用户名: 密码: 验证码:
荧光可控的π-共轭有机凝胶体系的构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以合成π-共轭有机凝胶剂为出发点,以构筑荧光可调控的功能性有机凝胶体系为目的,设计并合成了一系列咔唑类和吩噻嗪类有机凝胶剂,并将能量受体引入到具有光捕获能力的咔唑凝胶体系中,构建了新型的光捕获体系,取得的创新性的研究结果如下:
     合成了一系列咔唑衍生物,并对其自组装和光物理性质进行了研究,发现叔丁基在咔唑衍生物的凝胶化过程中起到了十分重要的作用,其大的空间效应可以加大聚集态中咔唑环之间的距离,从而调节分子在有机溶剂中的溶解-沉淀平衡,利于凝胶的形成。该工作为通过调控分子间作用力来设计新型功能软材料提供了新思路。所制备的咔唑类凝胶具有显著的聚集诱导荧光增强性质。
     首次合成了刚性树枝状有机凝胶剂,讨论了树枝代数对其凝胶性质的影响,发现第2代咔唑树突在超声条件下形成稳定的凝胶,并且凝胶纤维能够发射较强的蓝绿色荧光;第1代咔唑树突只能在1,6-己二胺辅助下形成稳定的二元凝胶,得到的凝胶能发射强的蓝色荧光;第3代咔唑树突由于空间结构的特殊性难于自组装,不具备成凝胶能力。
     利用超分子自组装技术构筑了一维光捕获体系,其中,作为天线分子的叔丁基咔唑衍生物可作为脚手架使能量受体-吩噻嗪功能化的吡咯并吡咯二酮衍生物均匀生长在凝胶纤维上,从而将其激发态能量部分传递给受体分子,通过调节激发波长实现了对复合凝胶发光颜色的调控。
     以刚性树枝状咔唑为光捕获天线,以苝二酰亚胺衍生物为能量受体,构筑了具有白光发射能力的复合有机凝胶。该工作为通过调控给受体之间的能量转移效率来构筑微观有序的白光材料提供了新途径。
     合成了D-π-A型吩噻嗪和咔唑衍生物,研究了它们的成凝胶能力和光物理性质。发现含有较长碳链的吩噻嗪甲酰胺衍生物能在超声波诱导下使有机溶剂凝胶化,且在凝胶的形成过程中出现了不同寻常的聚集诱导荧光蓝移的现象,这是TICT激发态在凝胶相中受到抑制的结果。
Recently,π-conjugated organogels have attracted considerable attentions in the supremolecular chemistry, because of their unique self-assembly structures and controllable optoelectronic properties.π-Conjugated organogelators can self-assemble into various dimensional and morphologic superstructures in organic solvents directed by noncovalent interactions such as H-bonding, vander Walls,π-πstacking ect. The supramolecular self-assembly ofπ-conjugated organogelors can attribute many new features beyond the single molecules. Meanwhile,π-conjugated organogelators could be selectively functionalized with the introduction of desired moieties so as to build up target system with various properties, which possess specific applications in light harvesting, energy and charge transfer, and switches.
     Herein, we have designed and synthesized a series of carbazole-based and phenothiazine-based organogelators, which can self-assembled into well-orderedπ-gels with controllable fluorescence emission. In order to mimic the natural light-harvesting system, diaryldiketopyrrolopyrrole and perylene-carboxylic diimides derivative were introduced into the obtained carbazole-based organogels. Some creative results have been obtained, and the main points are outlined below:
     (1) A series of carbazole derivatives were synthesized and their self-assembling as well as photophysical properties were investigated. It was found that the monomeric and dimeric carbazoles containing tert-butyl groups could gelatize some organic solvents, but the ones without tert-butyl groups could not form organogels, indicating that the tert-butyl unit plays a key role in the formation of the organogels. We suggested that the large spatial effect can enlarge the distance between aromatic moieties and weaken theπ-πinteraction between carbazoles, which may balance the solubility and deposition to lead to the formation of the gel. Based on the results of IR, UV-Vis and XRD, the possible molecular packing model was proposed. It is worth noting that the aggregation-induced-emission was detected during the process of gelation, which could be ascribed to a combination of the formation of J-aggregate, enhancement of planarization and the restriction of rotation of single bond in the chromophores. This work supplies a new way to design novel functional soft materials by controlling the intermolecular interaction.
     (2) We firstly synthesized rigid dendritic gelators based on oligocarbazoles, and the influence of the generation of dendron on their gelation ability was investigted. It was found that second generation of carbazole dendron could form gel by ultrasonic stimulus, and the obtained gel can emit strong blue-green light. The first generation of carbazole dendron can only form two-component gel assisted by 1,6-hexamethylenediamine, and the obtained gel can emit strong blue light. The third generation of carbazole dendron can not gelatinize any solvents owing to special spatial conformation.
     (3) We generated well-ordered 1D arrays based on carbazole and diaryldiketopyrrolopyrrole derivatives in order to mimic the natural light-harvesting system, in which carbazole-based organogel was used as a scaffold to make diaryldiketopyrrolopyrrole grow up along the gel fibers. In the composite gel, partial excitation energy transfer from carbazole-based organogelator, the light-harvesting antenna, to the diaryldiketopyrrolopyrrole derivatives, the acceptor, occurred. Notably, the composite gel could emit intense red light or purplish white light by tuning the excitation wavelength. It provided a simple way to fabricate functional supramolecular arrays. Such ordered soft materials with various emitting colors may have potential applications in sensor and photonic devices.
     (4) A white-light-emitting organogel system based on rigid dendritic carbazole-based gelator and diaryldiketopyrrolopyrrole derivatives was fabricated. In the composite gel, partial excitation energy transfer occurred from energy donor of carbazole-based organogelator with bluish green emission, to the diaryldiketopyrrolopyrrole derivatives, the acceptor, with red emission, leading to a white-light-emitting organogel. The energy transfer efficiency could be tuned by adjusting the intermolecular interaction between energy donor and acceptor, which provided a simple way to fabricate white-light-emitting soft material.
     (5) Phenothiazine and carbazole derivatives were synthesized, and their gelation ability and photophysical properties were investigated. It was found that phenothiazine formamide derivative with long carbon chain can gelatinize n-henxane, cyclohexane and enthanol/water by untrasonic stimulus. Notably, compared to the solution, the fluorescence emission of the gel phase bule shifted significantly, which were attributed to the suppression of TICT. Such functional soft material may possess potential applications in sensors.
引文
[1] Lehn, J. M. Supramolecular Chemistry Concepts and Perspectives (VCH Press, New York, 1995).
    [2] Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Solvophobically Driven Folding of Nonbiological Oligomers; Science 1997, 277, 1793.
    [3] Zhang, W.; Moore, J. S. Shape-Persistent Macrocycles: Structures and Synthetic Approaches from Arylene and Ethynylene Building Blocks; Angew. Chem. Int. Ed. 2006, 45, 4416.
    [4] Wasielewski, M. R. Energy, Charge, and Spin Transport in Molecules and Self-Assembled Nanostructures Inspired by Photosynthesis; Journal of Organic Chemistry 2006, 71, 5051.
    [5] Hawker, C. J.; Frechet, J. M. J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules; J. Am. Chem. Soc. 1990, 112, 7638.
    [6] Hawker, C. J.; Frechet, J. M. J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules; J. Chem. Soc. Chem. Commun. 1990, 1010.
    [7] Terech, P.; Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels; Chem. Rev. 1997, 97, 3133.
    [8] Abdallah, D. J.; Weiss R. G. Organogels and low molecular mass organic gelators; Adv. Mater. 2000, 12, 1237.
