用户名: 密码: 验证码:
药物ADMET理论预测方法开发和靶向雌激素受体的药物设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对目前计算机辅助药物设计中的几个重要问题进行了研究,包括小分子药代动力学性质和毒性(ADMET)理论预测方法的发展和针对雌激素受体进行的相关药物设计研究。论文首先介绍了工作的研究背景和基本概念。在第1章主要介绍了小分子药代动力学理论预测的基本原理和一般方法,包括分子描述、支持向量机、遗传算法等。此外,还介绍了本文涉及到的一些分子模拟和药物设计方法的基本概念和科学原理,包括分子动力学模拟,虚拟筛选等。最后我们还讨论了我国药物设计研究的现状和展望。
     小分子的ADMET'性质是药物研发过程中最关键的问题之一。本论文利用化学信息学的基本方法和技术,发展了新的小分子ADMET预测方法:论文第2章介绍了针对ADMET预测建模过程中的变量选择问题,发展了一种基于遗传算法的变量选择方法,在该方法中,我们在适应度评价函数中引入了交叉验证相关系数,并采用了“精英仓库”策略,避免了传统遗传算法中可能出现了较优解变异以及搜寻空间缩小的问题,利用该方法,我们建立小分子化合物血脑分布系数的预测模型;大多数ADMET预测方法都采用了分子描述符作为小分子的描述方法,然而小分子描述符本身存在着一些问题,论文第3章介绍了一种基于子结构模式识别的分类预测方法,我们采用了基于子结构字典的分子指纹描述小分子,从而避免了描述符的使用,利用一种类似模式识别的思想,通过对特征子结构的识别进行建模。同时,我们引入了信息增益方法,分析了每一个子结构的重要性从而可以从药物化学家的角度帮助解释我们所得到的机器学习模型。我们利用该方法建立了小分子肠吸收和血脑屏障通透性的模型,此外我们的方法还应用到毒性以及代谢相关的理论预测研究中。
     雌激素受体属于核受体超家族,对维持人体正常生理活动具有非常重要的作用,也是包括乳腺癌等在内的一些重要疾病的靶标之一。目前临床上使用的选择性雌激素受体调节剂,如他莫昔芬,它们可以选择性地作用于不同的组织,虽然机理尚不明确,但在一定程度上减轻了药物的副作用。随着1996年发现了雌激素受体的第二个亚型,人们的注意力开始转移到亚型选择性的小分子调节剂上。近年来该领域的研究主要集中在研究两种亚型的生理功能的区别和各自对应的专一性调控通路。此外,寻找具有亚型选择性的小分子调节剂也是非常热门的研究领域,一方面为功能研究提供小分子探针工具,另一方面可以发现功能更专一,副作用更小的新药。论文的第二部分主要介绍了利用多种分子模拟和计算机辅助药物设计方法,发现选择性雌激素受体的小分子配体。论文第4章主要介绍了利用分子动力学模拟重现了选择性雌激素配体从受体中解离的动态过程,在此过程中,我们发现了雌激素的选择性与这一过程也有着一定的联系。我们据此提出了两个可能提高配体对于ERβ选择性的改造意见。论文第5章中,我们利用虚拟筛选和分子动力学模拟的方法发现了18个高效的ERβ选择性配体,对这些活性化合物的构效关系分析也验证了我们前面提出的改造意见的合理性。本研究将基础理论研究和实验结合起来,理论模型为实验提供了明确的指导方向,而实验结果又进一步验证了理论模型。
This thesis concentrated on some important problems existing in computer aided drug design, including two parts:(1) methodology development of in silico ADMET prediction; and (2) drug design targeting estrogen receptors. In the first chapter, a brief introduction about the research background and basic concepts was given, including genetic algorithms, support vector machine, molecular fingerprint, etc. Emphases were put on those concepts and principles tightly related to this thesis, such as molecular dynamics simulation, molecular docking and scoring. Finally, we discussed the current situation of drug design research in China.
     ADMET is one of the most important issues in drug discovery pipeline. With technical improvement, people realized that it was not difficult to find potent and specific leads in the early stage of drug discovery. However, experimental evaluation of ADMET properties can still not meet the demands of lead discovery and optimization due to the time-and cost-effectiveness. Therefore, in silico ADMET prediction has become a practicable alternative choice so far, which could break through the "bottleneck" in the high throughput drug discovery process. The first part of this thesis is developing new methodology for in silico ADMET prediction. The second chapter described a genetic algorithm based variable selection method. In this method, an improved fitness function involving with the cross validation coefficients was used, and we also designed an elite warehouse to avoid the pitfall of conventional genetic algorithms. Then the logBB models were built as the case study. Molecular descriptors were widely used in conventional ADMET prediction methodologies. However, there are several shortcomings of using molecular descriptors. The third chapter described a chemical classification method based on substructure recognition. Therefore the molecular descriptors were avoided during the model building. In addition, information gain analysis was involved to evaluate each substructure of the molecules, which could help to interpret the machine learning models from medicinal chemistry perspective. We also presented their applications in the ADMET prediction.
     Estrogen receptors (ERs) belong to nuclear receptor superfamily, which play crucial roles in human body, including the growth and differentiation of reproductive system, central nervous system and skeletal system. They are also important drug target for some diseases, including breast cancer. At present, most clinic use drugs are selective ER modulator. Although the underlying mechanism remains unclear, they have indeed alleviated the side effect of drugs. The second subtype, ERβ, which was discovered in 1996, shedding light on discovering subtype selective ligands for achieving tissue selective drugs. Therefore, many recent works focused on the differences in biological functions and pathways between the two subtypes. Besides, finding novel selective ligands could not only benefit the drug development, but also provide the chemical sensor for biological researches. The second section of this thesis is focusing on discovering selective ERβligands with various molecular modeling and CADD methods. In chapter 4, we performed steered molecular dynamics simulation to investigate the dynamic process of ligand unbinding from two different subtypes of ERs. In this work, we firstly find out that the process of ligand unbinding also contribute to the ligand selectivity. Accordingly, we proposed two suggestions for improving ERP selectivity. In chapter 5, we discovered 18 potent ligands of ERβwith virtual screening based on a structure optimized through molecular dynamics simulation. Among them, dual profile was observed in two ligands, as agonists for ERβand antagonists for ERa, which might be served as lead compounds for selective ER modulators. The results also suggest that structures optimized through MD are applicable to lead discovery. Besides, the structure activity relationship results confirmed the suggestions proposed in chapter 4. In these work, we presented an integrated work which involved theoretic calculations and experiments. The results have been verified for each other.
