用户名: 密码: 验证码:
热应激对巴马香猪PBMC TLRs mRNA及TLRs介导的炎症因子表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨热应激诱发动物免疫抑制的可能机理,本研究以巴马香猪为试验材料,应用实时荧光定量PCR、ELISA、放射免疫和细胞培养等技术,系统分析了:(1)巴马香猪TLR2、TLR4基因和蛋白的分子特征;(2)热应激条件下体内和体外PBMC内参基因的表达稳定性;(3)热应激发生不同时段PBMC TLR2、TLR4 mRNA、血浆皮质醇和IL-2、IL-8表达水平;(4)原代培养的PBMC在热打击后不同时段TLR2、TLR4及其选择性剪接体mRNA和IL-12、IFN-γ表达水平的变化。研究结果如下:
     (1)巴马香猪TLR2基因开放阅读框长2358 bp,编码785个氨基酸,该蛋白等电点为7.52,分子量为89.48 kD;与普通猪比对发现巴马香猪TLR2基因有15个碱基发生突变;与小鼠、狗、鸡、牛、羊和人的同源性分别为73.4%、82.4%、59.5%、85.3%、84.6%和82.4%;TLR2膜外区蛋白为背侧多个α螺旋和内侧多个β折叠平行交替排列构成一个弯曲状螺旋结构;N末端存在信号肽,且可能在21~22位氨基酸处存在裂解位点;胞外区有4个明显的LRR,分别位于第76~99、360~385、413~432和457~476位氨基酸区;膜外区含6个N连接的糖基化位点。
     (2)巴马香猪TLR4基因开放阅读框长2526 bp,编码841个氨基酸,该蛋白等电点为6.58,分子量为96.4 kD;与普通猪比对发现巴马香猪TLR4基因有5个碱基发生突变;与小鼠、狗、鸡、牛、羊和人的同源性分别为71.9%、81.5%、54.2 %、86.4 %、85.5%和81.9%;TLR4膜外区蛋白为背侧多个α螺旋和内侧多个β折叠平行交替排列构成一个弯曲状螺旋结构;N末端存在信号肽,且可能在23~24位氨基酸处存在裂解位点;胞外区有13个明显的LRR,分别位于第53~74,77~100,101~124,149~173,174~192,201~225,372~393,398~429,446~469,470~494,495~518,519~541,543~566位氨基酸区;膜外区含8个N连接的糖基化位点。
     (3)通过RT-PCR验证了TLR4-ASV mRNA的存在。并对其可能编码的蛋白生物信息学分析,结果发现:可能的TLR4-ASV蛋白是一种截短的蛋白质,不存在信号肽结构,不属于非经典分泌蛋白,比正常TLR4蛋白少了6个LRR,存在跨膜结构,胞外结构明显缩短。
     (4)在热应激条件下,GeNorm和NormFinder分析得出的体内PBMC中6种常用的内参基因的稳定性由高到底依次为:ACTB/RPL> B2M >TBP > 18s RNA > GAPDH和B2M+TBP > B2M > TBP > RPL> ACTB> 18s RNA > GAPDH;体外培养的PBMC中5种常用的内参基因的稳定性由高到底依次为:TBP/B2M> ACTB> RPL> GAPDH和TBP+ACTB> ACTB> TBP> RPL> B2M> GAPDH。
     (5)在体内模型中,对照组巴马香猪PBMC TLR2 mRNA随应激时间延长,总体变化趋势不大,而应激组PBMC TLR2 mRNA水平有先上升后下降的趋势。相同时间点比较发现,除第一天外,应激组TLR2 mRNA水平明显升高(p<0.05)。而应激组TLR4-All mRNA水平在第1、7、14和21天均极显著高于对照组(p<0.01)。对照组血浆皮质醇浓度总体变化不大,而应激组皮质醇浓度随时间延长有上升的趋势。在热应激第7、14和21天应激组皮质醇浓度显著高于对照组(P<0.05)。对照组血浆IL-2水平呈先上升后下降的趋势,总体上变化并不大。而应激组IL-2水平随时间延长有上升趋势。在热应激的第1天、第7天应激组IL-2水平显著低于对照组(P<0.05)。IL-8无论在应激组或对照组都有下降趋势,但同一时间点两者差异不显著(P>0.05)。
     (6)在体外模型中,对照组巴马香猪PBMC TLR2 mRNA水平总体变化不大,而热应激组PBMC TLR2 mRNA水平有先上升后下降的趋势。在应激后恢复的第3小时,应激组TLR2 mRNA水平显著提高(p<0.05)且达到峰值。在第6、9小时应激组TLR2 mRNA水平有下降趋势。对照组TLR4-All mRNA水平变化不大,而热应激组TLR4-All mRNA水平有先上升后下降的趋势。且在热应激后恢复的第3和第6小时显著提高(p<0.05),第6小时达到高峰。对照组TLR4-ASV mRNA水平总体趋势变化不大,热应激组TLR4-ASV mRNA水平呈现先上升后下降的趋势。在应激后恢复的第3小时应激组TLR4-ASV mRNA水平极显著提高(p<0.001),且在第6和第9小时均显著高于对照组(p<0.05)。对照组血浆IFN-γ水平随着应激时间的延长有降低的趋势,而热应激组IFN-γ水平有先抑制后恢复的趋势。在热应激后恢复的第1小时热应激组IFN-γ水平显著下降(p<0.05),之后逐渐恢复,到第3、6、9小时与对照组相比,差异均不显著(p>0.05)。对照组血浆IL-12水平总体趋势变化不大,热应激组血浆IL-12水平呈现先上升后下降的趋势。在热应激后恢复的第1小时开始应激组血浆IL-12水平开始上升,到第6小时达到高峰且显著高于对照组(p<0.05),之后开始下降,到第9小时与对照组差异不显著(p>0.05)。
     结论:(1)成功克隆了巴马香猪PBMC TLR2、TLR4以及TLR4-ASV的mRNA。
     (2)B2M/TBP和ACTB分别是巴马香猪PBMC体内热应激模型和体外热应激模型中最适合的内参基因。
     (3)热应激上调了巴马香猪PBMC TLR2 mRNA转录水平,上调了TLR4 mRNA、血浆皮质醇和IL-2表达水平,对IL-8没有明显影响。
     (4)热应激能刺激体外培养的巴马香猪PBMC TLR2、TLR4、TLR4-ASV mRNA及IL-12表达,但对IFN-γ表达则有抑制作用。
The present study was conducted to explore the influence of heat stress on the transcription level of TLR2 mRNA, and TLR4 mRNA as well as the concentration of serum cortisol, IL-2 and IL-8 in PBMC of Bama-miniature pigs. Whilst, the changing of TLR2 mRNA, TLR4 mRNA ,TLR4-ASV, IL-12 and IFN-γin PBMC that were cultured in vitro after heat shock were also detected through quantitative real-time PCR, ELISA, radioimmunoassay and cell culture. The results showed that:
     (1)Toll-like receptor 2 gene cDNA consists of 2358 base pairs, coding 785 amino acids.The molecular weight and the isoelectric point of TLR2 protein is 89.48 kD and 7.52, respectively, and a signal peptide.15 bases of Toll-like receptor 2 gene in Bama-miniature pigs mutated compared with general pigs, but the structure does not change significantly. Bama-miniature pig TLR2 gene sequence has high homology compared with mice(73.4%), dog(82.4%), chicken(59.5%), cattle(85.3%), sheep(84.6%) and human(82.4%). The structure of extracellular region of TLR2 protein is forniciform arc, and consisted of a lot ofα-helix inside andβ-sheet outside of arc. There are four leucine-rich repeats and six N-linked glycosylation sites out of the membrane.