    [9] Shinkai, S.; Murata, K. Cholesterol-based functional tectons as versatile building-blocks forliquid crystals, organic gels and monolayers; J. Mater. Chem 1998, 8, 485.
    [10] Sangeetha , N. M.; Maitra, U. Supramolecular gels: Functions and uses Chem. Soc. Rev. 2005, 34, 821.
    [11] Jung, J. H.; Kobayashi, H.; Masuda, M.; Shimizu, T.; Shinkai, S. Helical Ribbon Aggregate Composed of a Crown-Appended Cholesterol Derivative Which Acts as an Amphiphilic Gelator of Organic Solvents and as a Template for Chiral Silica Transcription; J. Am. Chem. Soc. 2001, 123, 8785.
    [12] Jung, J. H.; Yoshida, K.; Shimizu, T. Creation of Novel Double-Helical Silica Nanotubes Using Binary Gel System; Langmuir 2002, 18, 8724.
    [13] Becerril, J.; Burguete, M. I.; Escuder, B.; Luis, S. V.; Miravet, J. F.; Querol, M. Minimalist peptidomimetic cyclophanes as strong organogelators; Chem. Commun. 2002, 738.
    [14] Tian, E. T.; Wang, J. X.; Zheng, Y. M.; Song, Y. L.; Jiang, L.; Zhu, D. B. Colorful humidity sensitive photonic crystal hydrogel; J. Mater. Chem. 2008, 18, 1116.
    [15] Zhao, Y. S.; Fu, H. B.; Hu, F. Q.; Peng, A. D.; Yang, W. S.; Yao, J. N. Tunable Emission from Binary Organic One-Dimensional Nanomaterials: An Alternative Approach to White-Light Emission; Adv. Mater. 2008, 20, 79.
    [16] Fan, X.; Sun, J. L.; Wang, F. Z.; Chu, Z. Z.;Wang, P.; Dong, Y. Q.; Hu, R. R.; Tang, B. Z.; Zou, D. C. Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state; Chem. Commun. 2008, 2989.
    [17] Shu, T. M.; Wu, J. C.; Lu, M.; Chen, L. Q.; Yi, T.; Li, F. Y.; Huang, C. H. Tunable red–green–blue fluorescent organogels on the basis of intermolecular energy transfer; J. Mater. Chem. 2008, 18, 886.
    [18] Moon, K. S.; Kim, H. J.; Lee, E.; Lee, M. Self-Assembly of T-Shaped Aromatic Amphiphiles into Stimulus-Responsive Nanofibers; Angew. Chem., Int. Ed. 2007, 46, 6807.
    [19] Matsumoto, S.; Yamaguchi, S.; Ueno, S.; Komatsu, H.; Ikeda, M.; Ishizuka, K.; Iko, Y.; Tabata, K. V.; Aoki, H.; Ito, S.; Noji, H.; Hamachi, I. Photo Gel-Sol/Sol-Gel Transition and Its Patterning of a Supramolecular Hydrogel as Stimuli-Responsive Biomaterials; Chem. Eur. J. 2008, 14, 3977.
    [20] Sugiyasu, K.; Kawano, S.; Fujita, N.; Shinkai, S. Self-Sorting Organogels with p-n Heterojunction Points; Chem. Mater. 2008, 20, 2863.
    [21] Mizrahi, S.; Rizkov, D.; Hayat, N.; Lev, O. A low molecular weight hydrogel which exhibits electroosmotic flow and its use as a bioreactor and for electrochromatography of neutral species; Chem. Commun. 2008, 2914.
    [22] Wang, C.; Zhang, D. Q.; Zhu, D. B. A low-molecular-mass gelator with an electroactive tetrathiafulvalene group: tuning the gel formation by charge-transfer interaction and oxidation; J. Am. Chem. Soc. 2005, 127, 16372.
    [23] Love, C. S.; Chechik, V.; Smith, D. K.; Wilson, K.; Ashworth, I.; Brennan, C. Synthesis of gold nanoparticles within a supramolecular gel-phase network; Chem. Commun. 2005, 1971.
    [24] Ihara, H.; Sakurai,T.; Yamada, T.; Hashimoto, T.; Takafuji, M.; Sagawa, T.; Hachisako, H. Chirality Control of Self-Assembling Organogels from a Lipophilic L-Glutamide Derivative with Metal Chlorides; Langmuir 2002, 18, 7120.
    [25] Zhan, C. L.; Gao, P.; Liu, M. H. Self-assembled helical spherical-nanotubes from an L-glutamic acid based bolaamphiphilic low molecular mass organogelator; Chem. Commun. 2005, 462.
    [26] Srinivasan, S.; Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. Carbon Nanotube Triggered Self-Assembly of Oligo(p-phenylene vinylene)s to Stable Hybrid -Gels; Angew. Chem.,Int. Ed. 2008, 47, 5746.
    [27] Lee, S. J.; Park, C. R.; Chang, J. Y. Chiral Biphenylacetylene Smectic Liquid Crystals; Langmuir 2004, 20, 9513.
    [28] Hoeben, F. J. M.; Jonkhei P.; Meijer, E. W.; Schenning, A. P. H. J. About Supramolecular Assemblies ofπ-Conjugated Systems; Chem. Rev. 2005, 105, 1491.
    [29] George, S. J.; Ajayaghosh, A. Self-Assembled Nanotapes of Oligo(p-phenylene vinylene)s: Sol-Gel-Controlled Optical Properties in Fluorescentπ-Electronic Gels; Chem. Eur. J. 2005, 11, 3217.
    [30] Zhu, G.; Dordick, J. S. Solvent effect on organogel formation by low molecular weight molecules; Chem. Mater. 2006, 18, 5988.
    [31] Sessler, J. S.; Weghorn, S. J. Expended, Contracted & isomeric porphyrins, Pergamon, Perface [M]. 1997.
    [32] Shirakawa, M.; Fujita, N.; Shinkai S. Fullerene-Motivated Organogel Formation in a Porphyrin Derivative Bearing Programmed Hydrogen-Bonding Sites; J. Am. Chem. Soc. 2003, 125, 9902.
    [33] Li, Y.; Wang T.; Liu, M. Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies; Soft Matter, 2007, 3, 1312.
    [34] Sagawa, T.; Fukugawa, S.; Yamada T.; Ihara, H. Self-Assembled Fibrillar Networks through Highly Oriented Aggregates of Porphyrin and Pyrene Substitutedby Dialkyl L-Glutamine in Organic Media; Langmuir, 2002, 18, 7223.
    [35] Holman, M. W.; Yan, P.; Ching, K. C.; Liu, R.C.; Ishak, F. I.; Adams, D. M., A conformational switch of intramolecular electron transfer; Chem. Phys. Lett. 2005, 413, 501.
    [24] Ihara, H.; Sakurai,T.; Yamada, T.; Hashimoto, T.; Takafuji, M.; Sagawa, T.; Hachisako, H. Chirality Control of Self-Assembling Organogels from a Lipophilic L-Glutamide Derivative with Metal Chlorides; Langmuir 2002, 18, 7120.
    [25] Zhan, C. L.; Gao, P.; Liu, M. H. Self-assembled helical spherical-nanotubes from an L-glutamic acid based bolaamphiphilic low molecular mass organogelator; Chem. Commun. 2005, 462.
    [26] Srinivasan, S.; Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. Carbon Nanotube Triggered Self-Assembly of Oligo(p-phenylene vinylene)s to Stable Hybrid -Gels; Angew. Chem.,Int. Ed. 2008, 47, 5746.