引文
[1]M. Murcko and P. Caron. Transforming the genome to drug discovery. Drug Discov. Today,2002,7:583-584
    [2]W. L. Jorgensen. The many roles of computation in drug discovery. Science,2004,303: 1813-1818
    [3]Y. Tang, W. Zhu, K. Chen and H. Jiang. New technologies in computer-aided drug design:Toward target identification and new chemical entity discovery. Drug Discov. Today: Technologies 2006,3:307-313
    [4]H. van de Waterbeemd and E. Gifford. ADMET in silico modelling:towards prediction paradise? Nat. Rev. Drug Discov.,2003,2:192-204
    [5]郑明月,针对环氧酶-2(COX-2)和5-脂氧酶(5-LOX)的药物设计与虚拟ADME/T评价方法的发展,中国科学院上海药物所博士论文:上海,2006.
    [6]H. Wan and A. G. Holmen. High throughput screening of physicochemical properties and in vitro ADME profiling in drug discovery. Comb. Chem. High T. Scr.,2009,12: 315-329
    [7]T. Hou and J. Wang. Structure-ADME relationship:still a long way to go? Expert Opin. Drug Metab. Toxicol.,2008,4:759-770
    [8]I. V. Tetko, P. Bruneau, H. W. Mewes, D. C. Rohrer and G. I. Poda. Can we estimate the accuracy of ADME-Tox predictions? Drug Discov. Today,2006,11:700-707
    [9]M. Vastag and G. M. Keseru. Current in vitro and in silico models of blood-brain barrier penetration:a practical view. Curr. Opin. Drug Discov. Devel.,2009,12:115-124
    [10]J. Giarratano and G. Riley. Expert Systems:Principles and Programming.3 ed.1998, Boston.:PWS Publishing.
    [11]J. C. Dearden, M. D. Barratt, R. Benigni, D. W. Bristol and R. D. Combes. The development and validation of expert systems for predicting toxicity. Alternative to laboratory animals,1997,25:223-252
    [12]张振山,小分子化合物致癌毒性预测和以HIV-1 RT, PPARy为靶标的药物分子设计,中国科学院上海药物所博士论文:上海,2006.
    [13]Y. Sakiyama. The use of machine learning and nonlinear statistical tools for ADME prediction. Expert Opin. Drug Metab. Toxicol.,2009,5:149-169
    [14]J. Gasteiger and T. Engel. Chemoinformatics:A Textbook.2003, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
    [15]R. D. Cramer, D. E. Patterson and J. D. Bunce. Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988,110:5959-5967
    [16]G. Klebe, U. Abraham and T. Mietzner. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem.,1994,37:4130-4146
    [17]J. M. Luco. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J. Chem. Inf. Comput. Sci.,1999,39:396-404
    [18]J. Kelder, P. D. Grootenhuis, D. M. Bayada, L. P. Delbressine and J. P. Ploemen. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res.,1999,16:1514-1519
    [19]R. C. Young, R. C. Mitchell, T. H. Brown, C. R. Ganellin, R. Griffiths, M. Jones, K. K. Rana, D. Saunders, I. R. Smith, N. E. Sore and et al. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J. Med. Chem.,1988,31:656-671
    [20]M. D. Wessel, P. C. Jurs, J. W. Tolan and S. M. Muskal. Prediction of human intestinal absorption of drug compounds from molecular structure. J. Chem. Inf. Comput. Sci.,1998, 38:726-735
    [21]K. Palm, P. Stenberg, K. Luthman and P. Artursson. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res.,1997,14:568-571
    [22]谢国瑞.线性代数及应用.1999,北京:高等教育出版社.
    [23]V. N. Vapnik. Statistical Learning Theory.1998, New York:John Wiley and Sons, Inc.
    [24]S. R. Gunn. Technical report:support vector machines for classification and regression. 1998, Southampton:University of Southampton.
    [25]J. H. Holland. Adaptation in natural and artificial system.1975, Ann Arbor:University of Michigan Press.
    [26]王小平,曹立明.遗传算法——理论、应用与软件实现.2002,西安:西安交通大学出版社.
    [27]徐筱杰,侯廷军,乔学斌,章威.计算机辅助药物分子设计.2004,北京:化学工业出版社现代生物技术与医药科技出版中心.
    [28]E. S. Olivas, J. D. M. Guerrero, M. M. Sober, J. R. M. Benedito and A. J. S. Lopez, eds. Handbook of Research on Machine Learning Applications and Trends:Algorithms, Methods, and Techniques, Vol.Ⅱ.1 ed., Machine Learning in Natural Language Processing. M. Sokolova and S. Szpakowicz.2010, New York:IGI Global.325-347.
    [29]D. C. Rapaport. The Art of Molecular Dynamics Simulation.2nd ed.2004, New York: Cambridge Univerisity Press.
    [30]G. G. Dodson, D. P. Lane and C. S. Verma. Molecular simulations of protein dynamics: new windows on mechanisms in biology. EMBO Rep.,2008,9:144-150
    [31]N. Attig, K. Binder, H. Grubmuller and K. Kremer, eds. Computational soft matter: From synthetic polymers to proteins, Vol.23., Introduction to molecular dynamics simulation, M. P. Allen.2004, Julich:John von Neumann Institute for Computing.1-28.
    [32]B. J. Alder and T. E. Wainwright. Studies in molecular dynamics, i. general method. Chem. Physics.,1959,31:459-466
    [33]T. Hansson, C. Oostenbrink and W. F. van Gunsteren. Molecular dynamics simulations. Curr. Opin. Struct. Biol,2002,12:190-196
    [34]M. Karplus and J. A. mcCammon. Molecular dynamics simulations on macrobiomolecules. Nat. Struct. Biol.,2002,9:646-652
    [35]W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc.,1995, 117:5179-5197
    [36]A. Wilkinson, P. Weiner and W. F. van Gunsteren Eds.. Computer Simulation of Biomolecular Systems:Theoretical and Experimental Applications, Vol.3. Chapter 2. The development/application of a'minimalist'organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experemental data. P. A. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot and A. Pohorille.1997. Dordrecht:Springer.83-96.
    [37]T. E. Cheatham Ⅲ, P. Cieplak and P. A. Kollman. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. Struct. Dyn., 1999,16:845-862
    [38]B. P. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus. CHARMM:A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem.,1983,4:187-217
    [39]C. L. B. I. B. R. Brooks, A. D. Mackerell Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus,. CHARMM:The biomolecular simulation program. J. Comput. Chem.,2009,30:1545-1614
    [40]C. S. Ewig, T. S. Thacher and A. T. Hagler. Derivation of class Ⅱ force fields. Ⅶ. Nonbonded force field parameters for organic compounds. J. Phy. Chem. B,1999,103: 6998-7014
    [41]W. F. van Gunsteren. Biomolecular Simulation:GROMOS 96 Manual and User Guide. 1996. Zurich:Verlag der Fachvereine Hochschulverlag AG an der ETH Zurich.
