Harel A, Bercovich S, Yarden O. Calcineurin is requried for Sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner[J]. Molecular Plant-Microbe Interactions, 2006, 19 (6): 682~693.
    [10] Dickman M B, Yarden O. Serine/threonine protein kinases and phosphatases in filamentous fungi[J]. Fungal Genetics and Biology. 1999, 26: 99~117.
    [11] Warwar V, Dickman M B. Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifolii[J]. Apply of Environmental Microbiology, 1996, 62: 74~79.
    [12]范永山,刘颖超,谷守芹,等.植物病原真菌的MAPK基因及其功能[J].微生物学报, 2004, 44(4): 547~551.
    [13] Xu Jin-Rong. MAP kinases in fungal pathogens[J]. Fungal Genetics and Biology. 2000, 31: 137~152.
    [14] Agrawal G K, Iwahashi H, Rakwal R. Rice MAPKs [J]. Biochemistry Biophysics Research Commun., 2003, 302: 171~180.
    [15] Fu S F, Chou W C, Huang D D, et al. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses[J]. Plant Cell Physiology, 2002, 43: 958~963.
    [16] Alexuander Idnurm, Barbara J Howlett. Pathogenicity genes of phytopathogenic fungi[J]. Molecular Plant Pathology, 2001, 2(4): 241~255.
    [17] Bardwell L. A walk-through of the yeast mating pheromone response pathway [J]. Peptides, 2005, 26: 339~350.
    [18] Lengeler K B, Davidson R C, D’souza C, et al. Signal transduction cascades regulating fungal development and virulence[J]. Microbiology and Molecular Biology Reviews, 2000, 64: 746~785.
    [19] Takano Y, Kikucki T, Kubo Y, et al. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis[J]. Molecular Plant Microbe Interaction, 2000, 13: 374~383.
    [20] Lev S, Sharon A, Hadar R, et al. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: Diverse roles for mitogen-activated protein kinase homologues in foliar pathogens[J]. Proceedings of the National Academy of Sciences USA, 1999, 96: 13542~135471.
    [21] Flora Banuett. Signalling in the Yeasts: An informational cascade with links to the filamentous fungi[J]. Microbiology and Molecular Biology Reviews, 1998, 62(2): 249~274.
    [22] Liu Q P and Xue Q Z. Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa[J]. Plant Physiology and Biochemistry, 2007, 45 (1): 6~14.
    [23] Chang L, Karin M. Mammalian MAP kinase signalling cascades[J]. Nature, 2001, 410: 37~40.
    [24] Xu J R, Hamer J E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea[J]. Genes Development, 1996, 10: 2696~2706.
    [25] Zhao X, Kim Y, Park G, et al. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea [J]. Plant Cell, 2005, 17: 1317~1329.
    [26] Doerig C, Billker O, Pratt D et al. Protein kinases as targets for antimalarial intervention: Kinomics, structure-based design, transmission-blockade, and targeting host cell enzymes[J]. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 2005, 1754 (1): 132~150.
    [27] Wang P, Pan X, Waugh M, et al. Signal transduction cascades regulating fungal development and virulence[J]. Microbiology Molecular Biology Review, 2000, 64: 746~785.
    [28] Choi W, Dean R A. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development [J]. Plant Cell, 1997, 9: 1973~1983.
    [29] Adachi K, Hamer J E. Divergent cAMP signaling pathways regulate grow h and pathogenesis in the rice blast fungus Magnaporthe grisea [J]. Plant Cell, 1998, 10: 1361~1374.
    [30] Lee Y H, Dean R A. cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea [J]. Plant Cell, 1993, 5: 693~700.
    [31] Hyde G. Calcium imaging: a primer for mycologists[J]. Fungal Genetics and Biology, 1998, 24: 14~23.
    [32] Lee M H, Bostock R M. Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola[J]. Phytopathology, 2006, 96: 1072~1080.
    [33] Ahn IP, Suh S C. Calcium restores prepenetration morphogenesis abolished by methylglyoxal-bis-guanyl hydrazone in Cochliobolus miyabeanus infecting rice[J]. Phytopathology, 2007, 97: 331~337.
    [34] Verkhratsky A. Calcium and cell death[J]. Sub-cell Biochemistry, 2007, 45: 465~480.
    [35] Kronstad J, De Maria A, Funnell D, et al. Signaling via cAMP in fungi: interconnections with mitogenactivated protein kinase pathways[J]. Archives of Microbiology, 1998, 170: 395~404.
    [36] Capiod T, Shuba Y, Skryma R, et al. Calcium signaling and cancer cell growth [J]. Sub-cellular Biochemistry, 2007, 45: 405~427.
    [37] Knight H. Calcium signaling during abiotic stress in plants[J]. International Review of Cytology, 2000, 195: 269~324.
    [38]王立安.钙信号传导途径参与稻瘟病菌生长及致病性的调控[D].南京:南京农业大学, 2004.
    [39]李德葆,金庆超,董海涛.稻瘟病菌附着胞发育相关信号传递研究进展[J].浙江大学学报(农业与生命科学版), 2006, 32(3): 257~264.
    [40]刘世英,将宇扬,曹健,等.蛋白激酶C的抑制剂[J].科学通报, 2005, 50(5): 405~415.
    [41] Argetsingr L S, Career S C. Mechanism of signaling by growth hormone receptor[J]. Physiological Reviews, 1996, 76(4): 1089~1108.
    [42] Oeser B. PKC1, encoding a protein kinase C, and FAT1, encoding a fatty acid transporter protein, are neighbors in Cochliobolus heterostrophus[J]. FEMS Microbiology Letters, 1998, 165: 273~280.
