用户名: 密码: 验证码:
基于SIRT1/PGC-1α途径研究电针改善胰岛素抵抗的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     近年来,2型糖尿病的发病率呈现快速增长趋势,由糖尿病引起的死亡人数仅次于心脑血管疾病、恶性肿瘤。胰岛素抵抗是2型糖尿病早期重要的发病机制,2型糖尿病发病前会经历多年的胰岛素抵抗状态,因此在胰岛素抵抗状态即采取措施提高胰岛素敏感性,是治疗2型糖尿病的关键,对于预防糖尿病及其相关并发症具有重要意义。
     目前治疗糖尿病的主要手段包括口服降糖药、注射胰岛素与控制饮食等。虽然这些方法对于改善血糖以及胰岛素敏感性等有较好疗效,但均存在一定毒副作用。随着时间的延长,始终无法避免胰岛p细胞的损伤,而且控制饮食后人的生活质量将大大降低。因此寻找疗效好、稳定持久、无毒副作用的治疗方法,是摆在医学界面前的一项重大课题。
     针刺越来越广泛地被用于胰岛素抵抗相关性疾病的防治,且疗效明显,在临床研究中逐步得到证实。为了进一步探讨针刺治疗胰岛素抵抗的作用机制,本课题通过高脂饲料喂养Wistar大鼠,造成胰岛素抵抗模型。本研究以中医针灸“治未病”理论为指导,采用“标本配穴”电针法,观察胰岛素靶器官骨骼肌中SIRT1去乙酰化激活PGC-1α情况及其下游相关基因与蛋白表达水平,并重点观察线粒体生物合成及氧化相关基因和蛋白表达水平,分析这些变化与胰岛素敏感性升高的关系。旨在深入研究电针治疗胰岛素抵抗在线粒体葡萄糖和脂肪酸利用环节的科学内涵与重要机制,为临床运用针刺治疗胰岛素抵抗及其相关疾病提供理论支持和科学依据。
     方法
     将48只8周龄雄性Wistar大鼠按随机数字法随机分4组:正常组(n=12)、模型组(n-12)、电针组(n=12),白藜芦醇组(n-12)。正常组,喂基础饲料(总热量为3.8kcal/g,含70%碳水化合物,20%蛋白质,10%脂肪);其余3组,给予高脂饲料(总热量为5.4kcal/g,含38.5%碳水化合物,15%蛋白质,46.5%脂肪)。喂养8周获得胰岛素抵抗大鼠模型。大鼠喂养8周后,每组随机抽2只Wistar大鼠行高胰岛素-正葡萄糖钳夹术测定全身胰岛素敏感性,结果以葡萄糖输注率GIR表示。治疗期各组大鼠均喂基础饲料,自由摄食和饮水。电针组,采用0.30mm×15mm不锈钢毫针,选取“足三里”和“丰隆”直刺3-5mm,左右交替,“关元”向剑突方向和“中脘”向耻骨联合方向斜刺3-5mm;捻转1min后,连接HANS LH202H型电针治疗仪,连续波,频率2Hz,强度1mA,通电10min,每日1次,每周5次,总疗程为8周。同侧“足三里”和“丰隆”连接同一输出的两个电极,“关元”和“中脘”连接另一输出的两个电极,电针时用特制的鼠服将大鼠固定。正常组和模型组不予治疗;但两组大鼠相同时间、相同方法抓取固定。白藜芦醇组大鼠每天10:00给予白藜芦醇100mg/kg灌胃,连续进行8周。治疗8周后,观察各组大鼠骨骼肌胰岛素敏感性,采用Real-time PCR检测SIRT1mRNA、PGC-1αmRNA和NRF-1mRNA表达,免疫印迹法检测各组大鼠股四头肌细胞核中PGC-1α和NRF-1蛋白的表达,采用比色法检测CPT-1, MCAD和LCAD的活性,对上述结果进行综合统计分析。
     结果
     1.各组大鼠基本生化资料:各组大鼠的空腹血糖水平无明显差异。模型组的空腹血浆胰岛素水平已明显高于正常组(P<0.05),葡萄糖平均输注速率GIR60~120(~20%,P<0.05)已显著低于正常组,提示模型组大鼠已出现明显的系统胰岛素抵抗。大鼠经过治疗8周后,电针和白藜芦醇干预后空腹血浆胰岛素水平明显减低,GIR60-120显著增加(P<0.05),提示电针和白藜芦醇均可改善高脂饮食诱导的系统胰岛素敏感性。此外,模型组的空腹血脂如FFA和TG均高于正常组(P<0.05)。电针治疗后其FFA和TG明显降低,趋于正常值水平,与模型组比较,有显著性差异(P<0.05);而白藜芦醇干预后,对血脂水平无明显影响。
     2.各组大鼠骨骼肌SIRT1mRNA表达的影响:治疗8周后,电针组大鼠股四头肌细胞核SIRT1mRNA表达水平明显增加,与模型组相比,具有显著性差异(P<0.05)。白藜芦醇组大鼠股四头肌细胞核SIRT1mRNA表达水平明显增加,与模型组相比,具有显著性差异(P<0.05)。电针组与白藜芦醇组比较,差异无统计学意义。
     3.各组大鼠骨骼肌PGC-1α蛋白表达:与正常组比较,模型组骨骼肌PGC-1α蛋白表达下降,差异有极显著性意义(P<0.01);电针组与白藜芦醇组骨骼肌PGC-1α蛋白表达较模型组明显上升,差异有极显著性意义(P<0.01);电针组与白藜芦醇组骨骼肌PGC-1α蛋白表达无明显差异。
     4.各组大鼠骨骼肌NRF-1蛋白表达:与正常组比较,模型组骨骼肌NRF-1蛋白表达下降,差异有统计学意义(P<0.05);电针组与白藜芦醇组骨骼肌NRF-1蛋白表达均较模型组升高,经统计学处理,均有显著性差异(P<0.05);电针组与白藜芦醇组比较,无显著性差异。
     5.各组大鼠骨骼肌PGC-1αmRNA表达:与正常组比较,模型组骨骼肌PGC-1αmRNA表达下降,差异具有统计学意义(P<0.05);电针组与白藜芦醇组骨骼肌PGC-1αmRNA表达均较模型组升高,差异有统计学意义(P<0.05);电针组与白藜芦醇组比较,无显著性差异。
     6.各组大鼠骨骼肌NRF-1mRNA表达:与正常组比较,模型组骨骼肌NRF-1mRNA表达下降,差异具有统计学意义(P<0.05);电针组与白藜芦醇组骨骼肌NRF-1mRNA表达均较模型组升高,差异有统计学意义(P<0.05);电针组与白藜芦醇组比较,无显著性差异。
     7.各组线粒体CPT-1、MCAD、LCAD活性检测:治疗8周后,电针组大鼠骨骼肌单位组织蛋白的SS线粒体CPT-1、MCAD和LCAD的活性显著增加,与模型组相比,具有显著性差异(P<0.05)。白藜芦醇组大鼠骨骼肌单位组织蛋白的SS线粒体CPT-1、MCAD和LCAD的活性显著增加,与模型组相比,具有显著性差异(P<0.05)。电针组与白藜芦醇组比较,差异无统计学意义。
     结论
     1.电针能升高胰岛素靶器官SIRT1表达及其活性,通过去乙酰化激活PGC-1α。
     2.电针激活SIRT1/PGC-1α后,诱导与线粒体生物合成和氧化相关的蛋白和酶体的表达,增加线粒体氧化能力,从而减轻或控制胰岛素抵抗。
     3.电针可纠正骨骼肌脂质转运和ss线粒体脂肪酸氧化的平衡,减轻脂质异位沉积,从而改善高脂饮食大鼠骨骼肌的胰岛素抵抗。
Objective:
     In recent years, the incidence of type2diabetes mellitus presents the fast growth trend, and the death toll caused by diabetes mellitus ranks only after cardiac-cerebral vascular diseases and malignant tumor. Diabetes related complications such as coronary heart disease, diabetic nephropathy, diabetic retinopathy and diabetic peripheral neuropathy are the main reasons for death and disability, which threatened human health seriously. Because insulin resistance is an important pathogenesis of type2diabetes mellitus in early stage and there should be many years of insulin resistance before the onset of type2diabetes mellitus, it is the key point that taking measures to improve insulin sensitivity in insulin resistance stage to treat type2diabetes mellitus and prevent diabetes and related complications.
     The main methods to treat diabetes mellitus are oral medications, insulin injection, diet control and etc. Although those methods have good curative effect to improve blood sugar content and insulin sensitivity, there are some toxic and side effects. But over time, the damage to islet β cells cannot be avoided, and the quality of life in diet will be greatly reduced. Therefore, looking for a therapy with good curative effect, stability and non-toxic side effects is a major subject in front of the medical professionals.