     (2)Toll-like receptor 4 gene cDNA consists of 2526 base pairs, coding 841 amino acids.The molecular weight and the isoelectric point of TLR4 protein was 96.4 kD and 6.58, respectively, and having a signal peptide. 5 bases of Toll-like receptor 4 gene in Bama-miniature pig mutated compared with general pig, but the structure does not change significantly. Bama-miniature pig TLR4 gene sequence has high homology compared with mice (71.9%), dog (81.5%), chicken (54.2%), cattle (86.4%), sheep (85.5%) and human (81.9%). The structure of extracellular region of TLR4 protein is forniciform arc, and consists of a lot ofα-helix inside andβ-sheet outside of arc. There are thirteen leucine-rich repeats and eight N-linked glycosylation sites out of the membrane.
     (3)TLR4-ASV mRNA was identified by RT-PCR.The putative TLR4-ASV protein was analysed by bioinformatics method, and the results showed that putative TLR4-ASV protein was a kind of truncated protein, having no signal peptide, not nonclassical secretory protein, six LRRs were deleted, having transmembrane region, and obviously truncated extracellular region.
     (4) The most stable house-keeping gene in vivo PBMC analysed by GeNorm and NormFinder is ACTB/RPL during heat stress in Bama-miniature pigs, followed by B2M > TBP > 18s RNA > GAPDH (from highest stability to lowest stability), but that is B2M+TBP in vitro cultured PBMC afer heat shock and the stability order is B2M+TBP > B2M> TBP> RPL> ACTB> 18sRNA> GAPDH (from highest stability to lowest stability).
     (5) In in vivo model, there was a first-increased and then-decreased tendency in TLR2 mRNA level of stressed groups with time. In stressed groups TLR2 mRNA level increased significantly compared TLR2 mRNA in same time from the 7th day. TLR4-All mRNA level was higher than that in control pigs at any times during heat stress in Bama-miniature pigs (P<0.01).The change of cortisol concentration in stress pigs was increased with time. Whereas, there was no significant diference in the cortisol level between control pigs and stressed pigs on the first day (P<0.05), but that increased significantly on the 7th, 14th and 21th day (P<0.05) after heat stress. There was no obvious changing tendency in IL-2 concentration of control pigs as time goes by, but that increased in stress pigs with time. The IL-2 level in stressed pigs was significantly lower than that of control pigs on the 7th day after stress (P<0.05), and the 7th day (P<0.01), then came to normal level. Significant difference was not found in stressed pigs and control pigs at any time of treatment.
     (6) In in vitro model, there was no obvious change in TLR2 mRNA level in control pigs. TLR2 mRNA level of stressed pig increased significantly and came to peak on 3th hour after treatment (P<0.05). There was no obvious change in TLR4-All mRNA level in control pigs with time. TLR4-All mRNA level in stressed pigs increased significantly on 3th hour (P<0.05) compared with that in control pigs, and then came to normal level. There was no obvious change in TLR4-ASV mRNA level of control pigs whereas there was a first - increased and then - decreased tendency in TLR4-ASV mRNA level of stressed pigs with time. TLR4-ASV mRNA level in stressed pigs increased significantly on 3th hour (P<0.01), and decreased on 6th and 9th hour, but still higher than that of control groups (P<0.05). IFN-γlevel in stressed pigs decreased significantly on 1th hour (P<0.05), and then came to increase, and there was no significant difference between control pigs and stressed pigs on 3th, 6th and 9th hour under post-stress recovery There was no obvious change in IL-12 level in control pigs. IL-12 level in stressed pigs began to increase on 1th hour post-stress recovery, and was significantly higher than that of control groups on 6th hour (P<0.05), then recover to normal level.
     The main conclusions of this study are as follows:
     (1) TLR2, TLR4 and TLR4-ASV mRNA were cloned successfully in this study.
     (2) The most suitable reference gene in PBMC of Bama-miniature pig during heat stress is B2M+TBP, whereas in in vitro cultured Bama-miniature pig PBMC, the most suitable reference gene is ACTB.
     (3)In in vivo model: heat stress can upregulate TLR2 and TLR4 mRNA level in PBMC of Bama - miniature pigs as well as serum cortisol concentration. Heat stress can regulate IL-2 level in Bama-miniature pig but did not influence the IL-8 level.
     (4)In in vitro model: heat stress can regulate TLR2, TLR4 and TLR4-ASV mRNA level as well as IL-12 concentration in in vitro cultured PBMC of Bama-miniature pig.Contrarily, heat stress can decrease IFN-γlevel significantly.
引文
[1] St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US livestock industries[J]. J Dairy Sci, 2003, 86:E52.
    [2] Dritz SS, Tokach MD, Goodband RD, et al. Effects of administration of antimicrobials in feed on growth rate and feed efficiency of pigs in multisite production systems[J]. J Am Vet Med Assoc, 2002, 220:1690.
    [3] Neumann EJ, Kliebenstein JB, Johnson CD, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States[J]. J Am Vet Med Assoc, 2005, 227:385.
    [4] Aderem A. Role of Toll-like receptors in inflammatory response in macrophages[J]. Crit Care Med 2001, 29:S16-S18.
    [5] Flo TH, Halaas O, Torp S, et al. Differential expression of Toll-like receptor 2 in human cells[J]. J Leukoc Biol, 2001, 69:474-481.
    [6] Takeda K, Kaisho T, Akira S. Toll-like receptors[J]. Annu Rev Immunol, 2003, 21:335-376.
    [7] Medzhitov R. Toll-like receptors and innate immunity[J]. Nat RevImmunol 2001, 1:135-145.
    [8] Wills-Karp M. IL-12/IL-13 axis in allergic asthma[J]. J Allergy Clin Immunol, 2001, 107: 9-18.
    [9] Zhou J, An H, Xu H, et al. Heat shock up-regulates expression of Toll-like receptor-2 and Toll-like receptor-4 in human monocytes via p38 kinase signal pathway[J]. mmunology, 2005,114:522-530.
    [10] Chen W, Wang J, An H, et al. Heat shock up-regulates TLR9 expression in human B cells through activation of ERK and NF-B signal pathways[J]. Immunology Letters, 2005, 98:153-159.
    [11] Kamstrup S, Verthelyi D, Klinman DM. Response of porcine peripheral blood mononuclear cells to CpG-containing oligodeoxynucleotides[J]. Vet Microbiol, 2001, 78:353-362.