    [42]T. A. Hagren. Merck molecular force field. Ⅰ. Basis, form, scope, parameterization, and performance of Mmff94. J. Comput. Chem.,1996,17:490-519
    [43]T. A. Halgren. Merck molecular force field. Ⅱ. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem.,1996,17: 520-552
    [44]T. A. Halgren. Merck molecular force field Ⅲ. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem.,1996,17:553-586
    [45]I. K. Roterman, K. D. Gibson and H. A. Scheraga. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. I. Conformational predictions for the tandemly repeated peptide (Asn-Ala-Asn-Pro)9. J. Biomol. Struct. Dyn.,1989,7:391-419
    [46]I. K. Roterman, M. H. Lambert, K. D. Gibson and H. A. Scheraga. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. Ⅱ. Phi-psi maps for N-acetyl alanine N'-methyl amide:comparisons, contrasts and simple experimental tests. J. Biomol. Struct. Dyn.,1989,7:421-453
    [47]W. L. Jorgensen and J. Tirado-Rivers. The OPLS potential functions for proteins: Energy minimization for crystals of cyclic peptides and crambin. J. Am. Chem. Soc.,1988, 110:1657-1666
    [48]K. M. Merz and B. Roux, eds. Biological Membranes:A Molecular Perspective from Computation and Experiment. An empirical potential energy function for phospholipids: Criteria for parameter optimization and applications. M. Schlenkrich, J. Brickmann, J. MacKerell, A. D. and M. Karplus. Basel:Birkhauser.31-81.
    [49]M. T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. V. Kale, R. D. Skeel and K. Schulten. NAMD:A parallel, object oriented molecular dynamics program. Int. J. Supercomput. Applic,1996,10:251-268
    [50]D. P. Tieleman, S. J. Marrink and H. J. Berendsen. A computer perspective of membranes:molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta., 1997,1331:235-270
    [51]李卫华,细胞色素P450的分子模拟和核受体FXR激动剂的虚拟筛选,中国科学院上海药物所博士论文:上海,2005.
    [52]L. Verlet. Computer "experiments" on classical fluids. Ⅱ. Equilibrium correlation functions. Phys. Rev.,1968,165:201
    [53]W. C. Swope, H. C. Andersen, P. H. Berens and K. R. Wilson. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters. J. Chem. Phys.,1982,76:637-649
    [54]J. A. McCammon, B. R. Gelin and M. Karplus. Dynamics of folded proteins. Nature, 1977,267:585-590
    [55]Q. Shi, S. Izvekov and G. A. Voth. Mixed atomistic and coarse-grained molecular dynamics:simulation of a membrane-bound ion channel. J. Phys. Chem. B,2006,110: 15045-15048
    [56]H. Grubmuller, B. Heymann and P. Tavan. Ligand binding:molecular mechanics calculation of the streptavidin-biotin rupture force. Science,1996,271:997-999
    [57]B. Isralewitz, S. Izrailev and K. Schulten. Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys. J.,1997,73:2972-2979
    [58]陈志,小分子诱导蛋白质构象变化的分子动力学模拟研究,中国科学院上海药物所博士论文:上海,2009.
    [59]M. Levitt. A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol.,1976,104:59-107
    [60]V. Tozzini. Coarse-grained models for proteins. Curr. Opin. Struct. Biol.,2005,15: 144-150
    [61]Y. Xu, J. Shen, X. Luo, W. Zhu, K. Chen, J. Ma and H. Jiang. Conformational transition of amyloid beta-peptide. Proc. Natl. Acad. Sci. U. S. A.,2005,102:5403-5407
    [62]J. Zhang, C. Li, T. Shi, K. Chen, X. Shen and H. Jiang. Lys169 of human glucokinase is a determinant for glucose phosphorylation:Implication for the atomic mechanism of glucokinase catalysis. PLoS ONE,2009,4:e6304
    [63]张健,计算生物学方法发展及其在分子生物学和药物研究中的应用,中国科学院上海药物所博士论文:上海,2007.
    [64]Y. Xu, J. Shen, X. Luo, I. Silman, J. L. Sussman, K. Chen and H. Jiang. How does huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations. J. Am. Chem. Soc.,2003,125:11340-11349
    [65]X. Liu, Y. Xu, H. Li, X. Wang, H. Jiang and F. J. Barrantes. Mechanics of channel gating of the nicotinic acetylcholine receptor. PLoS Comput. Biol.,2008,4:e19
    [66]Y. Zhao, W. Li, J. Zeng, G. Liu and Y. Tang. Insights into the interactions between HIV-1 integrase and human LEDGF/p75 by molecular dynamics simulation and free energy calculation. Proteins,2008,72:635-645
    [67]J. Shen, W. Li, G. Liu, Y. Tang and H. Jiang. Computational insights into the mechanism of ligand unbinding and selectivity of estrogen receptors. J. Phys. Chem. B, 2009,113:10436-10444
    [68]J. Zeng, W. Li, Y Zhao, G. Liu, Y. Tang and H. Jiang. Insights into ligand selectivity in estrogen receptor isoforms:molecular dynamics simulations and binding free energy calculations. J. Phys. Chem. B,2008,112:2719-2726
    [69]W. Li, J. Shen, G Liu, Y Tang and T. Hoshino. Exploring coumarin egress channels in human cytochrome p4502a6 by random acceleration and steered molecular dynamics simulations. Proteins, doi:10.1002/prot.22880
    [70]W. Li, Y. Tang, T. Hoshino and S. Neya. Molecular modeling of human cytochrome P4502W1 and its interactions with substrates. J. Mol. Graphics Modell.,2009,28:170-176
    [71]W. Li, H. Ode, T. Hoshino, H. Liu, Y. Tang and H. Jiang. Reduced catalytic activity of P450 2A6 mutants with coumarin:A computational investigation. J. Chem. Theory Comput., 2009,5:1411-1420
    [72]W. Li, Y. Tang, H. Liu, J. Cheng, W. Zhu and H. Jiang. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking. Proteins,2008,71:938-949
    [73]刘晓峰,基于多种策略的虚拟筛选程序设计及其在药物发现中的应用,中国科学院上海药物所博士论文:上海,2010.