     Acupuncture has been more and more widely used in preventing and controlling insulin resistance related diseases with obvious curative effect, which is gradually confirmed in clinical researches. In order to further explore the mechanisms of acupuncture treatment on insulin resistance, this project focused on "" electropuncture on insulin resistance model of Wistar rats after high-fat diet, under the guidance of the theory of traditional Chinese medicine as "preventive treatment of disease", by observing SIRT1activating PGC-1α and its downstream related genes and proteins expression in skeletal muscle, a insulin target organ, by deacetylation. Priority observations were made on mitochondria biosynthesis and oxidative related gene and protein expression and the relations between these changes and increased insulin sensitivity. This project will further reveal the function of "" electroacupuncture on insulin resistance in mitochondrial glucose and fatty acid utilization to provide the theoretical support and scientific basis for clinical use of acupuncture treatment on insulin resistance and related diseases in the future.
     Methods:
     Forty-eight male Wistar rats at8weeks of age were randomly divided into4groups:normal group (n=12), model group (n=12), electroacupuncture group (EA, n=12) and resveratrol group (n=12). For those in normal group, the basal feed (total heat is3.8kcal/g, including70%carbohydrate,20%protein and10%fat) was given; while high-fat diet (total heat is5.4kcal/g, including38.5%carbohydrate,15%protein and46.5%fat) for8weeks to establish the rat model with insulin resistance. After8weeks' feeding,2Wistar rats of each group were randomly selected to detect whole body insulin sensitivity which was presented with glucose infusion rate (GIR) by high insulin-glucose clamps. During treatment, all the rats were fed with basal feed and free access to food and water. For EA group, Zusanli (ST36) and Fenglong (ST40) were inserted perpendicularly with3-5mm, while Guanyuan(CV4) was inserted obliquely towards processus xiphoideus and Zhongwan(CV12) towards symphysis pubis with3-5mm. After twirling the needles for lmin, HANS LH202H electric acupuncture therapeutic apparatus was used with continuous wave, frequency of2Hz and intensity of1mA for10min, once per day, five times per week for8weeks. One pair of electrodes on the homolateral Zusanli (ST36) and Fenglong (ST40) and the other on Guanyuan(CV4) and Zhongwan(CV12). Purpose-made clothes were used to fix the rats during the treatment. For resveratrol group, the resveratrol (100mg/kg) was given by intragastric dministration on10:00am everyday for8weeks. And then, insulin sensitivity in skeletal muscle was detected. The expression of SIRT1mRNA, PGC-1αmRNA and NRF-1mRNA were detected with real-time PCR, protein expression of PGC-1α and NRF-1with western blot, and the activity of CPT-1, MCAD and LCAD were detected with colorimetric method. All the data were given statistic analysis.
     Results:
     1. Basic biochemical information of the rats in each group:fasting blood glucose levels of the rats in each group has no obvious difference. Fasting plasma insulin level in model group was significantly higher than that in normal group (p<0.05), an average glucose infusion rate GIR60~120(~20%, P<0.05) was significantly lower than normal group, suggesting that rats in the model group has a definite system insulin resistance. After8weeks treatment with EA or resveratrol intervention, fasting plasma insulin levels significantly reduced, GIR60~120increased significantly (p<0.05), suggesting both EA and resveratrol could improve insulin sensitivity induced by the high-fat diet system. In addition, the fasting blood lipids such as TG and FFA in model group were higher than that in normal group (p<0.05). TG and FFA significantly reduced after EA, tending to normal level. Compared with model group, there was significant difference (p<0.05); while there was no obvious effect after the intervention of resveratrol.
     2. The expression of SIRT1mRNA in skeletal muscle of the rats in ach group:the expression level of quadriceps nucleus SIRT1mRNA in EA group increased significantly after8weeks treatment. Compared with model group, there was significant difference (P<0.05). The expression level of quadriceps nucleus SIRT1mRNA in resveratrol group rats increased significantly. Compared with model group, there was significant difference (P<0.05). There was no statistically significant difference between resveratrol group and EA group.