    [12] Reddy NR, Wilkie BN. Quantitation of porcine cytokine and beta 2-microglobulin mRNA expression by reverse transcription polymerase chain reaction[J]. J Immunol Methods, 2000, 233:83-93.
    [13] Liu C-H, Chaung H-C, Chang H-l, et al. Expression of Toll-like receptormRNA and cytokines in pigs infected with porcine reproductive and respiratory syndrome virus[J]. Veterinary Microbiology, 2009, 136:266-276.
    [14] Minton JE. Function of the hypothalamic-pituitary axis and the sympathetic nervous system in models of acute stress in domestic farm animals[J]. JAnimSci, 1994, 72:1891-1898.
    [15] Peisen JN, McDonnell KJ, Mulroney SE, et al. Endotoxin-induced suppression of the somatotropic axis is mediated by interleukin-1βand corticotrophin-releasing factor in the juvenile rat[J]. Endocrinology, 1995, 136:3378-3390.
    [16] Williams NH, Stahly TS, Zimmerman DR. Effects of chronic immune system activation on body nitrogen retention, partial efficiency of lysine utilization,and lysine needs of pigs[J]. J Anim Sci, 1997, 75:2472-2480.
    [17] Williams NH, Stahly TS, Zimmerman DR. Effects of chronic immune system activation on the rate, efficiency, and composition of growth and lysine needs of pigs fed from 6 to 27kg[J]. J Anim Sci, 1997, 75:2463-2471.
    [18]陈韩英,刘丽梅,陈琳,等.中药复方对猪热应激时脾脏中IFN-γ、IL-4水平的影响[J].中国兽医杂志, 2007, 43(9):12-13.
    [19]李玉保,付旭彬,孙培明,等.急性持续热应激对肉鸡免疫系统的影响[J].农业生物技术学报, 2005, 13(3):394-395.
    [20]胡艳欣,佘锐萍,张洪玉,等.热应激后猪血清中IL-2、IFN-γ及TNF-α水平的动态变化[J].畜牧兽医学报, 2006, 37(5):496-499.
    [21]王延江,栗永萍,艾国平,等.烧伤对小鼠巨噬细胞白介素12和T细胞干扰素γ、白介素4表达的影响[J].中华烧伤杂志, 2001,17(4):236-238.
    [22]王自力,于同泉,朱晓宇.中药复方对热应激下猪肠道组织IL-2,IL-10和黏液IgA含量影响中国兽医杂志, 2007, 43(90):83.
    [23] Singh VK, Fudenbery HH. Binding of (125I) corticotropin-releasing factor to blood immunocytes and its reduction in Alzheimer′s disease[J]. Immunol lett, 1988,18:5-8.
    [24] Takao T, Tojo C, Nishioka T, et al. Reciprocal modulation of corticotropin -releasing factor and interleukin-1 receptors following ether-laparotomy stress in the mouse [J]. Brain Res, 1994, 660:170-174.
    [25] Bateman A, Singh A, Kral T. The Immune-hypothalamic-pituitocry-adrenal axis[J]. Endocr Society, 1989, 10:92-112.
    [26] Metz K, Ezernieks J, Sebald W, et al. Interleukin-4 upregulates the heat shock protein HSP90 alpha and enhances transcription of a reporter gene coupled to a single heat shock element[J]. FEBS Lett, 1996, 385:25-28.
    [27] Hall TJ. Role of HSP70 in cytokine production [J]. Experientia, 1994, 50: 1048 - 1053.
    [28] Wiegers GJ, Stec IEM, Sterzer P, et al. Glucocorticoids and the immune response[J]. Handbook of stress and the brain, 2005:175–191.
    [29] DeKruyff RH, Yang Y, Umetsu DT. Corticosteriods enhance the capacity of macrophages to induce TH2 cytokine synthesis in CD4+lymphocytes by inhibiting IL-12 production [J]. JImmunol, 1998, 160:2231-2237.
    [30] Elenkov IJ, Chrousos GP, Wilder RL. Neuroendocrine regulation of IL-12 and TNF -α/IL-10 balance [J]. AnnNYAcadSci, 2000,917:94-105.
    [31] Visser J, Boxel-Dezaire A, Methorst D, et al. Differential regulation of interleukin-10(IL-10)and IL-12 by glucocorticoids in vitro[J]. Blood, 1998, 91:4255-4264.
    [32] Skjolaas KA, Minton JE. Does cortisol bias cytokine production in cultured splenocytes to a Th2 phenotype?[J]. VetImmunolImmunopathol, 2002,87:451-458.
    [33] McGlone JJ, Lumpkin EA, Norman RL. Adrenocorticotropin stimulates natural killer cell activity[J]. Endocrinology, 1991,129:1653-1658.
    [34] Anderson BH, Watson DL, Colditz IG. The effect of dexamethasone on some immunological parameters in cattle[J]. VetResComm, 1999,23:399-413.
    [35] Norrman J, David CW, Sauter SN, et al. Effects of dexamethasone on lymphoid tissue in the gut and thymus of neonatal calves fed with colostrum or milk replacer[J]. J Anim Sci, 2003, 81:2322-2332.
    [36]安立龙,效梅,黄志毅,等.不同剂量甜菜碱对热应激肉鸡组织器官发育的影响[J].家畜生态学报, 2005,26(3):45.
    [37]张乐翠,王述柏,单虎,等.抗应激添加剂对热应激肉鸡甲状腺和肾上腺组织结构的影响[J].饲料研究, 1998,5:1-2.
    [38]张书霞,华荣虹,鲍恩东.热应激对鸡胸腺细胞凋亡的影响及其调节机理[J].南京农业大学学报, 2003,26(1):66-69.
    [39]崔亚利,郑世学,胡永芬,等.热应激后雏鸡免疫器官组织学结构观察[J].河北农业大学学报, 2004,27(2):93-96.
    [40]巨向红,庸艳红,何健嫦,等.热应激对巴马香猪免疫和生化指标的影响[J].中国畜牧杂志, 2009,45(13):152.
    [41]余德谦,林映才,蒋宗勇,等.热应激对肥育猪的影响及添加抗应激剂的效果[J].养猪, 1999(2):21-22.
    [42]马文涛,杨来启,林玉梅,等.应激对大鼠血清皮质醇及白细胞介素2、6、8水平的影响[J].中国心理卫生杂志, 2002,16(1):14-15.
    [43] Johnson RW. Inhibition of growth by pro-inflammatory cytokines:An integrated view[J]. JAnimSci, 1997, 75:1244-1255.
    [44] Hicks TA, McGlone JJ, Whisnant CS, et al. Behavioral, endocrine,immune and performance measures for pigs exposed to acute stress[J]. JAnimSci, 1998, 76:474-483.
    [45] McGlone JJ, Salak JL, Lumpkin EA, et al. Shipping stress and social status effects on pig performance,plasma cortisol,natural killer cell activity,and leukocyte numbers[J]. JAnimSci, 1993, 71:888-896.
    [46] Bonnette ED, Kornegay ET, Lindemann MD, et al. Humoral and cell-mediated immune response and performance of weaned pigs fed four supplemental vitamin E levels and housed at two nursery temperatures[J]. JAnimSci, 1990,68:1337-1345.