    [27] Lee, S. J.; Park, C. R.; Chang, J. Y. Chiral Biphenylacetylene Smectic Liquid Crystals; Langmuir 2004, 20, 9513.
    [28] Hoeben, F. J. M.; Jonkhei P.; Meijer, E. W.; Schenning, A. P. H. J. About Supramolecular Assemblies ofπ-Conjugated Systems; Chem. Rev. 2005, 105, 1491.
    [29] George, S. J.; Ajayaghosh, A. Self-Assembled Nanotapes of Oligo(p-phenylene vinylene)s: Sol-Gel-Controlled Optical Properties in Fluorescentπ-Electronic Gels; Chem. Eur. J. 2005, 11, 3217.
    [30] Zhu, G.; Dordick, J. S. Solvent effect on organogel formation by low molecular weight molecules; Chem. Mater. 2006, 18, 5988.
    [31] Sessler, J. S.; Weghorn, S. J. Expended, Contracted & isomeric porphyrins, Pergamon, Perface [M]. 1997.
    [32] Shirakawa, M.; Fujita, N.; Shinkai S. Fullerene-Motivated Organogel Formation in a Porphyrin Derivative Bearing Programmed Hydrogen-Bonding Sites; J. Am. Chem. Soc. 2003, 125, 9902.
    [33] Li, Y.; Wang T.; Liu, M. Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies; Soft Matter, 2007, 3, 1312.
    [34] Sagawa, T.; Fukugawa, S.; Yamada T.; Ihara, H. Self-Assembled Fibrillar Networks through Highly Oriented Aggregates of Porphyrin and Pyrene Substitutedby Dialkyl L-Glutamine in Organic Media; Langmuir, 2002, 18, 7223.
    [35] Holman, M. W.; Yan, P.; Ching, K. C.; Liu, R.C.; Ishak, F. I.; Adams, D. M., A conformational switch of intramolecular electron transfer; Chem. Phys. Lett. 2005, 413, 501.Derivatives; Langmuir 2010, 26, 2113.
    [48] Nüesch, F.; Moser, J. E.; Shklover, V.; GrNtzel, M. Merocyanine Aggregation in Mesoporous Networks; J. Am. Chem. Soc. 1996, 118, 5420.
    [49] Würthner, F. Yao, S.; Debaerdemaeker, T.; Wortmann, R. Dimerization of Merocyanine Dyes: Structural and Energetic Characterization of Dipolar Dye Aggregates and Implications for Nonlinear Optical Materials; J. Am. Chem. Soc. 2002, 124, 9431.
    [50] Würthner, F.; Wortmann, R.; Meerholz, K. Chromophore Design for Photorefractive Organic Materials; ChemPhysChem 2002, 3, 17.
    [51] Würthner, F.; Yao, S. Dipolar Dye Aggregates: A Problem for Nonlinear Optics, but a Chance for Supramolecular Chemistry; Angew. Chem. Int. Ed. 2000, 39, 1978.
    [52] Würthner, F.; Yao, S. Beginn, U. Highly Ordered Merocyanine Dye Assemblies by Supramolecular Polymerization and Hierarchical Self-Organization; Angew. Chem. Int. Ed. 2003, 42, 3247.
    [53] Katoh, T.; Inagaki, Y.; Okazaki, R. Synthesis and Properties of Bismerocyanines Linked by a 1,8-Naphthylene Skeleton. Novel Solvatochromism Based on Change of Intramolecular Excitonic Coupling Mode; J. Am. Chem. Soc. 1998, 120, 3623.
    [54] Lu, L.; Lachicotte, R. J.; Penner, T. L.; Perlstein, J.; Whitten, D. G. Exciton and Charge-Transfer Interactions in Nonconjugated Merocyanine Dye Dimers: Novel Solvatochromic Behavior for Tethered Bichromophores and Excimers; J. Am. Chem. Soc. 1999, 121, 8146.
    [56] Zeena, S.; Thomas, K. G. Conformational Switching and Exciton Interactions in Hemicyanine-Based Bichromophores; J. Am. Chem. Soc. 2001, 123, 7859.
    [57] Prins, L. J.; Thalacker, C. Würthner, F.; Timmerman, P.; Reinhoudt, D. N.; Chiral exciton coupling of merocyanine dyes within a well defined hydrogen-bonded assembly; Proc. Natl. Acad. Sci. USA 2001, 98, 10042.
    [58] Würthner, F.; Schmidt, J.; Stolte, M.; Wortmann,R. Hydrogen-Bond-Directed Head-to-Tail Orientation of Dipolar Merocyanine Dyes: A Strategy for the Design of Electrooptical Materials; Angew. Chem. Int. Ed. 2006, 45, 3842.
    [59] Yagai, S.; Higashi, M.; Karatsu, T.; Kitamura, A. Tunable interchromophore electronic interaction of a merocyanine dye in hydrogen-bonded supramolecular assemblies scaffolded by bismelamine receptors; Chem. Commun. 2006, 1500.
    [60] Hu, J.; Zhang, D.; Jin, S.; Cheng, S. Z. D.; Harris, F. W. Synthesis and Properties of Planar Liquid-Crystalline Bisphenazines; Chem. Mater. 2004, 16, 4912.
    [61] Lee, D.; McGrath, K.; Jang, K. Nanofibers of asymmetrically substituted bisphenazine through organogelation and their acid sensing properties; Chem. Commun. 2008, 3636.
    [62] Irie, M. Diarylethenes for Memories and Switches; Chem. Rev. 2000, 100, 1685.
    [62] Feringa B. L. ed., Light-driven molecular switches and motors; Molecular Switches, Wiley-VCH, Weinheim, 2001.
    [63] Balzani, V.; Credi, A.; Venturi, M. Molecular Devices and Machines: A Journey into the Nano World, Wiley-VCH, Weinheim, 2003.
    [64] Tian H.; Yang, S. J. Recent progresses on diarylethene based photochromic switches Chem. Soc. Rev. 2004, 33, 85.
    [65] Endtner, J. M.; Effenberger, F.; Hartschuh, A.; Port, H. Optical ON/OFF Switching of Intramolecular Photoinduced Charge Separation in a Donor?Bridge?Acceptor System Containing Dithienylethene; J. Am. Chem. Soc., 2000, 122, 3037.
    [66] Lucas, L. N.; Esch, J.; Feringa, B. L.;Kellogg, R. M. Photocontrolled self-assembly of molecular switches; Chem. Commun. 2001, 759.
    [67] Norsten, T. B.; Branda,N. R. Photoregulation of Fluorescence in a Porphyrinic Dithienylethene Photochrome; J. Am. Chem. Soc., 2001, 123, 1784.
    [68] Tian, H.; Chen, B. Z.; Tu H. Y.; Müllen, K. Novel Bisthienylethene-Based Photochromic Tetraazaporphyrin with Photoregulating Luminescence; Adv. Mater. 2002, 14, 918.
    [69] Wigglesworth, T. J.; Branda, N. R. Ultra-High-Density Photochromic Main-Chain 1,2-Dithienylcyclopentene Polymers Prepared Using Ring-Opening Metathesis Polymerization; Adv. Mater., 2004, 16, 123.
    [70] Bertarelli, C.; Bianco, A.; D’Amore, F.; Gallazzi, M. C.; Zerbi, G. Effect of Substitution on the Change of Refractive Index in Dithienylethenes: An Ellipsometric Study; Adv. Funct. Mater. 2004, 14, 357.
    [71] Higashiguchi, K.; Matsuda, K.; Tanifuji, N.; Irie, M. Chiral Discrimination in Photochromic Helicenes J. Am. Chem. Soc., 2005, 127, 7272.