     3. The protein expression of PGC-la in skeletal muscle of the rats in each group:compared with normal group, the protein expression of PGC-1α decreased in the skeletal muscle of model group with significant difference significance (P<0.01); protein expression of PGC-la in the skeletal muscle of resveratrol and EA groups increased more significantly than that in model group with extremely significant (P<0.01); The protein expression of PGC-1α in skeletal muscle between EA and resveratrol group has no obvious difference.
     4. The protein expression of NRF-1in skeletal muscle of the rats in each group:compared with normal group, the expression of skeletal muscle protein NRF-1in model group decreased with statistically significant (P<0.05); the expression of NRF-1in resveratrol and EA groups were higher than that in model group with significant difference (P<0.05); there was no significant difference between EA and resveratrol group.
     5. The expression of PGC-lamRNA in skeletal muscle of the rats in each group:compared with normal group, the expression of skeletal muscle PGC-1αmRNA in model group decreased with significant difference (P<0.05); the expression of PGC-1αmRNA in resveratrol and EA groups were higher than that in model group with significant difference (P<0.05); there was no significant difference between EA and resveratrol group.
     6. The expression of NRF-1mRNA in skeletal muscle of the rats in each group:compared with normal group, the expression of skeletal muscle NRF-1mRNA in model group decreased with significant difference (P<0.05); the expression of NRF-1mRNA in resveratrol and EA groups were higher than that in model group with significant difference (P<0.05); there was no significant difference between EA and resveratrol group.
     7. The activity detection of CPT-1, MCAD and LCAD in mitochondria of the rats in each group:after8weeks' treatment, the activity of SS mitochondrial CPT-1, MCAD and LCAD in the rats skeletal muscle of EA group increased significantly with significant difference compared with that of model group (P<0.05). the activity of SS mitochondrial CPT-1, MCAD and LCAD in the rats skeletal muscle of resveratrol group increased significantly with significant difference compared with that of model group (P<0.05). There was no significant difference between EA and resveratrol group.
     Conclusion:
     1. Electroacupuncture may increase the expression and activity of SIRT1in insulin target organ and activate PGC-1α via deacetylation.
     2. Electroacupuncture may reduce or control insulin resistance by inducing the proteins and enzymes related with mitochondria biosynthesis and oxidative and enhance the oxidizability of mitochondria following the activation of SIRT1/PGC-1α.
     3. Electroacupuncture may improve insulin resistance in skeletal muscle of the rats fed with high fat diet by correcting the balance between lipid transport and fatty acid oxidation in SS mitochondria of skeletal muscle so as to reduce the ectopic deposition of lipids.
引文
[1]Vannucci SJ, Seaman LB, Vannucci RC. Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain[J]. J Cereb Blood Flow Metab,1996,16:77-81.
    [2]Royer C, Lachuer J, Crouzoulon G. et al. Effects of gestational hypoxia on mRNA leves of Glut3 and Glut4 transporters. hypoxia_inducible factor-1 and thyroid hormone receptors developing rat brain [J]. Brain Res.2000,856:119-128.
    [3]Gao HM, Guo J C, Zhao PJ, et al. The neuroprotective effects of electroacupuncture on focal transient cerebral ischemia in monkey[J]. Acupuncture & Elect rot herapeutics Res,2002,27(1): 45.
    [4]朱肖菊,关晓光,曾雪璐.针灸结合情志调理在社区老年2型糖尿病控制中的应用效果[J].针灸临床杂志,2012,28(6):15-17.
    [5]郑海鹰,马辉,付博.针灸治疗2型糖尿病108例疗效观察[J].实用中医内科杂志,2007,21(7):104-106.
    [6]梁军,郑海兴.针灸治疗糖尿病40例临床观察[J].针灸临床杂志,2006,22(3):18-21.
    [7]宋灵仙,王哲慧.从三焦经穴论治糖尿病92例[J].针灸临床杂志,2005,21(4):4-7.
    [8]曲齐生,杨善军.针刺夹脊穴对2型糖尿病患者胰岛素抵抗疗效观察[J].中医药信息,2007,24(1):50-51.
    [9]Sharp FR, Lu A, Tang Y, et al. Multiple molecular penumbras after focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2000,20(7): 1011-1032.
    [10]Pullicino E, Coward A, Ella M. Total energy expenditure in intra-venously fed fed patients measured by the doubly labeled water technique[J]. Metabolign 1993,42(1):58.
    [11]阎英杰,刘福来.降糖合剂配合耳针治疗2型糖尿病胰岛素抵抗患者40例临床观察[J].中医杂志,2007,48(3):226-227.
    [12]徐江红.耳针合中药对2型糖尿病脂代谢的影响[J].江西中医药,2008,39(7):32.
    [13]蔡辉,袁爱红,魏群利.针灸对肥胖2型糖尿病“脂肪—胰岛”轴的调节作用[J].中国中医急症,2009,18(7):1043-1044.
    [14]Milne JC, Lambert PD, Schenk S et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450:712-6.
    [15]Banks AS, Kon N, Knight C et al. SirTl gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008; 8:333-41.
    [16]Chalkley SM, Hettiarachchi M, Chisholm DJ, Kraegen EW. Long-term high-fat feedingleads to severe insulin resistance but not diabetes in Wistar rats. Am J Physiol Endocrinol Metab 2002; 282:E1231-8.
    [17]Chen LL, Hu X, Zheng J et al. Lipid overaccumulation and drastic insulin resistance in adult catch-up growth rats induced by nutrition promotion after undernutrition. Metabolism 2011; 60:569-78.
    [18]Yamamoto N, Kawasaki K, Sato T et al. A nonradioisotope, enzymatic microplate assay for in vivo evaluation of 2-deoxyglucose uptake in muscle tissue. Anal Biochem 2008;375:397-9.
    [19]Spargo FJ, McGee SL, Dzamko N et al. Dysregulation of muscle lipid metabolism in rats 292:E 1631-6.
    [20]Lopez-Lluch G, Hunt N, Jones B et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 2006; 103:1768-73.
    [1]Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425(6954):191-196
    [2]Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004; 305(5682):390-392.
    [3]Liang FX, Kume S, Koya D. SIRT1 and insulin resistance. Nat Rev Endocrinol (Formerly Nature Clinical Practice Endocrinology & Metabolism) 2009;5(7):367-373.