    [74]D. L. Beveridge and F. M. Dicapua. Free energy via molecular simulation Applications to chemical and biomolecular systems. Annu. Rev. Biophys. Bio.,1989,18: 431-492
    [75]P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case and T. E. Cheatham. Calculating structures and free energies of complex molecules:Combining molecular mechanics and continuum models. Acc. Chem. Res.,2000,33:889-897
    [76]T. Hansson, J. Marelius and J. Aqvist. Ligand binding affinity prediction by linear interaction energy methods. J. Comput. Aided Mol. Des.,1998,12:27-35
    [77]H. J. Bohm. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J. Comput. Aided Mol. Des.,1994,8:243-256
    [78]H. J. Bohm. Prediction of binding constants of protein ligands:A fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J. Comput. Aided Mol. Des.,1998,12:309-323
    [79]R. Wang, L. Lai and S. Wang. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des.,2002, 16:11-26
    [80]I. Muegge. PMF scoring revisited. J. Med. Chem.,2005,49:5895-5902
    [81]I. Muegge and Y. C. Martin. A general and fast scoring function for protein-ligand interactions:A simplified potential approach. J. Med. Chem.,1999,42:791-804
    [82]X. Zhao, X. Liu, Y. Wang, Z. Chen, L. Kang, H. Zhang, X. Luo, W. Zhu, K. Chen, H. Li, X. Wang and H. Jiang. An improved PMF scoring function for universally predicting the interactions of a ligand with protein, DNA, and RNA. J. Chem. Inf. Model.,2008,48: 1438-1447
    [83]J. B.O. Mitchell, R. A. Laskowski, A. Alex and J. M. Thornton. BLEEP-potential of mean force describing protein-ligand interactions:Ⅰ. Generating potential. J. Comput. Chem.,1999,20:1165-1176
    [84]J. B.0. Mitchell, R. A. Laskowski, A. Alex, M. J. Forster and J. M. Thornton. BLEEP—potential of mean force describing protein-ligand interactions:Ⅱ. Calculation of binding energies and comparison with experimental data. J. Comput. Chem.,1999,20: 1177-1185
    [85]A. V. Ishchenko and E. I. Shakhnovich. SMall Molecule Growth 2001 (SMoG2001): An improved knowledge-based scoring function for protein-ligand interactions. J. Med. Chem.,2002,45:2770-2780
    [86]R. S. DeWitte, A. V. Ishchenko and E. I. Shakhnovich. SMoG:De novo design method based on simple, fast, and accurate free energy estimates.2. Case studies in molecular design. J. Am. Chem. Soc.,1997,119:4608-4617
    [87]H. F. G. Velec, H. Gohlke and G. Klebe. DrugScoreCSD:Knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J. Med. Chem.,2005,48:6296-6303
    [88]P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. H. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case and T. E. Cheatham. Calculating structures and free energies of complex molecules:Combining molecular mechanics and continuum models. Accounts Chem. Res.,2000,33:889-897
    [89]R. X. Wang, Y. Gao and L. H. Lai. LigBuilder:Calculating partition coefficient by atom-additive method. Perspect. Drug Discovery Des.,2000,19:47-66
    [90]T. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X. Zhang, Y. Li, R. Wang and L. Lai. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model.,2007,47:2140-2148
    [91]R. X. Wang, Y. Gao and L. H. Lai. LigBuilder:A multi-purpose program for structure-based drug design. J. Mol. Model.,2000,6:498-516
    [92]J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu, K. Chen, Y. Li and H. Jiang. Predictina protein-protein interactions based only on sequences information. Proc. Natl. Acad. Sci. U. S. A.,2007,104:4337-4341
    [93]H. L. Li, Z. T. Gao, L. Kang, H. L. Zhang, K. Yang, K. Q. Yu, X. M. Luo, W. L. Zhu, K. X. Chen, J. H. Shen, X. C. Wang and H. L. Jiang. TarFisDock:A web server for identifying drug targets with docking approach. Nucleic. Acids Res.,2006,34:W219-W224
    [94]Z. Gao, H. Li, H. Zhang, X. Liu, L. Kang, X. Luo, W. Zhu, K. Chen, X. Wang and H. Jiang. PDTD:A web-accessible protein database for drug target identification. BMC Bioinformatics,2008,9:
    [95]R. X. Wang, X. L. Fang, Y. P. Lu and S. M. Wang. The PDBbind database:Collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J. Med. Chem.,2004,47:2977-2980
    [96]R. X. Wang, X. L. Fang, Y. P. Lu, C. Y. Yang and S. M. Wang. The PDBbind database: Methodologies and updates. J. Med. Chem.,2005,48:4111-4119
    [97]D. Rogers and A. J. Hopfinger. Application of genetic function approximation to quantitative structure activity relationships and quantitative structure property relationships. J. Chem. Inf. Comput. Sci.,1994,34:854-866
    [98]H. Kubinyi. Variable selection in QSAR studies.Ⅰ. An evolutionary algorithm. Quant. Struct.-Act. Relat.,1994,13:285-294
    [99]H. Kubinyi. Variable selection in QSAR studies. Ⅱ. A highly efficient combination of systematic search and evolution. Quant. Struct.-Act. Relat.,1994,13:393-401
    [100]T. Hou and X. Xu. ADME evaluation in drug discovery.1. Applications of genetic algorithms to the prediction of blood-brain partitioning of a large set of drugs. J. Mol. Model.,2002,8:337-349
    [101]梁文权.生物药剂学与药物动力学,第2版.2005,北京:人民卫生出版社.
    [102]M. H. Abraham, H. S. Chadha and R. C. Mitchell. Hydrogen bonding.33. Factors that influence the distribution of solutes between blood and brain. J. Pharm. Sci.,1994,83: 1257-1268
    [103]D. E. Clark. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena.2. Prediction of blood-brain barrier penetration. J. Pharm. Sci.,1999,88:815-821
    [104]G. M. Keseru and L. Molnar. High-throughput prediction of blood-brain partitioning: a thermodynamic approach. J. Chem. Inf. Comput. Sci.,2001,41:120-128
    [105]R. Liu, H. Sun and S. S. So. Development of quantitative structure-property relationship models for early ADME evaluation in drug discovery.2. Blood-brain barrier penetration. J. Chem. Inf. Comput. Sci.,2001,41:1623-1632
    [106]K. Rose, L. H. Hall and L. B. Kier. Modeling blood-brain barrier partitioning using the electrotopological state. J. Chem. Inf. Comput. Sci.,2002,42:651-666
    [107]T. J. Hou and X. J. Xu. ADME evaluation in drug discovery.3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci.,2003,43: 2137-2152
    [108]M. C. Hutter. Prediction of blood-brain barrier permeation using quantum chemically derived information. J. Comput. Aided Mol. Des.s,2003,17:415-433
    [109]R. Narayanan and S. B. Gunturi. In silico ADME modelling:prediction models for blood-brain barrier permeation using a systematic variable selection method. Bioorg. Med. Chem.,2005,13:3017-3028
    [110]A. R. Katritzky, M. Kuanar, S. Slavov, D. A. Dobchev, D. C. Fara, M. Karelson, W. E. Acree, Jr., V. P. Solov'ev and A. Varnek. Correlation of blood-brain penetration using structural descriptors. Bioorg. Med. Chem.,2006,14:4888-4917