    [47] Morrow-Tesch JL, McGlone JJ, Salak-Johnson JL. Heat and social stress effects on pig immune measures[J]. JAnimSci, 1994,72:2599-2609.
    [48] Sutherland MA, Niekamp SR, Rodriguez-Zas SL, et al. Impacts of chronic stress and social status on various physiological and performance measures in pigs of different breeds[J]. JAnimSci, 2006, 84:588-596.
    [49] Alvarez B, Revilla C, Chamorro S, et al. Molecular cloning,characterization and tissue expression of porcine Toll-like receptor 4. Developmental and Comparative Immunology, 2006, 30:345-355.
    [50] Anne V.Thomas, Aurore D.Broers, He′le`ne F.Vandegaart, et al. Genomic structure, promoter analysis and expression of the porcine(Sus scrofa)TLR4 gene. Molecular Immunology, 2006, 43:653-659.
    [51] Asahina Y, Yoshioka N, Kano R, et al. Full-length cDNA cloning of Toll-like receptor 4 in dogs and cats. Vet Immunol Immunopathol, 2003,96(3-4):159-167.
    [52] White SN, Taylor KH, Abbey CA, et al. Haplotype variation in bovine Toll-like receptor 4 and computational prediction of a positively selected ligand-binding domain. ProcNatlAcadSciUSA, 2003, 100:10364-10369.
    [53] Bell JK, Mullen GED, Leifer CA, et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol, 2003, 24:528-533.
    [54] Akira S, Takeda K. Toll-like receptor signalling[J]. Nat Rev Immunol, 2004, 4:499-511.
    [55] Baker BS, Ovigne JM, Powles AV, et al. Normal keratinocytes express toll-like receptors(TLRs)1, 2, and 5:modulation of TLR expression in chronic plaque psoriasis. BrJDermatol, 2003, 148:670-679.
    [56] Alvarez B, Revilla C, Domenech N, et al. Expression of toll-like receptor 2(TLR2)in porcine leukocyte subsets and tissues[J]. VetRes, 2008, 39:13.
    [57] Summerfield A, Guzylack-Piriou L, Schaub A, et al. Porcine peripheral blood dendritic cells and natural interferon-producing cells. Immunology, 2003, 110:440-449.
    [58] Sabroe I, Jones EC, Usher LR, et al. Toll-like receptor(TLR)2 and TLR4 in human peripheral blood granulocytes:a critical role for monocytes in leukocyte lipopolysaccharide responses. JImmunol, 2002,168:4701-4710.
    [59] Komai-Koma M, Jones L, Ogg GS, et al. TLR2 is expressed on activated T cells as a costimulatory receptor. ProcNatlAcadSciUSA, 2004, 101:3029-3034.
    [60] Tohno M, Shimosato T, Kitazawa H, et al. Toll-like receptor 2 is expressed on the intestinal M cells in swine. BiochemBiophysResCommun, 2005, 330:547-554.
    [61] Pron, B. Boumaila, C. Jaubert, F. et al. Dendriti cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell Microbiol, 2001, 3:331-340.
    [62] Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of Toll-like receptors(TLR) in human leukocytes: Selective expression of TLR3 in dendritic cells[J]. J Immunol, 2000, 164(11):5998-6004.
    [63] Visintin A, Mazzoni A, Spitzer JH, et al. Regulation of Toll-like receptors in human monocytes and dendritic cells[J]. J Immunol, 2001, 166(1):249-255.
    [64] Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol, 2005,17(1):1-14.
    [65] Takeuchi O, Kawai T, Muhlradt PF, et al. Discrimination of bacterial lipoproteins by toll-like receptor 6. Int Immunol, 2001, 13:933-940.
    [66] Takeuchi O, Sato S, Horiuchi T, et al. Cutting edge:role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. JImmunol, 2002, 169:10-14.
    [67] Schjetne KW, Thompson KM, Nielsen N, et al. Link between innate and adaptive immunity: Toll-like receptor 2 internalises antigen for presentation to CD4+T cells and could be an efficient vaccine target. JImmunol, 2003, 171:32-36.
    [68] Underhill DM, Ozinsky A, Hajjar AM, et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature, 1999, 21:811-815.
    [69] Doyle SE, O’Connell RM, Miranda GA, et al. Toll-like receptors induce a phagocytic gene program through p38. JExpMed, 2004, 199:81-90.
    [70] Gebert A, Willfuhr B, Pabst R. The rabbit M-cell marker vimentin is present in epithelial cells of the tonsil crypt. Acta Otolaryngol, 1995, 115:697-700.
    [71] Ohashi K, Burkart V, Flohe S, et al. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex[J]. J Immunol, 2000, 164(2):558-561.
    [72] Homma T, Kato A, Hashimoto N, et al. Corticosteroid and cytokines synergistically enhance toll-like receptor2 expression in respiratory epithelial cells[J]. Am J Respir Cell Mol Biol, 2004, 31(4):463-469.
    [73] Means TK, Wang S, Lien E, et al. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis [J]. J Immlunol, 1999, 163(7):3920-3927.
    [74] Nancy CA, orenz E, Brain CS, et al. TLR4 mutation are associated with endotoxin hyporesponsiveness in human [J]. Nature Genetics, 2000, 25:187.
    [75] Nomura F, Akashi S, akao Y, et al. Endotoxin tolerance in mouse peritomeal macrophages correlates with down-regulation of surface toll-like receptor 4 expression [J]. J Immunol, 2000, 164:3476.
    [76] Poltorak A, Smirnova I, He X, et al. Genetic and physical mapping of the LPS locus:identification of toll-4 receptor as a candidate gene in the critical region[J]. Blood Cells Mol Dis, 1998,24:340-355.
    [77] Arbour NC, Lorenz E, Schutte BC, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans [J]. Nat Genet, 2000, 25:187.
    [78] Kawai T, Adachi O, Ogawa T, et al. Unresponsiveness of MyD88-deficient mice to endotoxin [J]. Immunity, 1999, 11:115-122.
    [79] Lu Y, Yeh W, Ohashi PS. LPS/TLR4 signal transduction pathway [J]. Cytokine, 2008, 42:146.
    [80] Kopp EB, Medzhitov R. The Toll-receptor family and control of innate immunity [J]. Curr Opin Immunol, 1999, 11:13-18.
    [81] Horn KD. Evolving strategies in the treatment of sepsis and systemic inflammatory response syndrome (SIRS) [J]. QJM, 1998, 91:265.
    [82] Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25 +T cell-mediated suppression by dendritic cells[J]. Science, 2003,299:1033-1036.
    [83] Imler J-L, Zheng L. Biology of Toll receptors: lessons from insects and mammals[J]. Journal of Leukocyte Biology, 2004, 75:18-24.
    [84] Schnare M, Barton GM, Holt AC, et al. Toll-like receptors control activation of adaptive immune responses[J]. Nat Immunol, 2001, 2:947-950.
    [85] Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity[J]. Nat Immunol, 2001, 2(8):675-680.