    [4]Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450(7170):712-716.
    [5]Sharp FR, Bergeron M, Bernaudin M. Hypoxia inducible factor in brain [J]. Adv Exp Med Biol,2001; 502:273-291.
    [6]陈蕾,贾伟平,项坤三.葡萄糖钳夹技术在糖尿病研究中的应用[J].中华内分泌代谢杂志,2003;19(1):74-6.
    [7]Blander G, Guarente L. The Sir2 family of protein deacetylases [J]. AnnuRevBiochem,2004,73:417-435.
    [8]Fu M, Liu M, Sauve AA, et al.Hormonal control of androgen receptor function through SIRT1 [J]. Mol Cell Biol,2006,26(21): 8122-8135.
    [9]Fu M, Liu M, Sauve AA, et al.Hormonal control of androgen receptor function through SIRT1 [J]. Mol Cell Biol,2006,26(21): 8122-8135.
    [10]Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacety-lases[J]. Proc Natl Acad Sci USA,2000,97(11):5807-5811.
    [11]Pfister J A, Ma C, Morrison B E, et al. Opposing effects of sirtuins on neuronal survival:SIRT1-mediated neuroprotection is independent of its deacetylase activ-ity[J]. Plos One,2008,3(12): e4090.
    [12]MILNE J C, DENU J M. The Sirtuin family:therapeutic targets to treat diseases of aging [J]. Curr Opin Chem Biol,2008,12(1):11-17.
    [13]Yang Y, Fu W, Chen J, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress [J]. Nat Cell Biol,2007,9(11):1253-1262.
    [14]Kim J E, Chen J, Lou Z. DBC1 is a negativeregulator of SIRT1 [J]. Nature,2008,451(7178):583-586.
    [15]Pagel-Langenickel I, Bao J, Pang L, Sack MN. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev 2010;31:25-51.
    [16]Bruce CR, Hoy AJ, Turner N et al. Overexpression of camitine palmitoyltransferase-1 in keletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet induced insulin resistance. Diabetes 2009; 58:550-8.
    [17]Koonen DP, Sung MM, Kao CK et al. Alterations in skeletal muscle fatty acid handling predisposes middle-aged mice to diet-induced insulin resistance. Diabetes 2010;59:1366-75.
    [18]Lionetti L, Mollica MP, Crescenzo R et al. Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis. Int J Obes (Lond) 2007; 31:1596-604.
    [19]Benton CR, Nickerson JQ Lally J et al. Modest PGC-1 alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria. J Biol Chem 2008; 283:4228-40.
    [20]Lagouge M, Argmaim C, Gerhart-Hines Z et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha. Cell 2006; 127:1109-22.
    [21]ESCANDE C, CHINI C C, NIN V, et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to highfat diet induced liver steatosis in mice [J]. J Clin Invest,2010,120(2):545-548.
    [22]Befroy DE, Petersen KF, Dufour S et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 2007;56:1376-81.
    [1]Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science,2005,307:384-3871.
    [2]Schenk S, Saberi M, Olefsky JM. Insulin sensitivity:modulation by nutrients and inflammation. J Clin Invest 2008;118(9):2992-3002.
    [3]Karlsson AK, Attvall S, Jansson PA, et al. Influence of the sympathetic nervous system on insulin sensitivity and adipose tissue metabolism:a study in spinal cord-injured subjects. Metabolism 1995;44(1):52-58.
    [4]Christoph H. The biology of PGC-la and its therapeutic potential [J]Trends in PharmncoLokicaL Sciences,2009.30.3:105-113.
    [5]Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 2007;87(2):507-520.
    [6]T irabyC, TavermierQ LefortC, etal. Acquirement of brown fat cell features by human white adipocytes[J]. J BioChem,2003,278 (35): 33370-33376.
    [7]Puigserver P,Spiegelman B,Montminy M,et al.CREB regulates hePatic glueoneogenesis through the coactivator PGC-1 [J]. NatUre,2001,413:179-183.
    [8]Gleyzer N, Vercarteren K,Scarpullare.Control of mitochondrial transeription specifieity factors (TFB1M and TFB2M) by nuclear respiratory factors(NRF-1 and NRF-2) and PGC-1 family coactivators[J].MolCellBio,2005,25(4):1354-1366.
    [9]Liang FX, Kume S, Koya D. SIRT1 and insulin resistance. Nat Rev Endocrinol (Formerly Nature Clinical Practice Endocrinology & Metabolism) 2009;5(7):367-373.
    [10]Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450(7170):712-716.
    [11]Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1. Nature 2005;434(7029):113-118.
    [12]Finck BN, Kelly DP. PGC-1 coactivators:inducible regulators of energy metabolism in health and disease. J Clin Invest,2006,116 (3):615-622.
    [13]Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006; 127(6): 1109-1122.
    [14]Kutti D, Kralli A. PGC-1, a versatile coactivator. Trends Endocrinol Metab,2001,12(8):360-365.
    [15]Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-lalpha. EMBO J 2007;26(7):1913-1923.
    [16]Petersen K F, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes [J].N Engl J Med,2004,350(7):664-671
    [17]Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006;355(23):2427-2443.
    [18]Home PD, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, Jones NP, et al; RECORD Study Group. Rosiglitazone evaluated for cardiovascular outcomes--an interim analysis. N Engl J Med 2007;357(1):28-38.
    [19]Goodarzi MO, Bryer-Ash M. Metformin revisited:reevaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents. Diabetes Obes Metab 2005; 7(6):654-665.
    [20]Wang H, Liang FX. Analysis on the features of preventive treatment with acupuncture and moxibustion. J Tradit Chin Med 2008; 28(4):281-285.
    [21]Liang FX, Koya D. Acupuncture:is it effective for treatment of insulin resistance? Diabetes, Obesity and Metabolism 2010; 12(3): DOI:10.1111/j.1463-1326.2009.01192.x.
    [22]Itani S I, Ruderman N B, Schmieder F, et al. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha[J]. Diabetes, 2002,51(7):2005-2011
    [23]Chang SL, Lin KJ, Lin RT, et al. Enhanced insulin sensitivity using electroacupuncture on bilateral Zusanli acupoints (ST 36) in rats. Life Sci 2006;79(10):967-971.
    [24]王华,梁凤霞.”双固一通”针灸法与疾病防治.湖北中医杂志2004;26(4):3-5.