    [111]Y. N. Kaznessis, M. E. Snow and C. J. Blankley. Prediction of blood-brain partitioning using Monte Carlo simulations of molecules in water. J. Comput. Aided Mol. Des.,2001,15:697-708
    [112]J. H. Al-Fahemi, D. L. Cooper and N. L. Allan. Investigating the utility of momentum-space descriptors for predicting blood-brain barrier penetration. J. Mol. Graph Model,2007,26:607-612
    [113]K. Wichmann, M. Diedenhofen and A. Klamt. Prediction of blood-brain partitioning and human serum albumin binding based on COSMO-RS sigma-moments. J. Chem. Inf. Model,2007,47:228-233
    [114]P. Crivori, G. Cruciani, P. A. Carrupt and B. Testa. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J. Med. Chem,2000,43: 2204-2216
    [115]U. Norinder, P. Sjoberg and T. Osterberg. Theoretical calculation and prediction of brain-blood partitioning of organic solutes using MolSurf parametrization and PLS statistics. J. Pharm. Sci.,1998,87:952-959
    [116]G. Subramanian and D. B. Kitchen. Computational models to predict blood-brain barrier permeation and CNS activity. J. Comput. Aided Mol. Des.,2003,17:643-664
    [117]M. U. Cuadrado, I. L. Ruiz and M. A. Gomez-Nieto. QSAR models based on isomorphic and nonisomorphic data fusion for predicting the blood brain barrier permeability. J. Comput. Chem,2007,28:1252-1260
    [118]P. Garg and J. Verma. In silico prediction of blood brain barrier permeability:An artificial neural network model. J. Chem. Inf. Model,2006,46:289-297
    [119]B. Hemmateenejad, R. Miri, M. A. Safarpour and A. R. Mehdipour. Accurate prediction of the blood-brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling. J. Comput. Chem.,2006,27:1125-1135
    [120]S. R. Mente and F. Lombardo. A recursive-partitioning model for blood-brain barrier permeation. J. Comput. Aided Mol. Des.,2005,19:465-481
    [121]Y. H. Zhao, M. H. Abraham, A. Ibrahim, P. V. Fish, S. Cole, M. L. Lewis, M. J. de Groot and D. P. Reynolds. Predicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemes. J. Chem. Inf. Model,2007,47:170-175
    [122]F. Lombardo, J. F. Blake and W. J. Curatolo. Computation of brain-blood partitioning of organic solutes via free energy calculations. J. Med. Chem.,1996,39:4750-4755
    [123]Corina 3.1, Molecular Networks GmbH:Erlangen, Germany,2004.
    [124]I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk and V. V. Prokopenko. Virtual computational chemistry laboratory-design and description. J. Comput. Aided Mol. Des.,2005,19:453-463
    [125]I. V. Tetko, P. Bruneau, H. W. Mewes, D. C. Rohrer and G. I. Poda. Can we estimate the accuracy of ADME-Tox predictions? Drug Discov. Today,2006,11:700-707
    [126]M. H. Abraham, K. Takacs-Novak and R. C. Mitchell. On the partition of ampholytes: application to blood-brain distribution. J. Pharm. Sci.,1997,86:310-315
    [127]D. E. Clark. In silico prediction of blood-brain barrier permeation. Drug Discov. Today,2003,8:927-933
    [128]M. Feher, E. Sourial and J. M. Schmidt. A simple model for the prediction of blood-brain partitioning. Int. J. Pharm.,2000,201:239-247
    [129]Cerius2, Accelrys:San Diego, CA,2003.
    [130]QikProp version 2.5, Schrodinger, LLC:New York, NY,2005.
    [131]M. Lobell, L. Molnar and G. M. Keseru. Recent advances in the prediction of blood-brain partitioning from molecular structure. J. Pharm. Sci.,2003,92:360-370
    [132]Ajay, G. W. Bemis and M. A. Murcko. Designing libraries with CNS activity. J. Med. Chem.,1999,42:4942-4951
    [133]S. Doniger, T. Hofmann and J. Yeh. Predicting CNS permeability of drug molecules: comparison of neural network and support vector machine algorithms. J. Comput. Biol., 2002,9:849-864
    [134]J. Shen, F. Cheng, Y. Xu, W. Li and Y. Tang. Estimation of ADME Properties with Substructure Pattern Recognition. J. Chem. Inf. Model,2010,50:1034-1041
    [135]S. H. Unger and C. Hansch. On model building in structure-activity relationships. A reexamination of adrenergic blocking activity of beta-halo-beta-arylalkylamines. J. Med. Chem.,1973,16:745-749
    [136]I. Kola and J. Landis. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov.,2004,3:711-715
    [137]J. L. Wang and S. Skolnik. Recent advances in physicochemical and ADMET profiling in drug discovery. Chem. Biodivers.,2009,6:1887-1899
    [138]L. Huynh, R. Masereeuw, T. Friedberg, M. Ingelman-Sundberg and P. Manivet. In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part I:Beyond the reduction of animal model use. Drug Discov. Today,2009,14: 401-405
    [139]M. Adenot and R. Lahana. Blood-brain barrier permeation models:discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates. J. Chem. Inf. Comput. Sci.,2004,44:239-248
    [140]E. Jung, J. Kim, M. Kim, D. H. Jung, H. Rhee, J. M. Shin, K. Choi, S. K. Kang, M. K. Kim, C. H. Yun, Y. J. Choi and S. H. Choi. Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics,2007,8:245
    [141]Y. H. Zhao, M. H. Abraham, A. Ibrahim, P. V. Fish, S. Cole, M. L. Lewis, M. J. de Groot and D. P. Reynolds. Predicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemes. J. Chem. Inf. Model.,2007,47:170-175
    [142]L. Zhang, H. Zhu, T. I. Oprea, A. Golbraikh and A. Tropsha. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm. Res.,2008,25: 1902-1914
    [143]H. Li, C. W. Yap, C. Y. Ung, Y. Xue, Z. W. Cao and Y. Z. Chen. Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. J. Chem. Inf. Model.,2005,45: 1376-1384
    [144]T. Hou, J. Wang and Y. Li. ADME evaluation in drug discovery.8. The prediction of human intestinal absorption by a support vector machine. J. Chem. Inf. Model.,2007,47: 2408-2415
    [145]H. Frolich, J. K. Wegner, F. Sieker and A. Zell. Kernel functions for attributed molecular graphs-A new similarity-based approach to ADME prediction in classification and regression. QSAR Comb. Sci.,2006,25:317-326
    [146]H. Geppert, M. Vogt and J. Bajorath. Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J. Chem. Inf. Model.,2010,50:205-216
    [147]O. Ivanciuc. Applications of support vector machines in chemistry. Rev. Comput. Chem.,2007,23:291-400
    [148]J. Shen, Y. Du, Y. Zhao, G. Liu and Y. Tang. In silico prediction of blood-brain partitioning using a chemometric method called genetic algorithm based variable selection. QSAR Comb. Sci.,2008,27:704-717
    [149]A. Soto, R. Cecchini, G. Vazquez and I. Ponzoni. Multi-objective feature selection in QSAR using a machine learning approach. QSAR Comb. Sci.,2009,28:1509-1523
    [150]Open Babel, http://openbabel.org/(accessed Access Date:Jan.18,2010).