    [72] Kobayashi, S.; Hamasaki, N.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents; J. Am. Chem. Soc., 2002, 124, 6550.
    [73] Frigoli, M.; Mehl, G. H. Multiple Addressing in a Hybrid Biphotochromic System Angew. Chem. Int. Ed. 2005, 44, 5048.
    [74] Jong, J.; Lucas, L. N.; Kellogg, R. M.; Esch, J., Feringa, B. L. Reversible optical transcription of supramolecular chirality into molecular chirality; Science 2004, 304, 278.
    [75] Jong, J. J. D.; Tiemersma-Wegman, T. D.; Esch, J. H.; Feringa, B. L. Dynamic Chiral Selection and Amplification Using Photoresponsive Organogelators J. Am. Chem. Soc. 2005, 127, 13804.
    [76] Wang, S.; Shen, W.; Feng Y.; Tian, H. A multiple switching bisthienylethene and its photochromic fluorescent organogelator Chem. Commun. 2006, 1497.
    [77] Xiao, S.; Zou, Y.; Yu, M.; Yi, T.; Zhou, Y.; Li F.; Huang, C. A photochromic fluorescent switch in an organogel system with non-destructive readout ability Chem. Commun. 2007, 4758.
    [78] Bryce, M. R. Recent progress on conducting organic charge-transfer salts; Chem. Soc. Rev. 1991, 20, 355.
    [79] Farges, J.; Organic Conductors: Fundamentals and Applications,Marcel Dekker, New York, 1994.
    [80] Sly, J.; KasLk, P.; Gomar-Nadal, E.; Rovira, C.; GMrriz, L.; Thordarson, P.; Amabilino, D. B.; Rowan, A. E.; Nolte, R. J. M. Chiral molecular tapes from novel tetra(thiafulvalene-crown-ether)-substituted phthalocyanine building blocks Chem. Commun. 2005, 1255.
    [81] Akutagawa, T.; Ohta, T.; Hasegawa, T.; Nakamura, T.; Christensen, C. A.; Becher, J.; Supramolecular Chemistry And Self-assembly Special Feature: Formation of oriented molecular nanowires on mica surface; Proc. Natl. Acad. Sci. USA 2002, 99, 5028.
    [82] Akutagawa, T.; Kakiuchi, K.; Hasegawa, T.; Nakamura, T.; Christensen,C. A.; Becher, J. Langmuir?Blodgett Films of Amphiphilic Bis(tetrathiafulvalene) Macrocycles with Four Alkyl Chains; Langmuir 2004, 20, 4187.
    [83] Talham, D. R.; Conducting and Magnetic Langmuir?Blodgett Films Chem. Rev. 2004, 104, 5479.
    [84] Batsanov, A. S.; Bryce, M. R.; Cooke, G.; Dhindsa, A. S.; Heaton, J. N.; Howard, J. A. K.; Moore, A. J.; Petty, M. C. Synthesis of Monofunctionalized Tetrathiafulvalene (TTF) Derivatives by Reactions of Tetrathiafulvalenyllithium with Electrophiles: X-ray Crystal Structures of Four TTF Derivatives BearingAmide, Thioamide, and Thioester Substituents; Chem. Mater.1994, 6, 1419.
    [85] Neilands, O.; Belyakov, S.; Tilika, V.; Edzina, A. Synthesis and X-ray crystal structure of a novel tetrathiafulvalene dimethyl[2,4-dioxo(1H,3H)pyrimido] tetrathiafulvalene, able to form intermolecular hydrogen bonds of nucleic acid base-pair type; J. Chem. Soc. Chem. Commun. 1995, 325.
    [86] Moore, A. J.; Bryce, M. R.; Batsanov, A. S.; Heaton, J. N.; Jehmann, C. W.; Howard, J. A. K.; Robertson, N.; Underhill, A. E.; Perepichka, I. F. (N-Methylthiocarbamoyl)tetrathiafulvalene derivatives and their radical cations: synthetic and X-ray structural studies; J. Mater. Chem. 1998, 8, 1541.
    [87] Heuzn, K.; Fourmigun, M.; Batail, P. The crystal chemistry of amide-functionalized ethylenedithiotetrathiafulvalenes: EDT-TTF-CONRR (R, R = H, Me); J. Mater. Chem. 1999, 9, 2373.
    [88] HeuzN, K.; Fourmigun, M.; Batail, P.; Canadell, E.; Auban-Senzier, P. Directing the Structures and Collective Electronic Properties of Organic Conductors: The Interplay ofπ-Overlap Interactions and Hydrogen Bonds; Chem. Eur. J. 1999, 5, 2971.
    [89] Griffiths, J.; Arola, A. A.; Appleby, G.; Wallis, J. D. Synthesis and reactivity of amino-substituted BEDT-TTF donors as building blocks for bifunctional materials; Tetrahedron Lett. 2004, 45, 2813.
    [90] Brown, R. J.; Camarasa, G.; Griffiths, J.; Day, P.; Wallis, J. D. Stress concentration and effective stiffness of aligned fiber reinforced composite with anisotropic constituents; Tetrahedron Lett. 2004, 45, 5103.
    [100] Baudron, S. A.; Avarvari, N.; Canadell, E.; Auban-Senzier, P.; Batail, P. Structural isomerism in crystals of redox-active secondary ortho-diamides: the role of competing intra- and intermolecular hydrogen bonds in directing crystalline topologies; Chem. Eur. J. 2004, 10, 4498.
    [110] Ono, G.; Izuoka, A.; Sugawara, T.; Sugawara, Y. Structure and physical properties of a hydrogen-bonded self-assembled material composed of a carbamoylmethyl substituted TTF derivative; J. Mater. Chem. 1998, 8, 1703.
    [111] Hanabusa, K.; Yamada, M.; Kimura, M.; Shirai, H. Prominent Gelation and Chiral Aggregation of Alkylamides Derived from trans-1,2-Diaminocyclohexane; Angew. Chem. Int. Ed. Engl. 1996, 35, 1949.
    [112] Wang, C.; Zhang, D.; Zhu, D. A Low-Molecular-Mass Gelator with an Electroactive Tetrathiafulvalene Group: Tuning the Gel Formation byCharge-Transfer Interaction and Oxidation; J. Am. Chem. Soc. 2005, 127, 16372.
    [113] Puigmart, J.; Laukhin, V.; Rovira, C.; Laukhina, E.; Amabilino, D. B. Supramolecular Conducting Nanowires from Organogels; Angew. Chem. Int. Ed. 2007, 46, 238.
    [114] Wang, C.; Zhang, D.; Xiang, J.; Zhu, D. New Organogels Based on an Anthracene Derivative with One Urea Group and Its Photodimer: Fluorescence Enhancement after Gelation; Langmuir 2007, 23, 9195.
    [115] Nakashima, T.; Kimizuka, N. Light-Harvesting Supramolecular Hydrogels Assembled from Short-Legged Cationic L-Glutamate Derivatives and Anionic Fluorophores Adv. Mater. 2002, 14, 1113.
    [116] Guerzo, A..; Olive, A. G. L.; Reichwagen, J.; Hopf, H.; Desvergne, J. Energy Transfer in Self-Assembled [n]-Acene Fibers Involving≥100 Donors Per Acceptor; J. Am. Chem. Soc. 2005, 127, 17984.
    [117] Syamakumari, A.; Schenning, A. P. H. J.; Meijer, E. W. Synthesis, Optical Properties, and Aggregation Behavior of a Triad System Based on Perylene and Oligo(p-phenylene vinylene) Units; Chem. Eur. J. 2002, 8, 3353.