    [25]黄志真,梁凤霞,王华.不同强度针刺对糖尿病大鼠肝脏GLUT4mRNA的影响.中华中医药学刊 2008;26(2):427-429.
    [26]Holloway GP, Benton CR, Mullen KL et al In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Am J Physiol Endocrinol Metab 2009; 296:E738-47.
    [27]Lopez-Lluch G, Hunt N, Jones B et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 2006; 103:1768-73.
    [28]Menzies KJ, Hood DA. The role of SirTl in muscle mitochondrial turnover. Mitochondrion 2012; 12:5-13.
    [29]Kreutzenberg SV, Ceolotto G, Papparella I et al. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome:potential biochemical mechanisms. Diabetes 2010; 59:1006-15.
    [30]Chen LL, Zhang HH, Zheng J et al Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial beta-oxidation. Metabolism 2011; 60:1598-609.
    [31]Milne JC, Lambert PD, Schenk S et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450:712-6.
    [32]Yoshizaki T, Milne JC, Imamura T et al SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 2009; 29:1363-74.
    [33]Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator [J]. Ann N Y Acad Sci,2008,1147:321-334.
    [34]Puigserver P, Spieqelman BM. Peroxisome proliferators activated receptor-γ coactivator 1α (PGC-1 a); transcriptional coactivator and metabolic regulator [J]. Endocr Rev,2003,24 (1):78-90.
    [35]Shang J, Chen LL, Xiao FX et al. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol Sin 2008; 29:698-706.
    [36]Narkar VA, Downes M, Yu RT et al. AMPK and PPAR delta agonists are exercise mimetics. Cell 2008; 134:405-15.
    [37]Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 2007; 104:7217-22.
    [38]Sun C, Zhang F, Ge X et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007; 6:307-19.
    [39]Ritov VB, Menshikova EV, Azuma K et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab 2010; 298:E49-58.
    [40]Gerhart-Hines Z, Rodgers JT, Bare O et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha. EMBO J 2007;26:1913-23.
    [41]Philp A, Chen A, Lan D et al. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) deacetylation following endurance exercise. J Biol Chem 2011; 286:30561-70.
    [1]Pagel-Langenickel I, Bao J, Pang L, Sack MN. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev 2010;31:25-51.
    [2]Lionetti L, Mollica MP, Crescenzo R et al Skeletal muscle subsarcolemmal mitochondrial dysfimction in high-fat fed rats exhibiting impaired glucose homeostasis. Int J Obes (Lond) 2007;31:1596-604.
    [3]Bruce CR, Hoy AJ, Turner N et al Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 2009; 58:550-8.
    [4]Wright LE, Brandon AE, Hoy AJ et al Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-lbeta involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia 2011.
    [5]Rutanen J, Yaluri N, Modi S et al. SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. Diabetes 2010; 59:829-35.
    [6]Frojdo S, Durand C, Molin L et al. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 2011;335:166-76.
    [7]Baur JA, Pearson KJ, Price NL et al Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444:337-42.
    [8]Lagouge M, Argmann C, Gerhart-Hines Z et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-lalpha.Cell 2006; 127:1109-22,
    [9]Labbe A, Garand C, Cogger VC et al. Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertrigl-yceridemia, inflammation, and life span in a mouse model for werer syndrome. J Gerontol A Biol Sci Med Sci 2011;66:264-78.
    [10]Beaudeux JL, Nivet-Antoine V, Giral P. Resveratrol:a relevant pharmacological approach for the treatment of metabolic syndrome? Curr Opin Clin Nutr Metab Care 2010; 13:729-36.
    [11]Zhang BB, Zhou G, Li C. AMPK:an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 2009; 9:407-16.
    [12]Gurd BJ, Yoshida Y, Lally J et al. The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J Physiol 2009; 587:1817-28.
    [13]Um JH, Park SJ, Kang H et al AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010; 59:554-63.
    [1]易玮.针刺对胰岛素抵抗干预作用的研究.广州中医药大学,2002:1-2.
    [2]孙子林.胰岛素抵抗的病因及发病机理[J].江苏医药,1998,24(10):741-743.
    [3]赵进喜.内分泌代谢病中西医诊治[M].沈阳:辽宁科学技术出版社,2004:198.
    [4]曲竹秋.中西医结合内分泌疾病诊断与治疗[M].北京:中国科技出版社,1998:128.
    [5]梁凤霞,王华,陈泽斌.“双固一通”针法对糖尿病大鼠血清IL-6的影响[J].中国中医药信息杂志,2007,14(1):28-29.
    [6]梁凤霞,徐芬,陈瑞,等.“标本配穴”针刺对糖尿病大鼠下丘脑瘦素受体及其mRNA表达的影响[J].中华中医药学刊,2012,30(9):61-62.
    [7]王威,于红,朴顺福,等.电针“足三里”穴对酒精性脂肪肝大鼠模型的影响[J].中国针灸,2004,24(12):857-859.
    [8]周利,万文俊,刘灵光,等.电针“丰隆”穴对高脂血症大鼠NO、ET及CGRP的影响[J].中国针灸,2008,28(1):57-60.
    [9]梁凤霞,王华,陈泽斌.“双固一通”针法对糖尿病大鼠的治疗作用和对T细胞亚群的影响[J].中华中医药学刊,2007,25(1):172-174.
    [10]龚美蓉,徐斌,毛珍,等.针刺对肥胖模型大鼠中胰岛素和胰岛素底物表达的影响[J].时珍国医国药,2010,21(5):1243-1245.
    [11]易玮,孙健,许能贵,等.针刺对胰岛素抵抗模型大鼠肝脏和胰腺的形态学影响[J].新中医,2007,39(1):104-106.
    [12]梁凤霞,王华,陈泽斌.针灸“双固一通”法对糖尿病大鼠T细胞亚群的影响[J].湖北中医杂志,2006,28(9):3-5.
    [13]梁凤霞,王华,陈泽斌. “双固一通”针法对糖尿病大鼠血清IL-6的影响[J].中国中医药信息杂志,2007,14(1):28-29.
    [14]Lee SM, Nguyen TH, Park MH, et al. EPO receptor-mediated ERE kinase and NF-kappa B activation in erythropoietin-promoted differentiation of astrocytea[J]. Biochem Biophys Res Commun, 2004,320(4):1087-1095.