    [151]J. L. Durant, B. A. Leland, D. R. Henry and J. G. Nourse. Reoptimization of MDL keys for use in drug discovery. J. Chem. Inf. Comput. Sci.,2002,42:1273-1280
    [152]J. Auer and J. Bajorath. Emerging chemical patterns:A new methodology for molecular classification and compound selection. J. Chem. Inf. Model.,2006,46: 2502-2514
    [153]V. N. Vapnik. The nature of statistical learning theory:Second Edition.2000, New York:Springer-Verlag.
    [154]LIBSVM:A Library for Support Vector Machines.http://www.csie.ntu.edu.tw/-cjlin/ libsvm (accessed Access Date:Jan.18,2010).
    [155]P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen and H. Nielsen. Assessing the accuracy of prediction algorithms for classification:an overview. Bioinformatics,2000,16: 412-424
    [156]T. Hou, J. Wang, W. Zhang and X. Xu. ADME evaluation in drug discovery.7. Prediction of oral absorption by correlation and classification. J. Chem. Inf. Model.,2007, 47:208-218
    [157]D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam and M. Hassanali. DrugBank:a knowledgebase for drugs, drug actions and drug targets. Nucleic. Acids Res.,2008,36:D901-D906
    [158]K. Hansen, S. Mika, T. Schroeter, A. Sutter, A. ter Laak, T. Steger-Hartmann, N. Heinrich and K.-R. Muller. Benchmark data set for in silico prediction of AMES mutagenicity. J. Chem. Inf. Model.,2009,49:2077-2081
    [159]H.-X. Zhou. From Induced Fit to Conformational Selection:A continuum of binding mechanism controlled by the timescale of conformational transitions. Biophys. J.,2010,98: L15-L17
    [160]J. F. Couse and K. S. Korach. Estrogen receptor null mice:what have we learned and where will they lead us? Endocr. Rev.,1999,20:358-417
    [161]K. Pettersson and J. A. Gustafsson. Role of estrogen receptor beta in estrogen action. Annu. Rev. Physiol.,2001,63:165-192
    [162]C. Zhao, K. Dahlman-Wright and J. A. Gustafsson. Estrogen receptor beta:an overview and update. Nucl. Recept. Signal.,2008,6:e003
    [163]O. Varea, J. J. Garrido, A. Dopazo, P. Mendez, L. M. Garcia-Segura and F. Wandosell. Estradiol activates beta-catenin dependent transcription in neurons. PLoS ONE,2009,4: e5153
    [164]K. C. Westerlind, T. J. Wronski, E. L. Ritman, Z. P. Luo, K. N. An, N. H. Bell and R. T. Turner. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc. Natl. Acad. Sci. U.S.A.,1997,94: 4199-4204
    [165]P. B. Rapuri, J. C. Gallagher and G. Haynatzki. Endogenous levels of serum estradiol and sex hormone binding globulin determine bone mineral density, bone remodeling, the rate of bone loss, and response to treatment with estrogen in elderly women. J. Clin. Endocrinol. Metab.,2004,89:4954-4962
    [166]M. E. Mendelsohn and R. H. Karas. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med.,1999,340:1801-1811
    [167]M. E. Mendelsohn. Protective effects of estrogen on the cardiovascular system. Am. J. Cardiol.,2002,89:12E-17E; discussion 17E-18E
    [168]J. T. Moore, J. L. Collins and K. H. Pearce. The nuclear receptor superfamily and drug discovery. ChemMedChem,2006,1:504-523
    [169]J. D. Yager and N. E. Davidson. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med,2006,354:270-282
    [170]C. K. Osborne. Tamoxifen in the treatment of breast cancer. N. Engl. J. Med.,1998, 339:1609-1618
    [171]H. A. Harris, J. A. Katzenellenbogen and B. S. Katzenellenbogen. Characterization of the biological roles of the estrogen receptors, ERa and ERβ,in estrogen target tissues in vivo through the use of an ERa-selective ligand. Endocrinology,2002,143:4172
    [172]G. G. Kuiper, B. Carlsson, K. Grandien, E. Enmark, J. Haggblad, S. Nilsson and J. A. Gustafsson. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology,1997,138:863-870
    [173]K. S. Korach, J. M. Emmen, V. R. Walker, S. C. Hewitt, M. Yates, J. M. Hall, D. L. Swope, J. C. Harrell and J. F. Couse. Update on animal models developed for analyses of estrogen receptor biological activity. J. Steroid Biochem. Mol. Biol.,2003,86:387-391
    [174]H. A. Harris, L. M. Albert, Y. Leathurby, M. S. Malamas, R. E. Mewshaw, C. P. Miller, Y. P. Kharode, J. Marzolf, B. S. Komm, R. C. Winneker, D. E. Frail, R. A. Henderson, Y. Zhu and J. C. Keith, Jr. Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology,2003,144:4241-4249
    [175]M. S. Malamas, E. S. Manas, R. E. McDevitt, I. Gunawan, Z. B. Xu, M. D. Collini, C. P. Miller, T. Dinh, R. A. Henderson, J. C. Keith, Jr. and H. A. Harris. Design and synthesis of aryl diphenolic azoles as potent and selective estrogen receptor-beta ligands. J. Med. Chem.,2004,47:5021-5040
    [176]A. Hillisch, O. Peters, D. Kosemund, G. Muller, A. Walter, B. Schneider, G. Reddersen, W. Elger and K. H. Fritzemeier. Dissecting physiological roles of estrogen receptor alpha and beta with potent selective ligands from structure-based design. Mol. Endocrinol.,2004,18:1599-1609
    [177]A. Cvoro, S. Paruthiyil, J. O. Jones, C. Tzagarakis-Foster, N. J. Clegg, D. Tatomer, R. T. Medina, M. Tagliaferri, F. Schaufele, T. S. Scanlan, M. I. Diamond, I. Cohen and D. C. Leitman. Selective activation of estrogen receptor-beta transcriptional pathways by an herbal extract. Endocrinology,2007,148:538-547
    [178]H. A. Harris, K. L. Bruner-Tran, X. Zhang, K. G. Osteen and C. R. Lyttle. A selective estrogen receptor-beta agonist causes lesion regression in an experimentally induced model of endometriosis. Hum. Reprod.,2005,20:936-941
    [179]R. A. Bhat, B. Stauffer, R. J. Unwalla, Z. Xu, H. A. Harris and B. S. Komm. Molecular determinants of ER alpha and ER beta involved in selectivity of 16 alpha-iodo-7 beta estradiol. J. Steroid Biochem. Mol. Biol.,2004,88:17-26