    [43] Dickman M B, Ha Y S, Yang Z, et al. A protein kinase from Colletotrichum trifolii is Induced by plant cutin and is required for appressorium formation[J]. Molecular Plant-Microbe Interactions, 2003, 16(5): 411~421.
    [44] Munro C A, Selvaggini S, Bruijn I D. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans[J]. Molecular Microbiology, 2007, 63(5): 1399~1413.
    [45] Paravicini G, Mendoza A, Antonsson B. The Candida albicans PKC1 gene encodes a protein kinase C homolog necessary for cellular integrity but not dimorphism[J]. Yeast, 1996, 12: 741~756.
    [46] Franchi L, Fulci V, Macino G. Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1[J]. Molecular Microbiology, 2005, 56(2): 334~345.
    [47] Loros J. A kinase for light and time[J]. Molecular Microbiology, 2005, 56(2): 299~302.
    [48] Mouchel N A P, Jenkins J R. The identification of a functional interaction between PKC and topoisomerase II [J]. FEBS letters, 2006, 580(1): 51~57.
    [49]安鑫龙,董金皋,韩建民.应用CTAB法提取玉米大斑病菌DNA[J].河北农业大学学报, 2001, 24(1): 38~41.
    [50] Xu W C, Zhou Q, Ashendel C L, et al. Novel protein kinase C inhibitors: synthesis and PKC inhibition ofβ-substituted polythiophene derivatives[J]. Bioorganic&Medicinal Chemistry Letters, 1999, 9: 2279~2282.
    [51] Scapin G. Structural biology in drug design: selective protein kinase inhibitors[J]. DDT, 2002, 7(11): 601~611.
    [52] Way K J, Chou E, King G L. Identification of PKC-isoform-specific biological actions usingpharmacological approaches[J]. Tips, 2000, 21: 181~187.
    [53]裴刚.蛋白激酶和蛋白磷酸酯酶的抑制剂[J].生命科学, 1995, 7(3): 33~39.
    [54]杨桂芝.植物中蛋白激酶C抑制剂的研究[J].生命的化学, 1998, 18(3): 19~21.
    [55]季少平,药立波.蛋白激酶C与细胞周期[J].生命科学, 2001, 13(1): 37~40.
    [56] Herbert J M, Augereau J M, Gleye J, er al. Chelerythrine is a potent and specific inhibitor of protein kinase C[J]. Biochem Biophys Res Commun, 1990, 172(3): 993~999.
    [57]黄丽丽,王兰,康振生,赵杰,张管曲.玉米叶片受新月弯孢菌侵染后的细胞病理学变化[J].植物病理学报, 2004, 34(1): 21~26.
    [58]刘大群,董金皋.植物病理学导论(M).北京:科学出版设, 2007, 262~263.
    [59] Amy J P, Gavin C C, Douglas E B, et al. Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens[J]. BMC Genomics, 2008, 9: 147.
    [60] Zhang S M, Xu X M, Liu M G, et al. A biphasic pattern of gene expression during mouse retina development[J]. BMC Developmental Biology, 2006, 6: 48.
    [61] Daniel J, Kliebenstein. A role for gene duplication and natural variation of gene expression in the evolution of metabolism[J]. Public Library of Science ONE, 2008, 3(3): 1838.
    [62] Majzonb J A, Mighe L J. Knockout mice[J]. New England Journal of Medicine, 1996, 334: 904.
    [63]戴旭明.制备转基因小鼠的胚胎干细胞基因打靶途径研究现状[J].癌变、畸变、突变, 1995, 7: 376.
    [64]黄建生,王昌才,任大明.爱滋病的反义抑制治疗[J].生命的化学, 1995, 15(2): 45~48.
    [65]李明亮,韩一凡,李玲,等. ACC氧化酶cDNA克隆及其对杨树体内乙烯产生的反义抑制.林业科学研究[J]. 1999, 12(3): 223~229.
    [66]刘传银,田颖川,沈全光,等.番茄ACC合成酶cDNA克隆及其对果实成熟的反义抑制[J].生物工程学报, 1998, 14(2): 139~146.
    [67]鞠戎,田颖川,沈全光,等.番茄多聚半乳糖醛酸酶cDNA的克隆及其对番茄中PG表达的反义抑制生物工程学报[J]. 1994, 10(2): 96~102.
    [68] Oda Atsushi, Fujiwara Sumire, Kamada Hiroshi, et al. Antisense suppression of the Arabidopsis PIF3 gene does not affect circadian rhythms but causes early flowering and increases FT expression[J]. FEBS Letters, 2004, 557(1-3): 259~264.
    [69] Liu Y G, Whitter R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragment from PI and YAC clones for chromosome walking[J]. Genomics, 1995, 25: 674~681.
    [70] Siebert P D, Chenchik A, Kellogg D E, et al. An improved method for walking in uncloned genomic DNA[J]. Nucleic Acids Research, 1995, 23: 1087~1088.
    [71] Siebert P D, Chen S, Kellogg D E. The human genome walking DNA walking kit: A new PCR method for walking in uncloned genomic DNA[J]. Clontechniques, 1995, X(II): 1~3.
    [72] Yanf F, Liu R R, Lin J F, et al. Sequence analysis and cloning of gpd promoter from Volvariella valvace[J]. Chinese Journal of Tropical Crops, 2004, 25(4): 72~77.
    [73] Christoph W, Basse Jan W F. A mating type pathway/constant light,high nutrient levels promotersand their regulation in Ustilago maydis and other phytopathogenic fungi[J]. FEMS Microbiological Letter, 2006, 254: 208~216.
    [74] Lev S, Hadar R, Amedeo P, et al. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals[J]. Eukaryotic Cell, 2005, 4: 443~454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700