    [15]Oda A, Sawada K, Druker BJ, et al. Erythropoietininduces tyrosine phosphory$ lation of JAK2, STAT5A, and STAT5B in primarycultured human erythroid precursors[J]. Blood,1998, 92(2):443-447.
    [16]Juul SE, Anderson DK, Li Y, et al. Erythropoietin and erythropoietin receptor in the developing human centralnervous system[J]. Pediatr Res,1998,43:40-9.
    [17]Solaroglui I, Solaroglui A, Kaptanoglu E, et al. Erythropoietin prevents ischemia reperfusion from inducing oxidative damage in fetal rat brain[J]. Childs Nervous System,2003,19(1):19-22.
    [18]Matsuda T, Abe T, Wu J L, et al. Hypoxia-inducible factor-1 alpha DNA induced angiogenesis in a ratcerebral ischemiamodel[J]. Neurol Res,2005,27(5):503-508.
    [19]Fedele A O, Whitelaw M L, Peet D J. Regulation of gene expression by the hypoxia-inducible factors[J]. Mol Interv,2002,2(12): 229-243.
    [20]Jones NM, Bergeron M. Hypoxic preconditioning inducts changes in HIF-1 target genes in neonatal rat brain[J]. J Cereb Blood Flow Metab,2001,21(9):1105-1114.
    [21]Marti HJ, Bernaudat M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularizatton after cerebral ischemia[J]. Am I Pathol,2000,156(3):965-976.
    [22]Bian L, Hanson RL, Muller YL et al. Variants in ACAD10 are associated with type 2 diabetes, insulin resistance and lipid oxidation in Pima Indians. Diabetologia 2010;53:1349-53.
    [23]Pagel-Langenickel I, Bao J, Pang L, Sack MN. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev 2010;31:25-51.
    [24]Lionetti L, Mollica MP, Crescenzo R et al Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis. Int J Obes (Lond) 2007;31:1596-604.
    [25]Bruce CR, Hoy AJ, Turner N et al Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 2009; 58:550-8.
    [26]Wright LE, Brandon AE, Hoy AJ et al Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-lbeta involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia 2011.
    [27]Rutanen J, Yaluri N, Modi S et al. SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. Diabetes 2010; 59:829-35.
    [28]Frojdo S, Durand C, Molin L et al. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 2011;335:166-76.
    [29]Baur JA, Pearson KJ, Price NL et al Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444:337-42.
    [30]Lagouge M, Argmann C, Gerhart-Hines Z et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 alpha. Cell 2006; 127:1109-22,
    [31]Labbe A, Garand C, Cogger VC et al. Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for werer syndrome. J Gerontol A Biol Sci Med Sci 2011;66:264-78.
    [32]Beaudeux JL, Nivet-Antoine V, Giral P. Resveratrol:a relevant pharmacological approach for the treatment of metabolic syndrome? Curr Opin Clin Nutr Metab Care 2010; 13:729-36.
    [33]Zhang BB, Zhou G, Li C. AMPK:an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 2009; 9:407-16.
    [34]Gurd BJ, Yoshida Y, Lally J et al. The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J Physiol 2009; 587:1817-28.
    [35]Um JH, Park SJ, Kang H et al AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010; 59:554-63.
    [36]Feige JN, Lagouge M, Canto C et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008; 8:347-58.
    [37]Park CE, Kim MJ, Lee JH et al. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med 2007; 39:222-9.
    [38]Banks AS, Kon N, Knight C et al. SirTl gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008; 8:333-41.
    [39]Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 2006; 27:639-45.
    [40]Crescenzo R, Lionetti L, Mollica MP et al. Altered skeletal muscle subsarcolemmal mitochondrial compartment during catch-up fat after caloric restriction. Diabetes 2006;55:2286-93.
    [41]Nielsen J, Mogensen M, Vind BF et al. Increased subsarcolemmal lipids in type 2 diabetes:effect of training on localization of lipids, mitochondria, and glycogen insedentary human skeletal muscle. Am J Physiol Endocrinol Metab 2010; 298:E706-13.
    [1]李盛明.针灸治疗2型糖尿病68例临床观察[J].吉林医学.2012,31(14):2002-2004.
    [2]张艳红.针灸治疗2型糖尿病35例[J].上海针灸杂志,2009,28(1):51-53.
    [3]廖辉,席萍,陈强,等.针刺,艾灸,针加灸胃脘下俞穴治疗糖尿病临床观察[J].中国针灸,2007,27(7):82-85.
    [4]朱肖菊,关晓光,曾雪璐.针灸结合情志调理在社区老年2型糖尿病控制中的应用效果[J].针灸临床杂志,2012,28(6):15-17.
    [5]郑海鹰,马辉,付博.针灸治疗2型糖尿病108例疗效观察[J].实用中医内科杂志,2007,21(7):104-106.
    [6]梁军,郑海兴.针灸治疗糖尿病40例临床观察[J].针灸临床杂志,2006,22(3):18-21.
    [7]宋灵仙,王哲慧.从三焦经穴论治糖尿病92例[J].针灸临床杂志,2005,21(4):4-7.
    [8]曲齐生,杨善军.针刺夹脊穴对2型糖尿病患者胰岛素抵抗疗效观察[J].中医药信息,2007,24(1):50-51.
    [9]Cai H, Zhao LJ, Zhao ZM, et al. Effect of acupuncture on serum leptin level in patients with type II diabetes mellitus[J].Zhen Ci Yan Jiu,2011,36 (4):288-291.
    [10]宫军.灸法治疗2型糖尿病275例临床观察[J].吉林中医药,2008,28(8):593-595.
    [11]朱红梅.壮医药线点灸合中药对2型糖尿病患者血脂的影响[J].辽宁中医杂志,2004,31(4):337-340.
    [12]阎英杰,刘福来.降糖合剂配合耳针治疗2型糖尿病胰岛素抵抗患者40例临床观察[J].中医杂志,2007,48(3):226-227.
    [13]徐江红.耳针合中药对2型糖尿病脂代谢的影响[J].江西中医药,2008,39(7):32.
    [14]蔡辉,袁爱红,魏群利.针灸对肥胖2型糖尿病“脂肪一胰岛”轴的调节作用[J].中国中医急症,2009,18(7):1043-1044.
    [15]袁爱红,刘志诚,魏群利,等.针刺配耳穴对2型糖尿病伴脂代谢紊乱的调整作用[J].贵阳中医学院学报,2009,31(5):2-4.