    [180]T. Tuccinardi, S. Bertini, A. Martinelli, F. Minutolo, G. Ortore, G. Placanica, G. Prota, S. Rapposelli, K. E. Carlson, J. A. Katzenellenbogen and M. Macchia. Synthesis of anthranylaldoxime derivatives as estrogen receptor ligands and computational prediction of binding modes. J. Med. Chem.,2006,49:5001-5012
    [181]L. B. Salum, I. Polikarpov and A. D. Andricopulo. Structure-based approach for the study of estrogen receptor binding affinity and subtype selectivity. J. Chem. Inf. Model., 2008,48:2243-2253
    [182]J. Sun, J. Baudry, J. A. Katzenellenbogen and B. S. Katzenellenbogen. Molecular basis for the subtype discrimination of the estrogen receptor-beta-selective ligand, diarylpropionitrile. Mol. Endocrinol.,2003,17:247-258
    [183]E. S. Manas, R. J. Unwalla, Z. B. Xu, M. S. Malamas, C. P. Miller, H. A. Harris, C. Hsiao, T. Akopian, W. T. Hum, K. Malakian, S. Wolfrom, A. Bapat, R. A. Bhat, M. L. Stahl, W. S. Somers and J. C. Alvarez. Structure-based design of estrogen receptor-beta selective ligands. J. Am. Chem. Soc.,2004,126:15106-15119
    [184]E. S. Manas, Z. B. Xu, R. J. Unwalla and W. S. Somers. Understanding the selectivity of genistein for human estrogen receptor-beta using X-ray crystallography and computational methods. Structure,2004,12:2197-2207
    [185]R. W. Hsieh, S. S. Rajan, S. K. Sharma, Y. Guo, E. R. DeSombre, M. Mrksich and G. L. Greene. Identification of ligands with bicyclic scaffolds provides insights into mechanisms of estrogen receptor subtype selectivity. J. Biol. Chem.,2006,281: 17909-17919
    [186]K. W. Nettles, J. Sun, J. T. Radek, S. Sheng, A. L. Rodriguez, J. A. Katzenellenbogen, B. S. Katzenellenbogen and G. L. Greene. Allosteric control of ligand selectivity between estrogen receptors alpha and beta:implications for other nuclear receptors. Mol. Cell,2004, 13:317-327
    [187]J. Zeng, W. Li, Y. Zhao, G. Liu, Y. Tang and H. Jiang. Insights into ligand selectivity in estrogen receptor isoforms:molecular dynamics simulations and binding free energy calculations. J. Phys. Chem. B,2008,112:2719-2726
    [188]M. T. Sonoda, L. Martinez, P. Webb, M. S. Skaf and I. Polikarpov. Ligand dissociation from estrogen receptor is mediated by receptor dimerization:evidence from molecular dynamics simulations. Mol. Endocrinol.,2008,22:1565-1578
    [189]C. Jarzynski.Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 1997,78:2690-2693
    [190]A. Sali and T. L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol.,1993,234:779-815
    [191]Sybyl. and V.7.0 Tripos Inc.:St. Louis, MO,2004.
    [192]D. C. Bas, D. M. Rogers and J. H. Jensen. Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins,2008,73:765-783
    [193]Gaussian and 03 Gaussian, Inc.:Wallingford,2004.
    [194]J. Wang, W. Wang, P. A. Kollman and D. A. Case. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model.,2006,25:247-260
    [195]P. Clieplak, W. D. Cornell, C. Bayly and P. A. Kollan. Mutagenicity and specific mutation spectrum induced by 8-methoxypsoralen plus a low dose of UVA in the hprt gene in diploid human fibroblasts. J. Comput. Chem.,1995,16:1357-1377
    [196]Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang and P. Kollman. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem.,2003,24:1999-2012
    [197]J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case. Development and testing of a general amber force field. J. Comput. Chem.,2004,25:1157-1174
    [198]D. A. Case, T. A. Darden, I. T.E. Cheatham, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, M. Crowley, R. C. Walker, W. Zhang, K. M. Merz, B.Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K.F.Wong, F. Paesani, J. Vanicek, X.Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D. H. Mathews, M. G. Seetin, C. Sagui, V. Babin and P. A. Kollman AMBER 10, University of California, San Francisco:2008.
    [199]W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.,1983, 79:926-935
    [200]J. P. Ryckaert, G. Ciccotti and H. J. C. Berendsen. Numerical-integration of cartesian equations of motion of a system with constraints molecular dynamics of N-Alkanes. J. Comput. Phys.,1977,23:327-341
    [201]U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen. A smooth particle mesh Ewald method. J. Chem. Phys.,1995,103:8577-8593
    [202]S. Park, F. Khalili-Araghi, E. Tajkhorshid and K. Schulten. Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. J. Chem. Phys., 2003,119:3559-3566
    [203]S. Park and K. Schulten. Calculating potentials of mean force from steered molecular dynamics simulations. J.Chem. Phys.,2004,120:5946-5961
    [204]Y. Deng and B. Roux. Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. B,2009,113:2234-2246
    [205]M. O. Jensen, S. Park, E. Tajkhorshid and K. Schulten. Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc. Natl. Acad. Sci. U. S. A.,2002,99: 6731-6736
    [206]R. Amaro, E. Tajkhorshid and Z. Luthey-Schulten. Developing an energy landscape for the novel function of a (beta/alpha)8 barrel:ammonia conduction through HisF. Proc. Natl. Acad. Sci. U. S. A.,2003,100:7599-7604
    [207]D. Zhang, J. Gullingsrud and J. A. McCammon. Potentials of mean force for acetylcholine unbinding from the alpha7 nicotinic acetylcholine receptor ligand-binding domain. J. Am. Chem. Soc.,2006,128:3019-3026
    [208]H. Hwang, G. C. Schatz and M. A. Ratner. Steered molecular dynamics studies of the potential of mean force of a Na+or K+ion in a cyclic peptide nanotube. J. Phys. Chem. B, 2006,110:26448-26460
    [209]H. Vashisth and C. F. Abrams. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex. Biophys J,2008,95:4193-4204
    [210]F. M. Ytreberg and D. M. Zuckerman. Efficient use of nonequilibrium measurement to estimate free energy differences for molecular systems. J. Comput. Chem.,2004,25: 1749-1759
    [211]Zuckerman Lab. http://www.ccbb.pitt.edu/Faculty/zuckerman/software.html (accessed Apr.10).