    [118] Yamaguchi, T.; Ishii, N.; Tashiro, K.; Aida, T. Supramolecular Peapods Composed of a Metalloporphyrin Nanotube and Fullerenes; J. Am. Chem. Soc. 2003, 125, 13934.
    [119] Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.;Sakamoto, S.; Yamaguchi, K. A Cyclic Dimer of Metalloporphyrin Forms a Highly Stable Inclusion Complex with C60; J. Am. Chem. Soc. 1999, 121,9477.
    [120] Schenning, A. P. H. J., et al. Towards supramolecular electronics; Synth. Met. 2004,147, 43.
    [121] Tomovic, Z.; Dongen, J.; George, S.; Xu, H.; Pisula, W.; Leclere, P.; Feyter, S.; Meijer, E. W.; Schenning, A.P. H. J. Star-Shaped Oligo(p-phenylenevinylene) Substituted Hexaarylbenzene: Purity, Stability, and Chiral Self-assembly; J. Am. Chem. Soc. 2007, 129,16190.
    [122] Schenning, A. P. H. J.; Peeters, E.; Meijer,E. W. Energy Transfer in Supramolecular Assemblies of Oligo(p-phenylene vinylene)s Terminated Poly(propylene imine) Dendrimers; J. Am. Chem. Soc. 2000, 122, 4489.
    [123] George, S.J. Z.; Smulders, M. M. J.; Greef, T. F. A.; Meijer, E. W.; Schenning, A. P. H. J. Helicity Induction and Amplification in an Oligo(p-phenylenevinylene) Assembly through Hydrogen-Bonded Chiral Acids; Angew. Chem. Int. Ed. 2007,46, 8206.
    [124] Maddux, T.; Li, W.; Yu, L. Stepwise Synthesis of Substituted Oligo(phenylenevinylene) via an Orthogonal Approach; J. Am. Chem. Soc. 1997, 119, 844.
    [125] Gierschner, J.; Cornil, J.;Egelhaaf, H.-J.. Optical Bandgaps ofπ-Conjugated Organic Materials at the Polymer Limit: Experiment and Theory; Adv. Mater. 2007, 19, 173.
    [126] Meier, H.; Stalmach, U.; Kolshorn, H. Effective conjugation length and UV/vis spectra of oligomers; Acta Polym. 1997, 48, 379.
    [127] Meier, H. Conjugated Oligomers with Terminal Donor-Acceptor Substitution; Angew. Chem. Int. Ed. 2005, 44, 2482.
    [128] Strehmel, B.; Sarker, A. M.; Malpert, J. H.; Strehmel, V.; Seifert, H.; Neckers, D. C. Effect of Aromatic Ring Substitution on the Optical Properties, Emission Dynamics, and Solid-State Behavior of Fluorinated Oligophenylenevinylenes; J. Am. Chem. Soc. 1999,121, 1226.
    [129] Schweikart, K. H.; Hanack, M.; Lüer, L.; Oelkrug, D. Synthesis, Absorption and Luminescence of a New Series of Soluble Distyrylbenzenes Featuring Cyano Substituents at the Peripheral Rings; Eur. J. Org. Chem. 2001, 293.
    [130] Li, C. L.; Shieh, S. J.; Lin, S. C.; Liu, R. S. Synthesis and Spectroscopic Properties of Finite Ph2N-Containing Oligo(arylenevinylene) Derivatives That Emit Blue to Red Fluorescence; Org. Lett. 2003, 5, 1131.
    [131] Ajayaghosh, A.; Praveen, V. K.π-Organogels of Self-Assembled p-Phenylenevinylenes: Soft Materials with Distinct Size, Shape, and Functions; Acc. Chem. Res. 2007, 40, 644.
    [132] Ajayaghosh, A.; Praveen,V. K.; Vijayakumar, C. Organogels as scaffolds for excitation energy transfer and light harvesting; Chem. Soc. Rev. 2008, 37, 109.
    [133] Srinivasan, S.; Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. Helicity Induction and Amplification in an Oligo(p-phenylenevinylene) Assembly through Hydrogen-Bonded Chiral Acids; Angew. Chem. Int. Ed. 2007, 46, 8206.
    [134] Ajayaghosh, A.; George, S. J. First Phenylenevinylene Based Organogels: Self-Assembled Nanostructures via Cooperative Hydrogen Bonding andπ-Stacking; J. Am. Chem. Soc. 2001, 123, 5148.
    [135] Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C.; George,S. J. Molecular Wire Encapsulated intoπOrganogels: Efficient Supramolecular Light-Harvesting Antennae with Color-Tunable Emission; Angew. Chem. Int. Ed. 2007, 46, 6260.
    [136] Ajayaghosh, A.; Vijayakumar, C.; Varghese, R.; George, S. J. Cholesterol-Aided Supramolecular Control over Chromophore Packing: Twisted and Coiled Helices with Distinct Optical, Chiroptical, and Morphological Features; Angew. Chem., Int. Ed. 2006, 45, 456.
    [137] Vijayakumar, C.; Praveen, V. K.; Ajayaghosh,A. RGB Emission through Controlled Donor Self-Assembly and Modulation of Excitation Energy Transfer: A Novel Strategy to White-Light-Emitting Organogels; Adv. Mater. 2009, 21, 2059.
    [138] Bao, C. Y.; Lu, R.; Jin, M.; Xue, P. C.;Tan, C. H.; Xu, T. H.; Liu, G. F.; Zhao, Y. Y. Helical Stacking Tuned by Alkoxy Side Chains inπ-Conjugated Triphenylbenzene Discotic Derivatives; Chem. Eur. J. 2006, 12, 3287.
    [139] Simalou, O.; Zhao, X.; Lu, R.; Xue, P.; Yang, X.; Zhang, X. Strategy to Control the Chromism and Fluorescence Emission of a Perylene Dye in Composite Organogel Phases Langmuir 2009, 25, 11255.
    [140] Sugiyasu, K.; Fujita, N.; Shinkai, S. Visible-Light-Harvesting Organogel Composed of Cholesterol-Based Perylene Derivatives; Angew. Chem., Int. Ed. 2004, 43, 1229.
    [141] Sugiyasu, K.; Kawano, S.; Fujita,N.; Shinkai, S. Self-Sorting Organogels with p?n Heterojunction Points; Chem. Mater. 2008, 20, 2863.
    [142] Wang, Y.; Zhan, C.; Fu, H.; Li, X.; Sheng, X.; Zhao, Y.; Xiao, D.; Ma, Y.; Ma, J.; Yao,J. Switch from Intra- to Intermolecular H-Bonds by Ultrasound: Induced Gelation and Distinct Nanoscale Morphologies; Langmuir 2008, 24, 7635.
    [143] Abbel, R.; Weegen,R.; Pisula, W.; Surin, M.; Roberto, P.; Meijer, E. W.; Schenning, A. P. H. J. Multicolour Self-Assembled Fluorene Co-Oligomers: From Molecules to the Solid State via White-Light-Emitting Organogels; Chem. Eur. J. 2009, 38, 9737.
    [144] Ji, Y.; Kuang, G. C.; Jia, X. R.; Chen, E. Q.; Wang, B. B.; Li, W. S.; Wei, Y.; Jiang, L. Photoreversible dendritic organogel; Chem.Commun. 2007, 4233.
    [145] Chen, P.; Lu, R.; Xue, P.; Xu, T.; Chen, G.; Zhao, Y. Emission Enhancement and Chromism in a Salen-Based Gel System; Langmuir 2009, 25, 8395.
    [146] Ding, J.; Gao, J.; Cheng, Y.; Xie, Z.; Wang, L.; Ma, D.; Jing, X.; Wang, F.Highly Efficient Green-Emitting Phosphorescent Iridium Dendrimers Based on Carbazole Dendrons; Adv. Funct. Mater. 2006, 16, 575.