    [16]Rerksuppaphol L. Efficacy of auricular acupressure combined with transcutaneous electrical acupoint stimulation for weight reduction in obese women [J]. J Med Assoc Thai,2012,95(12):32-41.
    [17]徐宝宏,张献芳,陈闽,等.清脂康胰联针穴位注射治疗2型糖尿病的疗效观察[J].海军医学杂志,2012,33(2):96-98.
    [18]刘晓辉,宋玉平,翟德华.穴位注射治疗2型糖尿病50例临床观察[J].江苏中医药,2008,40(10):78-79.
    [19]王文生,张心爱.穴位注射治疗2型糖尿病61例[J].中国针灸,2006,6(9):680-681.
    [20]郑淑莺,李顺斌,尹峰林,等.格列美脲联合针灸中药治疗气阴两虚型2型糖尿病的疗效观察[J].中华中医药学刊,2010,28(7):1561-1562.
    [21]唐成玉,范冠杰.中药配合针刺治疗肥胖2型糖尿病的疗效观察[J].中医药导报,2009,15(1):65-66.
    [22]张瑞杰,周亚杰.针药治疗糖尿病50例疗效观察[J].针灸临床杂志,2007,23(8):34-35.
    [23]张宗明.针药结合治疗2型糖尿病的临床观察[J].湖北中医杂志,2007,29(3):35-36.
    [24]董玉雪.针刺加二甲双胍治疗糖尿病气阴两虚型32例[J].中医研究,2007,20(8):58-59.
    [25]周平南,彭鹏鸣,王蓉娣.针灸治疗新发肥胖2型糖尿病疗效观察[J].针灸临床杂志,2013,29(1):21-23.
    [26]Lai MH, Ma HX, Yao H, et al. Effect of abdominal acupuncture therapy on the endocrine and metabolism in obesity-type polycystic ovarian syndrome patients [J]. Zhen Ci Yan Jiu,2010,35 (4):298-302.
    [27]张智勇,李振华.推拿治疗2型糖尿病30例[J].吉林中医药,2006,26(11):53-54.
    [28]Shao min, Wen lingjie, Sun rong. Acupoint Application on BloodLipid in Patients with TypeODiabetes [J]. Journal of Acupuncture and Tuina Science,2004,2(6):21-23.
    [29]Chang S L, Lin K J, Lin R T, et al. Enhanced insulin sensitivity using electroacupuncture on bilateral Zusanli acupoints (ST 36) in rats [J].Life sci,2006, 79 (10):967-971.
    [30]马建华,王昱政,赵琳.针刺对2型糖尿病肥胖大鼠瘦素、胰岛素抵抗和脂联素水平影响的实验研究[J].新中医,2012,44(11):134-137.
    [31]孙志,马丽,韩海荣.针灸对2型糖尿病大鼠胰岛素、抵抗素的作用研究[J].北京中医药大学学报,2010,33(10):718-720.
    [32]袁爱红,刘志诚,魏群利,蔡辉.针刺2型糖尿病大鼠脂肪细胞因子的变化[J].中国组织工程研究与临床康复,2009,13(20):3915-3919.
    [33]蔡辉,袁爱红,魏群利,等.针刺对2型糖尿病大鼠脂肪组织INSR基因表达的影响[J].安徽中医学院学报,2010,29(2):36-39.
    [34]Yi W, Xu NG, Sun J, et al. Effects of acupuncture on serum insulin antibody and tumor necrosis factor alpha in the experimental rat with insulin resistance[J]. Zhong Guo Zhen Jiu,2007,27(7):525-527.
    [35]孙志,李茜,宫翠红.针药结合对db/db小鼠血糖和胰岛素抵抗的影响[J].中国老年学杂志,2012,32(19):4195-4197.
    [36]Wang Jia-ni, Zhang Xuan, Li Yang, et al. Ragulatory effect of electroacupuncture on blood sugar and blood lipoprotein(a) rat with diabetes mellitus[J]. Chinese journal ofclinical rehabilitation,2005,9 (19):250-252.
    [37]何玲,王瑞辉,张卫华,等.针刺肝胆经原、合穴对糖尿病大鼠血糖的影响与机理研究[J].陕西中医,2006,27(5):627-629.
    [38]罗雄,凌湘力.穴位埋线对糖尿病大鼠脂代谢紊乱及胰岛素敏感性的影响[J].天津中医药,2011,28(5):386-388.
    [39]何玲,郑云,任磊,等.穴位注射对糖尿病大鼠高脂血症血清NO SOD影响的实验研究[J].中华中医药学刊,2009,27(10):2105-2107.
    [40]王恩龙,周鸿飞,刘春辉.针刺对实验性糖尿病大鼠C肽及血脂的影响[J].实用中医内科杂志,2008,22(2):59-60.
    [41]刘晓亭,郑方遒,王晓红.电针干预对糖尿病肾病大鼠防治作用的实验研究[J].辽宁中医杂志,2012,39(3):548-550.
    [42]孙志,韩海荣,马丽,等.针灸对2型糖尿病胰岛α细胞凋亡的影响[J].中国老年学杂志,2011,25(12):966-967.
    [43]孙志,韩海荣,马丽,等.针灸改善2型糖尿病胰岛p细胞分泌功能的研究[J].中国中医基础医学杂志,2010,12(16):1155-1161.
    [44]孙志,韩海荣,马丽,等.针刺对2型糖尿病大鼠胰岛α细胞形态学影响[J]. 中华中医药杂志,2010,25(12):1971-1974.
    [45]张业辉,袁尚荣.电针对糖尿病大鼠的影响[J].针灸临床杂志,2007,23(9):61-62.
    [46]梁凤霞,徐芬,陈瑞,等.“标本配穴”针刺对糖尿病大鼠下丘脑瘦素受体及其mRNA表达的影响[J].中华中医药学刊,2012,30(9):61-62.
    [47]袁爱红,刘志诚,魏群利,等.针刺对2型糖尿病大鼠弓状核INSR基因表达的影响[J].天津中医药,2009,26(4):293-295.
    [48]晋志高,何原芳,景向红.针刺对糖尿病大鼠海马和杏仁核CREB表达的影响[J].针灸研究,2011,17(1):102-105.
    [49]JangMH, ShinMC,Kim YP, et al.Effect of acupuncture on nitric oxide synthase expression in cerebral cortex of streptozotocininduced diabetic rats[J]. Acupunct ElectrotherRes,2003,28(1-2):1-10.