    [212]L. Martinez, P. Webb, I. Polikarpov and M. S. Skaf. Molecular dynamics simulations of ligand dissociation from thyroid hormone receptors:evidence of the likeliest escape pathway and its implications for the design of novel ligands. J. Med. Chem.,2006,49: 23-26
    [213]L. Martinez, M. T. Sonoda, P. Webb, J. D. Baxter, M. S. Skaf and I. Polikarpov. Molecular dynamics simulations reveal multiple pathways of ligand dissociation from thyroid hormone receptors. Biophys. J.,2005,89:2011-2023
    [214]K. Ekena, K. E. Weis, J. A. Katzenellenbogen and B. S. Katzenellenbogen. Identification of amino acids in the hormone binding domain of the human estrogen receptor important in estrogen binding. J. Biol. Chem.,1996,271:20053-20059
    [215]L. Celik, J. D. Lund and B. Schiott. Conformational dynamics of the estrogen receptor alpha:molecular dynamics simulations of the influence of binding site structure on protein dynamics. Biochemistry,2007,46:1743-1758
    [216]K. W. Nettles, J. B. Bruning, G. Gil, J. Nowak, S. K. Sharma, J. B. Hahm, K. Kulp, R. B. Hochberg, H. Zhou, J. A. Katzenellenbogen, B. S. Katzenellenbogen, Y. Kim, A. Joachmiak and G. L. Greene. NFkappaB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nat. Chem. Biol.,2008,4:241-247
    [217]G. H. Veeneman. Non-steroidal subtype selective estrogens. Curr. Med. Chem.,2005, 12:1077-1136
    [218]J. Peng, S. Sengupta and V. C. Jordan. Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anticancer Agents Med. Chem., 2009,9:481-499
    [219]A. Cvoro, S. Paruthiyil, J. O. Jones, C. Tzagarakis-Foster, N. J. Clegg, D. Tatomer, R. T. Medina, M. Tagliaferri, F. Schaufele, T. S. Scanlan, M. I. Diamond, I. Cohen and D. C. Leitman. Selective activation of estrogen receptor-beta transcriptional pathways by an herbal extract. Endocrinology,2007,148:538-547
    [220]H. A. Harris, L. M. Albert, Y. Leathurby, M. S. Malamas, R. E. Mewshaw, C. P. Miller, Y. P. Kharode, J. Marzolf, B. S. Komm, R. C. Winneker, D. E. Frail, R. A. Henderson, Y. Zhu and J. C. Keith, Jr. Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology,2003,144:4241-4249
    [221]S. R. Cummings, K. Ensrud, P. D. Delmas, A. Z. LaCroix, S. Vukicevic, D. M. Reid, S. Goldstein, U. Sriram, A. Lee, J. Thompson, R. A. Armstrong, D. D. Thompson, T. Powles, J. Zanchetta, D. Kendler, P. Neven, R. Eastell and the PEARL study investigators. Lasofoxifene in postmenopausal women with osteoporosis. N. Engl. J. Med.,2010,362: 686-696
    [222]A. Hillisch, O. Peters, D. Kosemund, G. Muller, A. Walter, B. Schneider, G. Reddersen, W. Elger and K. H. Fritzemeier. Dissecting physiological roles of estrogen receptor alpha and beta with potent selective ligands from structure-based design. Mol. Endocrinol.,2004,18:1599-1609
    [223]E. S. Manas, R. J. Unwalla, Z. B. Xu, M. S. Malamas, C. P. Miller, H. A. Harris, C. Hsiao, T. Akopian, W. T. Hum, K. Malakian, S. Wolfrom, A. Bapat, R. A. Bhat, M. L. Stahl, W. S. Somers and J. C. Alvarez. Structure-based design of estrogen receptor-β selective ligands. J. Am. Chem. Soc.,2004,126:15106-15119
    [224]D. R. Compton, S. Sheng, K. E. Carlson, N. A. Rebacz, I. Y. Lee, B. S. Katzenellenbogen and J. A. Katzenellenbogen. Pyrazolo[1,5-a]pyrimidines:estrogen receptor ligands possessing estrogen receptorβ antagonist activity. J. Med. Chem.,2004,47: 5872-5893
    [225]M. De Angelis, F. Stossi, K. A. Carlson, B. S. Katzenellenbogen and J. A. Katzenellenbogen. Indazole estrogens:highly selective ligands for the estrogen receptorβ. J. Med. Chem.,2005,48:1132-1144
    [226]R. E. Mewshaw, R. J. Edsall, Jr., C. Yang, E. S. Manas, Z. B. Xu, R. A. Henderson, J. C. Keith, Jr. and H. A. Harris. ERβ ligands.3. Exploiting two binding orientations of the 2-phenylnaphthalene scaffold to achieve ERβ selectivity. J. Med. Chem.,2005,48: 3953-3979
    [227]B. H. Norman, J. A. Dodge, T. I. Richardson, P. S. Borromeo, C. W. Lugar, S. A. Jones, K. Chen, Y. Wang, G. L. Durst, R. J. Barr, C. Montrose-Rafizadeh, H. E. Osborne, R. M. Amos, S. Guo, A. Boodhoo and V. Krishnan. Benzopyrans are selective estrogenreceptor β agonists with novel activity in models of benign prostatic hyperplasia. J. Med. Chem., 2006,49:6155-6157
    [228]T. Gungor, Y. Chen, R. Golla, Z. Ma, J. R. Corte, J. P. Northrop, B. Bin, J. K. Dickson, T. Stouch, R. Zhou, S. E. Johnson, R. Seethala and J. H. Feyen. Synthesis and characterization of 3-arylquinazolinone and 3-arylquinazolinethione derivatives as selective estrogen receptor beta modulators. J. Med. Chem.,2006,49:2440-2455
    [229]F. Minutolo, S. Bertini, C. Granchi, T. Marchitiello, G. Prota, S. Rapposelli, T. Tuccinardi, A. Martinelli, J. R. Gunther, K. E. Carlson, J. A. Katzenellenbogen and M. Macchia. Structural evolutions of salicylaldoximes as selective agonists for estrogen receptorβ. J. Med. Chem.,2009,52:858-867
    [230]M. Waibel, M. De Angelis, F. Stossi, K. J. Kieser, K. E. Carlson, B. S. Katzenellenbogen and J. A. Katzenellenbogen. Bibenzyl-and stilbene-core compounds with non-polar linker atom substituents as selective ligands for estrogen receptor beta. Eur. J. Med. Chem.,2009,44:3412-3424
    [231]A. J. S. Knox, M. J. Meegan, V. Sobolev, D. Frost, D. M. Zisterer, D. C. Williams and D. G. Lloyd. Target specific virtual screening:optimization of an estrogen receptor screening platform. J. Med. Chem.,2007,50:5301-5310
    [232]A. J. Knox, Y. Yang, D. G. Lloyd and M. J. Meegan. Virtual screening of the estrogen receptor. Expert Opin. Drug Discov.,2008,3:853-866
    [233]Y. Kawamura, Y Ogawa, T. Nishimura, Y Kikuchi, J.-i. Nishikawa, T. Nishihara and K. Tanamoto. Estrogenic activities of UV stabilizers used in food contact plastics and benzophenone derivatives tested by the yeast two-hybrid assay. J. Health Sci.,2003,49: 205-212
    [234]Schrodinger Suite, Schrodinger, LLC:New York, NY,2008.
    [235]SPECS.http://www.spces.net (accessed May 20).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700