    [86] Kariko K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3[J]. J Biol Chem, 2004, 279(13):12542-12550.
    [87] Froy O. Regulation of mammalian defensin expression by Toll-like receptor -dependent and independent signaling pathways [J]. Cell Microbiol, 2005, 7(10):1387-1397.
    [88] Dabbagh K, Lewis DB. Toll-like receptor and T-helper-1/T-helper-2 responses[J]. Curr Opin Infect Dis 2004, 16:199-204.
    [89] Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells[J]. J Biol Chem, 2001, 276:37692-37699.
    [90] Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response[J]. Science, 1996, 272:50-53.
    [91] Dabbagh K, Dahl ME, Stepick-Biek P, et al. Toll-like receptor 4 is required for optimal development of Th2 immune responses: role for dendritic cells[J]. J Immunol, 2002, 168:4524-4530.
    [92] Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3[J]. Nature, 2001, 413:732-738.
    [93] Werling D, Jungi TW. Toll-like receptors linking innate and adaptive immuneresponse[J]. Vet Immunol Immunopathol, 2003,91:1-12.
    [94] Krieg AM. CpG motifs in bacterial DNA and their immune effects[J]. Annu Rev Immunol, 2002, 20:709-760.
    [95] Andreakos E, Foxwell B, Feldmann M. Is receptors and their signaling approach to modulating pathway a targeting Toll-like useful therapeutic cytokine -driven inflammation?[J]. Immunol Rev, 2004, 202:250-265.
    [96] Parmiani G, Testori A, Maio M, et al. Heat Shock Proteins and Their Use as Anticancer Vaccines[J]. Clinical Cancer Research 2004 10:8142.
    [97] Dudeja V, Vickers S, Saluja A. The role of heat shock proteins in gastrointestinal diseases[J]. Gut, 2009, 58:1000-1009
    [98] Buzzard KA, Giaccia AJ, Killen M. Heat shock protein 72 modulates pathways of stress-induced apoptosis [J]. Journal of Biology and Chemistry, 1998, 273(27): 17417-17513.
    [99] Mosser DD, Caron AW, Bourget L. Role of the human heat shock protein HSP70 in protection against stress-induced apoptosis[J]. Molecule and Cell Biology, 1997, 17(9):5317-5327.
    [100]张书霞,华荣虹,鲍恩东.热应激对鸡脾脏和法氏囊细胞凋亡的影响及其调节[J].中国农业科学, 2005,38(1):176-180.
    [101] Suto R, Srivastava P. A mechanism for the specific immunogenicity of heat shock protein -chaperoned peptides [J]. Science 1995, 269(5230,):1585-1588.
    [102] Binder R, Kelly J, Vatner R. Specific Immunogenicity of Heat Shock Protein gp96 Derives from Chaperoned Antigenic Peptides and Not from Contaminating Proteins[J]. The Journal of Immunology, 2007, 179:7254 -7261
    [103] Callahan M, Garg M, Srivastava P. Heat-shock protein 90 associates with N-terminal extended peptides and is required for direct and indirect antigen presentation[J]. PNAS, 2008, 105:1662-1667
    [104] Asea A, Rehl M, Kabingu E, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4[J]. J Biol Chem, 2002, 277:15028-15034.
    [105] Vabulas RM, Braedel S, Hilf N, et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via toll-like receptor 2/4 pathway[J]. J Biol Chem, 2002, 277:20840-20853.
    [106] Gaston J. Heat shock proteins and innate immunity[J]. Clin Exp Immunol, 2002,127(1):1-3.
    [107] Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, et al. Heat Shock Protein 60 Activates B Cells via the TLR4-MyD88 Pathway[J]. The Journal of Immunology, 2005, 175:3594-3602.
    [108] Vabulas RM, Ahmad-Nejad P, Ghose S, et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway[J]. J Biol Chem, 2002, 277(17): 15107-15112.
    [109] Yokota SI, Minota S, Fujii N. Anti-HSP auto-antibodies enhance HSP -induced pro-inflammatory cytokine production in human monocytic cells via Toll-like receptors[J]. Int Immunol, 2006,15
    [110] Lipsker D, Ziylan U, Spehner D, et al. Heat shock proteins 70 and 60 share common receptors which are expressed on human monocyte-derived but notepidermal dendritic cells[J]. Eur J Immunol, 2002, 32(2):322-332.
    [111] Asea A, Rehli M, Kabingu E, et al. Novel Signal Transduction Pathway Utilized by Extracellular HSP70:ROLE OF Toll-LIKE RECEPTOR(TLR)2 AND TLR4. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277(17):15028-15034.
    [112] Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70(Hsp70)preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages[J]. J Biol Chem, 2003, 278(1): 174-179.
    [113] Kim BS, Lim SW, Li C, et al. Ischemia-Reperfusion Injury Activates Innate Immunity in Rat Kidneys[J]. Transplantation, 2005, 79:1370-1377.
    [114] Dybdahl B, Wahba A, Lien E, et al. Inflammatory response after open heart surgery : release of heat-shock protein 70 and signaling through toll-like receptor-4[J]. Circulation, 2002, 105(6):685-690.
    [115] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408.
    [116] Schmittgen T, Zakrajsek B. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR[J]. J Biochem Biophys Methods 2000, 46:69-81.
    [117] Spanakis E. Problems related to the interpretation of autoradiographic data on gene expression using common constitutive transcripts as controls[J]. Nucleic Acids Res, 1993, 21:3809-3819.
    [118] Lisowski P, Pierzchala M, Goscik J, et al. Evaluation of reference genes for studies of gene expression in the bovine liver,kidney,pituitary,and thyroid[J]. J Appl Genet 2008, 49(4):367-372.
    [119] De Ketelaere A, Goossens K, Peelman L, et al. Technical note: validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes [J]. J Dairy Sci, 2006, 89:4066-4069.
    [120] Goossens K, Van Poucke M, Van Soom A, et al. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos[J]. BMC Dev Biol, 2005,5:27.
    [121] Ohl F, Jung M, Xu C, et al. Gene expression studies in prostate cancer tissue:which reference gene should be selected for normalization?[J]. J Mol Med, 2005, 83:1014-1024.
    [122] Schmid H, Cohen CD, Henger A, et al. Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies[J]. Kidney International, 2003, 64:356-360.
    [123] Sirover MA. Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology [J]. J Cell Biochem, 1997, 66:133-140.
    [124] Revillion F, Pawlowski V, Hornez L, et al. Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer[J]. Eur J Cancer, 2000, 36:1038-1042.
    [125] Tokunaga A, Nakamura Y, Sakata K, et al. Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers[J]. CancerRes, 1987, 47:5616-5619.
    [126] Vila MR, Nicolas A, Morote J, et al. Increased glyceraldehyde-3-phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based, arbitrarily primed polymerase chain reaction[J]. Cancer, 2000, 89:152-164.
    [127] Verma AS, Shapiro BH. Sex-dependent expression of seven housekeeping genes in rat liver[J]. Journal of Gastroenterology and Hepatology, 2006, 21:1004-1008.