    [147] McClenagham, N. D.; Passalacqua, R.; Loisean, F.; Campagna, S.; Verheyde, B.; Hameurlaine, A.; Dehaeu, W. Ruthenium(II) Dendrimers Containing arbazole-Based Chromophores as Branches; J. Am. Chem. Soc. 2003, 125, 5356.
    [148] Su, L. H.; Bao, C. Y.; Lu, R.; Chen, Y. L.; Xu, T. H.; Song, D. P.; Tan, C. H.; Shi, T. S.; Zhao, Y. Y. Synthesis and self-assembly of dichalcone substituted carbazole-based low-molecular mass organogel; Org. Biomol. Chem. 2006, 4, 259.
    [149] Yabuuchi, K.; Tochigi, Y.; Mizoshita, N.; Hanabusa,K.; Kato, T. Self-assembly of carbazole-containing gelators: alignment of the chromophore in fibrous aggregates; Tetrahedron 2007, 63, 7358.
    [150] Moon, K.; Kim, H.; Lee, E.; Lee, M. Self-Assembly of T-Shaped Aromatic Amphiphiles into Stimulus-Responsive Nanofibers; Angew. Chem. Int. Ed. 2007, 46, 6807.
    [151] An, B. K.; Lee, D. S.; Lee, J. S.; Park, Y. S.; Song, H. S.; Park, S. Y. Strongly Fluorescent Organogel System Comprising Fibrillar Self-Assembly of a Trifluoromethyl-Based Cyanostilbene Derivative; J. Am. Chem. Soc. 2004, 126, 10232.
    [152] Ishi-i, T.; Hirayama, T.; Murakami,K. I.; Tashiro, H.; Thiemann, T.; Kubo, K.; Mori, A.; Yamasaki, S.; Akao, T.; Tsuboyama, A.; Mukaide, T.; Ueno, K.; Mataka, S. Combination of an Aromatic Core and Aromatic Side Chains Which Constitutes Discotic Liquid Crystal and Organogel Supramolecular Assemblies ; Langmuir, 2005, 21, 1261.
    [1] Shirakawa, M.; Fujita, N.; Tani, T.; Kaneko, K.; Ojima, M.; Fujii, A.; Ozaki, M.; Shinkai, S. Organogels of 8-quinolinol/metal(II)-chelate derivatives that show electron- and light-emitting properties; Chem. Eur. J. 2007, 13, 4155.
    [2] Love, C. S.; Chechik, V.; Smith, D. K.; Wilson, K.; Ashworth, I.; Brennan, C. Synthesis of gold nanoparticles within a supramolecular gel-phase network; Chem. Commun. 2005, 1971.
    [3] Halfkamp, R. J. H.; Kokke, P. A.; Danke, I. M. Organogel formation and molecular imprinting by functionalized gluconamides and their metal complexes; Chem. Commun. 1997, 545.
    [4] Terech, P.; Weiss, R. G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels; Chem. Rev. 1997, 97, 3133.
    [5] George, S. J.; Ajayaghosh, A. Self-Assembled Nanotapes of Oligo(p-phenylene vinylene)s: Sol-Gel-Controlled Optical Properties in Fluorescent-Electronic Gels; Chem. Eur. J. 2005, 11, 3217.
    [6] An, B. K.; Lee, D. S.; Lee, J. S.; Park, Y. S.; Song, H. S.; Park, S. Y. Strongly Fluorescent Organogel System Comprising Fibrillar Self-Assembly of a Trifluoromethyl-Based Cyanostilbene Derivative; J. Am. Chem. Soc. 2004, 126, 10232.
    [7] Ishi-i, T.; Hirayama, T.; Murakami, K. I.; Tashiro, H.; Thiemann, T.; Kubo, K.; Mori, A.; Yamasaki, S.; Akao, T.; Tsuboyama, A.; Mukaide, T.; Ueno, K.; Mataka, S. Combination of an Aromatic Core and Aromatic Side Chains Which Constitutes Discotic Liquid Crystal and Organogel Supramolecular Assemblies; Langmuir, 2005, 21, 1261.
    [9] Xu, T. H.; Lu, R.; Liu, X. L.; Zheng, X. Q.; Qiu, X. P.; Zhao, Y. Y. Phosphorus(V) Porphyrins with Axial Carbazole-Based Dendritic Substituents; Org. Lett. 2007, 9, 797.
    [10] Balakrishnan,K.; Datar, A.; Zhang, W.; Yang, X. M.; Naddo, T.; Huang, J. L.; Zuo, J. M.; Yen, M.; Moore, J. S.; Zang, L. Nanofibril Self-Assembly of an Arylene Ethynylene Macrocycle; J. Am. Chem. Soc. 2006, 128, 6576.
    [11] Su,L. H.; Bao, C. Y.; Lu, R.; Chen, Y. L.; Xu, T. H.; Song, D. P.; Tan, C. H.; Shi, T. S.; Zhao, Y. Y. Synthesis and self-assembly of dichalcone substituted carbazole-based low-molecular mass organogel; Org. Biomol. Chem. 2006, 4,2591.
    [12] Hardy, J. G.; Hirst, A. R.; Smith, D. K.; Brennan ,C.; Ashworth, I. Controlling the materials properties and nanostructure of a single-component dendritic gel by adding a second component; Chem. Commun. 2005, 385.
    [13] Ryu, S. Y.; Kim, S.; Seo, J.; Kim, Y. W.; Kwon, O. H.; Jang, D. J.; Park, S. Y. Novel solvent properties of choline chloride/urea mixtures; Chem. Commun. 2003, 70.
    [14] Turro,N. J. Modern Molecular Photochemistry, University Science Books, California, USA, 1991.
    [15] Jung, J. H.; John, G.; Yoshida, K.; Shimizu, T. Self-Assembling Structures of Long-Chain Phenyl Glucoside Influenced by the Introduction of Double Bonds; J. Am. Chem. Soc. 2002, 124, 10674.
    [16] Li, S.; He, L.; Xiong, F.; Li Y.; Yang, G. Enhanced Fluorescent Emission of Organic Nanoparticles of an Intramolecular Proton Transfer Compound and Spontaneous Formation of One-Dimensional Nanostructures; J. Phys. Chem. B, 2004, 108, 10887.
    [17] Luo,J.; Xie, Z.; Lam, J. W. Y.; Cheng, L;. Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu,Y.; Zhu, D.; Tang, B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole; Chem. Commun. 2001, 1740.
    [1] Fréchet, J. M. J. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy; Science 1994, 263, 1710.
    [2] Tomalia, D. A.; Naylor, A. M.; Goddard III, W. A. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter; Angew. Chem. Int. Ed. 1990, 29, 138.
    [3] Claessens, C. G.; Gonzalez-Rodriguez, D.; Torres, T. Subphthalocyanines: Singular Nonplanar Aromatic Compounds Synthesis, Reactivity, and Physical Properties; Chem. Rev. 2002, 102, 835.
    [4] Newkome, G. R.; Baker, G. R.; Arai, S.; Saunders, M. J.; Russo, P.; Gupta, V. K.; Yao, Z. ; Miller, J. E.; Bouilion, K. Two-directional cascade molecules: synthesis and characterization of [9]-n-[9] arborols; J. Chem. Soc. Chem. Commun. 1986, 752.
    [5] Newkome, G. R.; Baker, G. R.; Arai, S.; Saunders, M. J.; Russo, P. S.; Theriot, K. J.; Moorefield, C. N.; Rogers, L. E.; Miller, J. E. Cascade molecules. Part 6. Synthesis and characterization of two-directional cascade molecules and formation of aqueous gels; J. Am. Chem. Soc. 1990, 112, 8458.