    [50]Jang MH, Shin MC, KooGS, et al. Acupuncture decreases nitric oxide synthase expression in periaqueductal gray area of ratswith streptozotocin-induced diabetes[J]. Neurosci Lett,2003,337(3):155-158.
    [51]JangMH, ShinMC, Lim BV, et al. Acupuncture increases nitric oxide synthase expression in hippocampusofstre-ptozotocin-in-duced diabetic rats[J]. Am J Chin Med, 2003,31(2):305-313.
    [52]梁凤霞,王华,陈泽斌.“双固一通”针法对糖尿病大鼠血清IL-6的影响[J].中国中医药信息杂志,2007,14(1):28-29.
    [53]梁凤霞,王华,陈泽斌.针灸“双固一通”法对糖尿病大鼠T细胞亚群的影响[J].湖北中医杂志,2006,28(9):3-5.
    [54]梁凤霞,王华,陈泽斌.“双固一通”针法对糖尿病大鼠的治疗作用和对T细胞亚群的影响[J].中华中医药学刊,2007,25(1):172-174.
    [1]李秀钧.代谢综合征胰岛素抵抗综合征[M].北京:人民卫生出版社2007;133.
    [2]Nie J, Sage EH. SPARC functions as an inhibitor of adipogenesis [J]. Journal of Cell Communication and Signaling 2009; 3(3-4): 247-254.
    [3]Wellen K E, Hotamisligil G S, et al. Inflammation, stress, and diabetes[J]. J Clin Invest 2005; 115(5):1111-1119.
    [4]Shoelson S E, Lee J, Goldfine AB. Inflammation and insulin resistance[J].J Clin Invest 2006; 116:1793-1801.
    [5]Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444(7121):840-846.
    [6]陈蕾,贾伟平,项坤三.葡萄糖钳夹技术在糖尿病研究中的应用[J].中华内分泌代谢杂志2003;19(1):74-76.
    [7]Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355(23): 2427-2443.
    [8]Home PD, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, Jones NP, et al; RECORD Study Group. Rosiglitazone evaluated for cardiovascular outcomes-an interim analysis. N Engl J Med 2007;357(1):28-38.
    [9]Goodarzi MO, Bryer-Ash M. Metformin revisited:reevaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents. Diabetes Obes Metab 2005; 7(6):654-665.
    [10]Wang H, Liang FX. Analysis on the features of preventive treatment with acupuncture and moxibustion[J]. J Tradit Chin Med 2008; 28(4):281-285.
    [11]Liang FX, Koya D. Acupuncture:is it effective for treatment of insulin resistance? Diabetes, Obesity and Metabolism 2010; 12(3):DOI:10.1111/j.1463-1326.2009.01192.x.
    [12]张智龙,薛莉,吉学群,等.针刺对2型糖尿病胰岛素抵抗影响的临床研究[J].中国针灸2002;22(11):723-725.
    [13]Chang SL, Lin KJ, Lin RT, et al. Enhanced insulin sensitivity using electroacupuncture on bilateral Zusanli acupoints (ST 36) in rats. Life Sci 2006; 79(10):967-971.
    [14]Yang T, Fu M, Pestell R, et al. SIRT1 and endocrine signaling. Trends Endocrinol Metab,2006,17(5):186-191.
    [15]P fister JA, M a C, Morrison BE, et al. Opposing effects of sirtuins on neuronal survival SIRT1-mediated neuroprotection is independent of its deacetylase activity[J]. PLoS One,2008; 3(12): e4090
    [16]Saunders L R V. Cell biology:stress response and aging[J]. Science,2009,323(5917):1021-1022.
    [17]Picard F, Kurtev M, Chung N, et al. SIRT1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature.2004.429(6993):771-6.
    [18]Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient contrl of glucose homeostasis through a complex of PGC-1alPha and SIRT1. Nature.2005.434(7029):113-8
    [19]Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in miee. Cell Metab.2005. 2(2):105-17.
    [20]Yang T, Fu M, Pestell R, Sauve AA. SIRT1 and endocrine signaling. Trends Endocrinol Metab.2006.17(5):186-91.
    [21]Tanno M, Sakamoto J, Miura T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1[J]. J Biol Chem 2007; 282(9):6823-6832.
    [22]Yang Y, Fu W, Chen J, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress [J]. Nat Cell Biol 2007; 9(11):1253-1262.
    [23]Kim J E, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1[J]. Nature 2008; 451(7178):583-586.
    [24]Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-lalPha. Cell,2006,127(6): 1109-1122
    [25]Crujeiras AB, Parra D, Goyenechea E, et al. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest,2008,38(9):672-67
    [26]Pfluger PT, Herranz D, Velasco-Miguel S, et al. SIRT1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A,2008,105(28):9793-9798.
    [27]Knutti D, Kaul A, Kralli A. A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen[J]. Mol Cell Biol 2000; 20(7):2411-2422.
    [28]Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab.2007.92(4):1467-73.
    [29]Gerhalt-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-lalPha. EMBO J.2007.26(7):1913-23.
    [30]Rodgers J T, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1[J]. Nature 2005; 434(7029):113-118.
    [31]Coste A, Louet J F, Lagouge M, et al. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1 {alpha} [J]. Proc Natl Acad Sci U S A 2008; 105(44):17187-17192.
    [32]Lerin C, Rodgers J T, Kalume D E, et al. GCN5 acetyl transferase complex controls glucose metabolism through transcriptional repression of PGC-lalpha[J]. Cell Metab 2006; 3(6):429-438.
    [33]McBurney M W, Yang X,Jardine K, et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis[J]. Mol Cell Biol 2003; 23(1):38-54.
    [34]Banks A S, Kon N, Knight C, et al. SirTl gain of function increases energy efficiency and prevents diabetes in mice[J]. Cell Metab 2008; 8(4):333-341.
    [35]Bordone L, Cohen D,Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction[J]. Aging Cell 2007; 6(6):759-767.
    [36]Milne J C, Lambert P D, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes[J]. Nature 2007; 450(7170):712-716.
    [37]Liang FX, Chen R, Nakagawa A, et al. Low-Frequency Electroacupuncture improves Insulin Sensitivity in Obese Diabetic Mice through Activation of SIRT1/PGC-lalpha in Skeletal Muscle. Evid Based Complement Alternat Med. 2011.2011:735297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700