    [128] Vandesompele J, Preter KD, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7):1-11.
    [129] Andersen CL, Jensen JL, Orntoft TF. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets[J]. CANCER RESEARCH, 2004, 64:5245-5250.
    [130] Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes,differentially regulated target genes and sample integrity: Best Keeper–Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26:509-515.
    [131] Michael R. Of mice and men: Species variations of Toll-like receptor expression[J]. Trends in Immunology, 2002, 23(6):375-379.
    [132] Terry KM, Douglas TG, Matthew JF. Structure and Function of Toll-like receptor proteins[J]. Life Science, 2000(68):241-258.
    [133] Bochud PY, Calandra T. Pathogenesis of sepsis:new concepts and implications for future treatment[J]. BMJ, 2003, 326:262-266.
    [134] Lorenz E, Mira JP, Cornish KL, et al. A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection[J]. Infect Immun, 2000, 68:6398-6401.
    [135] White SN, Kata SR, Womack JE. Comparative fine maps of bovine toll-like receptor 4 and toll-like receptor 2 regions[J]. Mamm Genome 2003,14:149-155.
    [136] Fukui A, Inoue N, Matsumoto M, et al. Molecular Cloning and Functional Characterization of Chicken Toll-like Receptors[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276(50):47143-47149.
    [137] Chang J-S, Russell GC, Jann O, et al. Molecular cloning and characterization of Toll-like receptors 1-10 in sheep[J]. Veterinary Immunology and Immunopathology, 2009, 127:94-105.
    [138] Ishii M, Hashimoto M, Oguma K, et al. Molecular cloning and tissue expression of canine Toll-like receptor 2 (TLR2)[J]. Veterinary Immunology and Immunopathology, 2006, 110:87-95.
    [139] MUNETA Y, UENISHI H, KIKUMA R, et al. Porcine TLR2 and TLR6: Identification and Their Involvement in Mycoplasma hyopneumoniae Infection [J]. JOURNAL OF INTERFERON & CYTOKINE RESEARCH, 2003, 23:583-590
    [140]王爱德,兰干球,郭亚芬.巴马香猪耐热性的探讨[J].家畜生态, 1995,16(4):18-21.
    [141] Bendtsen JD, Nielsen H, Heijne Gv, et al. Improved prediction of signal peptides: SignalP 3.0[J]. J Mol Biol, 2004, 340:783-795.
    [142] Thomas AV, Broers AD, Vandegaart HF, et al. Genomic structure,promoter analysis and expression of the porcine(Sus scrofa)TLR4 gene[J]. Molecular Immunology, 2006, 43:653-659.
    [143] Bell JK, Mullen GED, Leifer CA, et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors[J]. Trends Immunol, 2003,24:528-533.
    [144] Patthy L. Detecting homology of distantly related proteins and consensus sequences [J]. J Mol Biol, 1987, 198(4):567-577.
    [145] Kobe B, Kajava AV. The leucine-rich repeatas a protein recognition motif[J]. CurrOpin StructBiol, 2001, 11(6):725-732.
    [146] Letunic I, Copley RR, Pils B, et al. SMART 5: Domains in the context of genomes and networks. Nucleic Acids Res, 2006, 34:D257-D260.
    [147] Finn RD, Mistry J, Schuster-Bockler B, et al. Pfam: Clans, web tools and services. Nucleic Acids Res, 2006, 34:D247-D251.
    [148] Mulder NJ, Apweiler R, Attwood TK, et al. InterPro,progress and status in 2005. Nucleic Acids Res, 2005, 33:D201-D205.
    [149] Calarese DA, Scanlan CN, Zwick MB. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition [J]. Science, 2003, 300:2065-2071.
    [150]朱立平.蛋白质糖基化与B细胞免疫[J].现代免疫学, 2001,21(4):193-194.
    [151] Asahina Y, Yoshioka N, Kano R, et al. Full-length cDNA cloning of Toll-like receptor 4 in dogs and cats[J]. Vet Immunol Immunopathol, 2003,96:159-167.
    [152] Thomas AV, Broers AD, Vandegaart HF, et al. Genomic structure,promoter analysis and expression of the porcine(Sus scrofa)TLR4 gene[J]. Molecular Immunology, 2006, 43:653-659.
    [153] Bella J, Hindle KL, McEwan PA, et al. The leucine-rich repeat structure[J]. CellMolLife Sci, 2008, 65:2307-2333.
    [154] Scott PG, Dodd CM, Bergmann EM, et al. Crystal structure of the biglycan dimer and evidence that dimerization is essential for folding and stability of class I small leucine-rich repeat proteoglycans[J]. JBiolChem, 2006, 281:13324-13332.
    [155] Scott PG, McEwan PA, Dodd CM, et al. Crystal structure of the dimeric protein core of decorin,the archetypal small leucine-rich repeat proteoglycan. ProcNatlAcadSciUSA, 2004, 101:15633-15638.
    [156] Alvarez B, Revilla C, Chamorro S, et al. Molecular cloning,characterization and tissue expression of porcine Toll-like receptor 4[J]. Developmental and Comparative Immunology, 2006, 30:345-355.
    [157] Hajjar AM, Ernst RK, Tsai JH, et al. Human Toll-like receptor 4 recognizes host-specific LPS modifications[J]. Nat Immunol, 2002, 3:354-359.
    [158] Kobe B, Deisenhofer J. Proteins with leucine-rich repeats[J]. CurrOpinStructBiol, 1995, 5:409-416.
    [159] Sharon H, Lis H. Carbohydratas in cell recognition[J]. Sci Am, 1993, 268:82.
    [160] Faustino NA, Cooper TA. Pre-mRNA splicing and human disease[J]. Genes Dev, 2003, 17:419-437.
    [161] Garcia-Blanco MA, Baraniak AP, Lasda EL. Alternative splicing in disease and therapy[J]. Nat Biotechnol, 2004, 22:535-546.
    [162] Xu Q, Lee C. Discovery of novel splice forms and functional analysis ofcancer-specific alternative splicing in human expressed sequences[J]. Nucleic Acids Res, 2003,31:5635-5643.
    [163] Ando S, Nicholas J, Sarlis JK, et al. Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance[J]. Mol Endocrinol, 2001,15:1529-1538.
    [164] Akker SA, Smith PJ, Chew SL. Nuclear post-transcriptional control of gene expression[J] J Mol Endocrinol 2001,27:123-131.
    [165] Kaufer D, Friedman A, Seidman S, et al. Acute stress facilitates long-lasting changes in cholinergic gene expression[J]. Nature, 1998, 393:373- 377.
    [166] Stamm S. Signals and their transduction pathways regulating alternative splicing: a new dimension of the human genome[J]. Hum MolGenet, 2002, 11:2409- 2416.
    [167] Dantzer R, Mormede P. Stress in farm animals: A need for reevaluation[J]. J Anim Sci, 1983,57:6-18.
    [168] Becker BA, Nienaber JA, Christenson RK, et al. Peripheral concentrations of cortisol as an indicator of stress in the pig[J]. Am J Vet Res, 1985, 46:1034-1038.