    [6] Kuang, G. H.; Ji, Y.; Jia, X. R.; Chen, E. Q.; Gao, M.; J. Yeh, M.; Wei, Y. Supramolecular Self-Assembly of Dimeric Dendrons with Different Aliphatic Spacers; Chem. Mater. 2009, 21, 456.
    [7] Smith, D. K. Dendritic supermolecules-towards controllable nanomaterials. Chem. Commun. 2006, 34.
    [8] Kim, C.; Kim, K. T.; Chang, Y. Supramolecular Assembly of Amide Dendrons; J. Am. Chem. Soc. 2001, 123, 5586.
    [9] Jang, W. D.; Dong, D. L.; Aida, T. Dendritic Physical Gel: Hierarchical Self-Organization of a Peptide-Core Dendrimer to Form a Micrometer-Scale Fibrous Assembly; J. Am. Chem. Soc. 2000, 122, 3232.
    [10] Hardy, J. G.; Hirst, A. R.; Smith, D. K.; Brennan, C.; Ashworth, I. Controlling the materials properties and nanostructure of a single-component dendritic gel by adding a second component; Chem. Commun. 2005, 385.
    [11] Bosman, A. W.; Janssen, H. M.; Meijer, E. W. About Dendrimers: Structure,Physical Properties, and Applications; Chem. Rev. 1999, 99, 1665.
    [12] Xu, T. H.; Lu, R.; Liu, X. L.; Zheng, X. Q.; Qiu, X. P.; Zhao, Y. Y. Phosphorus(V) Porphyrins with Axial Carbazole-Based Dendritic Substituents; Org. Lett. 2007, 9, 797.
    [13] Bao, C. Y.; Lu, R.; Jin, M.; Xue, P. C.; Tan, C. H.; Xu, T. H.; Liu, G. F.; Zhao, Y. Y. Helical Stacking Tuned by Alkoxy Side Chains inπ-Conjugated Triphenylbenzene Discotic Derivatives; Chem. Eur. J. 2006, 12, 3287.
    [14] George, M.; Weiss, R. G. Chemically Reversible Organogels: Aliphatic Amines as“Latent”Gelators with Carbon Dioxide; J. Am. Chem. Soc. 2001, 123, 10393.
    [15] Luo, X. Z.; Xiao, W.; Li, Z. F.; Wang, Q.; Zhong, J. L. Supramolecular organogels formed by monochain derivatives of succinic acid; J. Colloid Interface Sci. 2009, 329, 372.
    [16] Sahoo, P.; Adarsh, N. N.; Chacko, G. E.; Raghavan, S. R.; Puranik, V. G.; Dastidar, P. Combinatorial Library of Primaryalkylammonium Dicarboxylate Gelators: A Supramolecular Synthon Approach; Langmuir, 2009, 25, 8742.
    [17] Xue, P. C. ; Lu, R.; Li, D. M.; Jin, M.; Bao, C. Y.; Zhao, Y. Y.; Wang, Z. M. Rearrangement of the Aggregation of the Gelator during Sol?Gel Transcription of a Dimeric Cholesterol-Based Viologen Derivative into Fibrous Silica; Chem. Mater. 2004, 16, 3702.
    [1] Merrigan, J. A. Prospects for Solar Energy Conversion by Photovoltaics, MIT Press, Cambridge, 1975.
    [2] Kühlbrandt, W.; Wang, D. N.; Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography; Nature 1994, 367, 614.
    [3] Zhao, Y. S.; Fu, H. B.; Hu, F. Q.; Peng, A. D.; Yang, W. S.; Yao, J. N. Tunable Emission from Binary Organic One-Dimensional Nanomaterials: An Alternative Approach to White-Light Emission; Adv. Mater. 2008, 20, 79.
    [4] Terech, P.; Weiss, R. G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels; Chem; Rev. 1997, 97, 3133.
    [5] Moon, K-S.; Kim, H-J.; Lee, E.; Lee, M. Self-Assembly of T-Shaped Aromatic Amphiphiles into Stimulus-Responsive Nanofibers; Angew. Chem. Int. Ed. 2007, 46, 6807.
    [6] Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C.; George, S. J. Molecular Wire Encapsulated into Organogels: Efficient Supramolecular Light-Harvesting Antennae with Color-Tunable Emission; Angew. Chem. Int. Ed. 2007, 46, 6260.
    [7] Xu, T. H.; Lu, R.; Liu, X. L.; Chen, P.; Qiu, X. P.; Zhao, Y. Y. Synthesis and Characterization of Subporphyrins with Dendritic Carbazole Arms; Eur. J. Org. Chem. 2008, 6, 1065.
    [8] Song, B.; Wang, Z. Q.; Chen, S. L.; Zhang, X.; Fu, Y.; Smet, M.; Dehaen, W. The Introduction ofπ-πStacking Moieties for Fabricating Stable Micellar Structure: Formation and Dynamics of Disklike Micelles; Angew. Chem. Int. Ed. 2005, 44, 4731.
    [9] Danilevicius, A.; Ostrauskaite, J.; Grazulevicius, J. V.; Gaidelis, V.; Jankauskas, V.; Tokarski, Z. Photoconductive glass-forming phenothiazine-based hydrazones; J. Photochem. Photobio A: Chem. 2004, 163, 523.
    [10] Jung, J. H.; John, G.; Yoshida, K.; Shimizu, T. Self-Assembling Structures of Long-Chain Phenyl Glucoside Influenced by the Introduction of Double Bonds; J. Am. Chem. Soc. 2002, 124, 10674.
    [11] Hoeben, F. J. M.; Herz, L. M.; Daniel, C.; Jonkheijm, P.; Schenning, A. P. H. J.; Silva, C.; Meskers, S. C. J.; Beljonne, D.; Phillips, R. T.; Friend, R. H.; Meijer, E.W. Efficient Energy Transfer in Mixed Columnar Stacks of Hydrogen-Bonded Oligo(p-phenylene vinylene)s in Solution; Angew. Chem. Int. Ed. 2004, 43, 1976.
    [1] Kido,J.; Kimura, M.; Nagai, K. Study on Optoelectronic Performance of Highly Bright Red Doping Organic Light Emitting Devices; Science 1995, 267, 1332.
    [2] D’Andrade, B. W.; Forrest, S. R. White Organic Light-Emitting Devices for Solid- State Lighting; Adv. Mater. 2004, 16, 1585.
    [3] Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R. Management of singlet and triplet excitons for efficient white organic light-emitting devices; Nature 2006,440, 908.
    [4] Ego, C.; Marsitzky, D.; Becker, S.; Zhang, J.; Grimsdale, A. C.; Müllen,K.; MacKenzie, J. D.; Silva,C. Friend,; R. H.Attaching Perylene Dyes to Polyfluorene: Three Simple, Efficient Methods for Facile Color Tuning of Light-Emitting Polymers; J. Am. Chem. Soc. 2003, 125, 437.
    [5] Gong, X.; Wang, S.; Moses, D.; Bazan, G. C.; Heeger, A. J. Multilayer Polymer Light-Emitting Diodes: White-Light Emission with High Efficiency; Adv. Mater. 2005, 17,2053.
    [6] Tu, G.; Mei, C.; Zhou, Q.; Cheng, Y.; Geng, Y.; Wang, L.; Ma, D.; Jing,X., Wang, F. Multilayer Polymer Light-Emitting Diodes: White-Light Emission with High Efficiency; Adv. Funct. Mater. 2006, 1, 101.