    [169] Thellin O, Zorzi W, Lakaye B, et al. Housekeeping genes as internal standards:use and limits[J]. JBiotechnol, 1999, 75:291-295.
    [170] Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. J Mol Endocrinol, 2000, 2:169-193.
    [171] Bathia P, Taylor WR, Greenberg AH, et al. Comparison of a glyceraldehyde -3-phophate dehydrogenase and 28S-ribosomal gene as RNA loading controls for Northern blot analysis of cell lines of varying malignant potential[J]. Anal Biochem, 1993,216:223-226.
    [172] Mansur NR, Meyer-Siegler K, Wurzer JC, et al. Cell cycle regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in normal human cells[J]. Acids Res, 1993, 21:993-998.
    [173] McNulty SE, Toscano WAJ. Transcriptional regulation of glyceraldehyde -3-phosphate dehydrogenase by 2,3,7,8-tetrachlorodibenzo-p-dioxin[J]. Biochem Biophys Res Commun, 1995, 212:165-171.
    [174] Glare EM, Divjak M, Bailey MJ, et al. Beta-actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels[J]. Thorax, 2002, 57:765-770.
    [175] Kano R, Hasagava A, Watanabe S, et al. Cadida albicans induced interlukin 8 production by human keratinocytes[J] J Dermatol Sci, 2003,31:233-235.
    [176] zhang G, Ghosh S. Toll-like receptor mediated NF-κB activation: a phylogenetically conserved paradigm in the innate immunity[J]. J Clin Invest, 2001, 107:13-18.
    [177]晏春根,谢青,周霞秋,等.暴发性肝衰竭中Toll样受体2表达的实验研究[J].中华肝脏病杂志, 2004,12(9):549-551.
    [178] Eicher SD, Sartin JL, Schwartz DD, et al. TOLL-LIKE RECEPTORS 2 (TLR2) AND 4 (TLR4) OF PORCINE BLOOD LEUKOCYTES DURING HEAT-STRESS [abstract]. Veterinary Immunology International Symposium, 2004:240.
    [179] Bihl F, Salez L, Beaubier M, et al. Overexpression of toll-like receptor 4 amplifies the host response to lipopolysaccharide and provides a survival advantage in transgenic mice[J]. J Immunol, 2003,170(12):6141-6150.
    [180] Faure E, Thomas L, Xu H, et al. Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells:role of NF-kappa B activation[J]. J Immunol, 2001, 166(3):2018-2024.
    [181] Hicks TA, McGlone JJ, Whisnant CS, et al. Behavioral, endocrine, immune, and performance measures for pigs exposed to acute stress[J]. J Anim Sci, 1998, 76:474-483.
    [182] Kattesh HG, Kornegay ET, Knight JW, et al. Glucocorticoid concentrations, corticosteroid binding protein characteristics and reproduction performance of sows and gilts subjected to applied stress during mid-gestation[J]. J Anim Sci, 1980, 50:897-905.
    [183] Heo J, Kattesh HG, Roberts MP, et al. Hepatic corticosteroid-binding globulin (CBG) messenger RNA expression and plasma CBG concentrations in young pigs in response to heat and social stress[J]. J AnimSci, 2005, 83:208-215.
    [184] Pitman DL, Ottenweller JE, Natelson BH. Plasma corticosterone levels during repeated presentation of two intensities of restraint stress: Chronic stress and habituation[J]. PhysiolBehav, 1988, 43:47-55.
    [185] Jaferi A, Nowak N, Bhatnagar S. Negative feedback functions in chronically stressed rats: Role of the posterior paraventricular thalamus[J]. Physiol Behav, 2003, 78:365-373.
    [186] Mizoguchi K, Ishige A, Aburada M, et al. Chronic stress attenuates glucocorticoid negative feedback: Involvement of the prefrontal cortex and hippocampus[J]. Neuroscience, 2003, 119:887-897.
    [187] Prunier A, Mounier AM, Hay M. Effects of castration,tooth resection, or tail docking on plasma metabolites and stress hormones in young pigs[J]. J Anim Sci, 2005, 83:216-222.
    [188] Sutherland MA, Rodriguez-Zas SL, Ellis M, et al. Breed and age affect baseline immune traits, cortisol,and performance in growing pigs[J]. J Anim Sci 2005, 83:2087-2095.
    [189] Kattesh HG, Charles SF, Baumbach GA, et al. Plasma cortisol distribution in the pig from birth to six weeks of age[J]. Biol Neonate, 1990, 58:220-226.
    [190] McCauley I, Hartmann PE. Changes in piglet leucocytes, B lymphocytes and plasma cortisol from birth to three weeks after weaning[J]. Res Vet Sci, 1984, 37:234-241.
    [191] O'Connor TM, O'Halloran DJ, Shanahan F. The stress response and the hypothalamic-pituitary-adrenal axis:from molecule to melancholia[J]. Quarterly Journal of Medicine, 2000, 93:323-333.
    [192] Khansari DN, Murgo AJ, Faith RE. Effects of stress on the immune system[J]. Immunology Today, 1990, 11:170-175.
    [193] Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marzows[J]. Science, 1976,193:100.
    [194] Schwartz RH. A cell culture model for T lymphocyte clonalanergy[J]. Science, 1990, 248(4961):1349-1346.
    [195] Cousens LP, Orange JS, Biron CA. Endogenous IL-2 contributes to T cell expansion and IFN-gamma production during lymphocytic choriomeningitis virus infection[J]. J Immunol, 1995, 155:5690-5699.
    [196] Gullerg M, Smith KA. Regulation of T cell autocrine growth. T4+cells become refractory to interleukin 2[J]. J EXP MED, 1986, 163:270-284.
    [197]杨汉春.动物免疫学[M].第2版.北京:中国农业大学出版社, 2003:80-81.
    [198]刘辉,孙黎明,马杰.热应激状态下免疫应答的变化[J].中国免疫学杂志, 2001,17:190.
    [199] Chang DM. The role of cytokines in heat stroke [J]. Immunol Invest, 1993, 222: 553-561.
    [200] Schulte HM, Bambera EG, Elsen H, et al. Systemic interleukin-1αand interleukin-2 secretion in response to acute stress and to corticotropinreleasing hormone in humans[J]. Eur J clin Invest, 1994, 24:773-777.
    [201] Minton JE, Blecha F. Cell-mediated immune function in lambs chronically treated with dexamethasone [J]. Journal of Animal Science, 1991,69:3225-3229.
    [202] Wallgren P, Wilen IL, Fossum C. Influence of experimentally induced endogenous production of cortisol on the immune capacity in swine[J]. Veterinary Immunology and Immunopathology, 1994, 42:301-316.
    [203] Northrop JP, Crabtree GR, Mattila PS. Negative regulation of interleukin-2 transcription by the glucocorticoid receptor[J]. Journal of Experimental Medicine, 1992, 175:1235-1245.
    [204]靳杭红,潘兴华.生理和心理应激反应对免疫功能的影响及保护措施[J].中华现代护理学杂志, 2007,4(7):591-594.
    [205]崔艳霞,王桂芝.银屑病病人外周血单核细胞TLR2基因表达及血清ASO和IL-8水平变化[J].青岛大学医学院学报, 2007,43(4):316-318.
    [206] Selvey S, Thompson EW, Matthaei K, et al. Beta-actin-an unsuitable internal control for RT-PCR[J]. MolCell Probes, 2001,15:307-311.
    [207] Zhong H, Simons JW. Direct comparison of GAPDH,beta-actin,cyclophilin,and 28S rRNA as internal standards for quantifying RNA levels under hypoxia[J]. Biochem Biophys Res Commun, 1999,259:523-526.
    [208] Deindl E, Boengler K, van Royen N, et al. Differential expression of GAPDH and beta3-actin in growing collateral arteries[J]. MolCellBiochem, 2002,236:139-146.
    [209] Takeuchi O, Hoshino K, Kawai T, et al. Differential Roles of TLR2 and TLR4 in Recognition of Gram-Negative and Gram-Positive Bacterial Cell Wall Components[J]. Immunity, 1999, 11:443-451.
    [210] Medzhitov R, Preston-Hurburt P, Janeway C. A human homologue of the Drosophila Toll protein signals activation of adaptor immunity[J]. Nature, 1997, 388:394.
    [211]鄢小建,姚咏明,董宁,等.腹腔感染所致多器官损害与Toll样受体2基因表达的关系[J].中华实验外科杂志, 2003,20(1):37.
    [212]尉秀清,崇雨田,文卓夫.慢性乙肝和慢性重型乙肝患者血单核细胞Toll样受体2的变化[J].中山大学学报(医学科学版), 2008,29(1):91-95.
    [213] Hermoso MA, Matsuguchi T, Smoak K, et al. Glucocorticoids and tumor necrosis factor alpha cooperatively regulate toll-like receptor 2 gene expression[J]. Mol Cell Biol, 2004, 24(11):4743-4756.
    [214] Wolfs TG, Buurman WA, van Schadewijk A, et al. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells:IFN-gamma and TNF-alpha mediated up-regulation during inflammation[J]. J Immunol, 2002,168(3):1286-1293.
    [215] Cooper A, Tal G, Lider O, et al. Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2[J]. J Immunol, 2005,175(5):3165-3176.
    [216] Li M, Carpio DF, Zheng Y, et al. An essential role of the NF-kB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells[J]. J Immunol, 2001, 166(12):7128-7135.
    [217] Lucas M, Stuart LM, Savill J, et al. Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion[J]. J Immunol, 2003, 171(5):2610-2615.
    [218] Villamón E, Gozalbo D, Roig P, et al. Toll-like receptor-2 is essential inmurine defenses againstCandida albicans infections[J]. Microbes Infect, 2004,6(1):1-7.
    [219]段德鉴,冉玉平,蒋献,等.白念珠菌对角质形成细胞Toll样受体2表达的影响[J].中国麻风皮肤病杂志, 2005,21(4):257-259.
    [220] Szolnoky G, Bata-Csorgo Z, Kenderssy A, et al. A mannose-binding is expressed on human keratinocytes and mediates killing of Candida albicans[J]. J Invest Dermatol, 2001, 117:205-213.
    [221]李通,左晓霞,肖献忠,等.类风湿关节炎患者外周血单核细胞Toll样受体2的表达及意义[J].中华风湿病学杂志, 2006,10(7):398-399.
    [222]徐文岳,吴玉章,王莉,等. SR-A受体参与抑制LPS刺激RAW264.7产生炎症因子[J].第三军医大学学报, 2006,6:512-514.
    [223]陈虹,钟琦,薛峰,等.地塞米松对小鼠脾脏巨噬细胞内TLR4和TLR2表达的影响[J].上海免疫学杂志, 2003,23(2):91-95.
    [224]王桂芝,王君,崔艳霞,等.银屑病患者外周血单个核细胞Toll样受体2基因表达和血清白介素-8水平变化及相关性研究[J].临床皮肤科杂志, 2007,36(4):226-227.
    [225] Machida K, Cheng KT, Sung VM, et al. Hepatitis C virus induces toll-like receptor 4 expression,leading to enhanced production of beta interferon and interleukin-6[J]. J Virol, 2006, 80(2):866-874.
    [226] A.Frey, K.T.Giannasca, R.Weltzin, et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells:implications for microbial attachment and oral vaccine targeting. JExpMed, 1996, 184:1045-1059.
    [227] Lin Y, Lee H, Berg AH, et al. The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes[J]. J Biol Chem, 2000,275(32):24255-24263.
    [228] Matsuguchi T, Musikacharoen T, Ogawa T, et al. Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages[J]. J Immunol, 2000,165(10):5767-5772.
    [229] Bosisio D, Polentarutti N, Sironi M, et al. Bosisio D,Polentarutti N,Sironi M,et al.Stimulation of toll-like receptor 4 expression in human mononuclear phagocytes by interferon-gamma: a molecular basis for priming and synergism with bacterial lipopolysaccharide[J]. Blood, 2002, 99(9):3427-3431.
    [230] Kurt-Jones EA, Mandell L, Whitney C, et al. Role of toll-like receptor 2(TLR2) in neutrophil activation:GM-CSF enhances TLR2 expression and TLR2-mediated interleukin 8 responses in neutrophils[J]. Blood, 2002, 100(5):1860-1868.
    [231] Black DL. Mechanisms of alternative pre-messenger RNA splicing[J]. Annu Rev Biochem, 2003, 72:291-336.
    [232] Stamm S, Ben-Ari S, Rafalska I, et al. Function of alternative splicing[J]. Gene 2005, 344:1-20.
    [233] Kobayashi K, Hernandez LD, Galan JE, et al. IRAK-M is a negative regulator of Toll-like receptor signaling[J]. Cell, 2002, 110:191-202.
    [234] Haehnel V, Schwarzfischer L, Fenton MJ, et al. Transcriptional regulation of the human toll-like receptor 2 gene in monocytes and macrophages[J]. J Immunol, 2002, 168:5629-5637.
    [235] Hardy MP, ONeill LA. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory[J]. J Biol Chem, 2004,279:27699-27708.
    [236] LeBouder E, Rey-Nores JE, Rushmere NK, et al. Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk[J]. J Immunol, 2003, 171:6680-6689.
    [237] Iwami KI, Matsuguchi T, Masuda A, et al. Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling[J]. J Immunol, 2000, 165:6682-6686.
    [238] Mosmann TR, Subash S. The expanding universe of T-cell subsets: Th1, Th2 and more[J]. Immunol Today, 1996, 17:139-146.
    [239] Coffman RL. Origins of the Th1-Th2 model: A person perspective[J]. NatImmunol, 2006, 7:539-541.
    [240] Glaser R, MacCallum RC, Laskowski BF, et al. Evidence for a shift in the Th-1 toTh-2 cytokine response associated with chronic stress and aging[J]. J Gerontol A Biol Sci Med Sci, 2001, 56:M477-M482.
    [241]张媛,黄文英.应激与免疫[J].中国临床康复, 2006, 10(26):112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700