    [7] Ajayaghosh, A.; Praveen, V.K.; Vijayakumar, C.; George,S. J.Molecular Wire Encapsulated intoπOrganogels: Efficient Supramolecular Light-Harvesting Antennae with Color-Tunable Emission; Angew. Chem. Int. Ed. 2007, 46, 6260.
    [8] Vijayakumar, C.; Praveen, V.K.; Ajayaghosh, A.RGB Emission through Controlled Donor Self-Assembly and Modulation of Excitation Energy Transfer: A Novel Strategy to White-Light-Emitting Organogels; Adv. Mater. 2009, 21, 2059.
    [9] B?hm, A.; Arms, H.; Henning, G.; Blaschka, P. (BASF AG), Ger. Pat. Appl. DE 19547209 A1, 1997 (Chem. Abstr., 1997, 127, 96569g).
    [10] Peng, A.; Xiao, D.; Ma, Y.; Yang, W.; Yao, J. Tunable Emission from Doped 1,3,5-Triphenyl-2-pyrazoline Organic Nanoparticles; Adv. Mater. 2005, 17, 2070.
    [11] Adhikari, R. M.; Duan, L.; Hou, L. D.; Qiu, Y.; Neckers, D. C.; Shah,B. K. Ethynylphenyl-Linked Carbazoles as a Single-Emitting Component for White Organic Light-Emitting Diodes; Chem. Mater. 2009, 21, 4638.
    [12] Liu, Y.; Nishiura, M.; Wang, Y.; Hou, Z.π-Conjugated Aromatic Enynes as a Single-Emitting Component for White Electroluminescence; J. Am. Chem. Soc.2006, 128, 5592.
    [13] Chuen, C. H.; Tao, Y. T. Bright white small molecular organic light-emitting devices based on a red-emitting guest–host layer and blue-emitting 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl; Appl. Phys. Lett. 2002, 81, 4499.
    [14] D’Andrade, B. W.; Forrest, S. R.White Organic Light-Emitting Devices for Solid-State Lighting; Adv. Mater. 2004, 16, 1585.
    [15] Yeh, S.; Chen, H.; Wu, M.; Chan, L.; Yeh, H.; Chen, C.; Lee, J.All non-dopant red–green–blue composing white organic light-emitting diodes; Org. Electron. 2006, 7, 137.
    [16] Abbel, R.; Grenier, C.; Pouderoijen, M. J.; Stouwdam, J. W.; Leclere, P. E. L. G.; Sijbesma, R. P.; Meijer, E. W.; Schenning, A. P. H. J. White-Light Emitting Hydrogen-Bonded Supramolecular Copolymers Based onπ-Conjugated Oligomers; J. Am. Chem. Soc. 2009, 131, 833.
    [17] Qi, X.; Slootsky, M.; Forrest, S. Stacked white organic light emitting devices consisting of separate red, green and blue subelements; Appl. Phys. Lett. 2008, 93, 19306.
    [18] Yang, X.; Lu, R.; Xue, P.; Li, B.; Xu, D.; Xu, T.; Zhao, Y. Carbazole-Based Organogel as a Scaffold To Construct Energy Transfer Arrays with Controllable Fluorescence Emission; Langmuir 2008, 24, 13730.
    [19] Danilevicius, A.; Ostrauskaite, J.; Grazulevicius, J. V.; Gaidelis, V.; Jankauskas, V.; Tokarski, Z. Photoconductive Glass-Forming Phenothiazine-Based Hydrazones; J. Photochem. Photobio A: Chem. 2004, 163, 523.
    [1] Kawano, S. I.; Fujita, N.; Shinkai, S. A. Coordination Gelator That Shows a Reversible Chromatic Change and Sol-Gel Phase-Transition Behavior upon Oxidative/Reductive Stimuli; J. Am. Chem. Soc. 2004, 126,8592.
    [2] Schenning, A. P. H. J.; Herrikhuyzen, J. V.; Jonkheijm, P.; Chen, Z. J.; Würthner, F.; Meijer, E. W. Photoinduced Electron Transfer in Hydrogen-Bonded Oligo(p-phenylene vinylene)?Perylene Bisimide Chiral Assemblies; J. Am. Chem. Soc. 2002, 124, 10252.
    [3] Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures; Chem. Rev. 2003, 103, 3899.
    [4] Morimoto, A.; Biczók, L.; Yatsuhashi, T.; Shimada, T.; Baba, S.; Tachibana, H.; Tryk, D. A.; Inoue, H. Radiationless Deactivation Process of 1-Dimethylamino-9-fluorenone Induced by Conformational Relaxation in the Excited State: A New Model Molecule for the TICT Process; J. Phys. Chem. A, 2002, 106, 10089.
    [5] Iwashita, Y.; Sugiyasu, K.; Ikeda, M.; Fujita, N.; Shinkai, S. Spontaneous Colorimetric Sensing of the Positional Isomers of Dihydroxynaphthalene in a 1D Organogel Matrix; Chem. Lett. 2004, 33, 1124.
    [6] Qiu, X. P.; Lu, R.; Zhou, H. P.; Zhang, X. F.; Xu, T. H.; Liu, X. L.; Zhao, Y. Y. Synthesis of linear monodisperse vinylene-linked phenothiazine oligomers; Tetrahedron Lett. 2007, 48, 7582.
    [7] Zhang, X. H.; Choi, S. H.; Choi, D. H.; Ahn, K. H. A new facile synthetic method for the construction of 1,3-oxathiolan-2-ylidenes; Tetrahedron lett. 2005, 46, 5273.
    [8] George, S. J.; Ajayaghosh, A. Self-Assembled Nanotapes of Oligo(p-phenylene vinylene)s: Sol-Gel-Controlled Optical Properties in Fluorescentπ-Electronic Gels; Chem. Eur. J. 2005, 11, 3217.
    [9] Ryu, S.Y.; Kim, S.; Seo, J.; Kim, Y.W.; Kwon, O. H.; Jang, D.J.; Park, S.Y. Strong fluorescence emission induced by supramolecular assembly and gelation: luminescent organogel from nonemissive oxadiazole-based benzene-1,3,5-tricarboxamide gelator; Chem. Commun. 2004, 70.
    [10] Jung, J. H.; John, G.; Yoshida, K.; Shimizu, T. Self-Assembling Structures of Long-Chain Phenyl Glucoside Influenced by the Introduction of Double Bonds; J. Am. Chem. Soc. 2002, 124, 10674.
    [11] Loiseau, F.; Campagna, S.; Hameurlaine, A.; Dehaen, W. Dendrimers Made of Porphyrin Cores and Carbazole Chromophores as Peripheral Units. Absorption Spectra, Luminescence Properties, and Oxidation Behavior; J. Am. Chem. Soc. 2005, 127, 11352.
    [12] Yang, J. S.; Liau, K. L.; Li, C. Y.; Chen, M. Y. Meta Conjugation Effect on the Torsional Motion of Aminostilbenes in the Photoinduced Intramolecular Charge-Transfer State; J. Am. Chem. Soc. 2007, 129, 13183.
    [13] Zhu, L. N.; Yang, C. L.; Qin, J. G. An aggregation-induced blue shift of emission and the self-assembly of nanoparticles from a novel amphiphilic oligofluorene; Chem. Commun. 2008, 6303.
    [14] Dias, F. B.; Pollock, S.; Hedley, G.; P?lsson, L. O.; Monkman, A. Intramolecular Charge Transfer Assisted by Conformational Changes in the Excited State of Fluorene-dibenzothiophene-S,S-dioxide Co-oligomers; J. Phys. Chem. B 2006, 110, 19329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700