用户名: 密码: 验证码:
分布式无源雷达成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式无源雷达成像主要是指利用空间上充分展开的多发射机和多接收机同时进行目标观测的一种成像方式,着重强调的是多发射机和多接收机之间相对于目标的空间展开性。本文分别从正向和逆向两个角度对分布式无源雷达成像问题进行分析,通过正向分析,文中研究了基于非均匀傅立叶变换的成像方法。通过逆向分析,研究了基于正则化的成像方法。在结合目标场景的稀疏先验后,研究了基于压缩感知的成像方法,对该方法下的重构性能进行了分析与优化,并对成像方程的失配问题进行了研究。
     本文首先从信号和几何的角度建立了分布式无源雷达的成像模型,表明了空间谱域回波数据与目标散射系数之间的傅立叶变换关系。进而从空间谱的角度对分布式无源雷达的成像性能进行了分析,并给出了空间谱填充样式与收发布站之间的一般关系。依据空间谱域的非均匀填充特性,提出了基于非均匀傅立叶变换的分布式无源雷达成像方法,并通过仿真对成像的性能进行了分析。研究表明,该方法能够在空间谱填充处于相对均匀且致密的条件下获得良好的成像结果。
     为获得更为一般条件下的分布式无源雷达成像方法,本文从逆问题的角度对成像过程进行分析,表明成像逆问题本质上是一个病态问题,并对成像逆问题病态性的特点进行研究,给出了病态性程度与收发布站之间的一般规律。为减弱病态性的影响,提出了基于Tikhonov正则化的分布式无源雷达成像方法,为削弱重构矩阵中系统扰动的影响,又提出了基于截断总体最小二乘的分布式无源雷达成像方法,通过仿真对成像的性能进行了分析与比较。
     针对实际中可获得的发射机和接收机数目有限,相应的空间谱填充处于稀疏条件的问题,本文对基于压缩感知的分布式无源雷达成像问题进行了研究,将几种经典的重构算法应用于成像反演中,并对正交匹配追踪算法在噪声条件下的重构特性进行了深入研究,推导并分析了迭代参数的取值要求以及成功重构的概率。进而对分布式无源雷达稀疏成像中的布站优化问题进行了研究,并通过并仿真对优化后重构性能的提升进行了验证。
     最后,本文分别对分布式无源雷达稀疏成像中的两类重构矩阵失配问题进行研究。针对发射机和接收机位置误差导致的失配问题,通过建立含有位置误差的成像模型,分析了位置误差对成像过程的影响特点,提出了基于辅助散射点的位置误差估计与校正方法,针对成像场景网格划分导致的重构矩阵失配问题(即Off-Grid问题),提出了基于谱估计的直接求解散射点位置的方法,并通过仿真对上述方法进行了验证。
Distributed passive radar imaging mainly refers to a kind of imaging method that can make use of transmitter and receiver for target observation at the same time. The transmitter and receives are distributed on spatial domain. It is emphasized the spatial extensibility of the transmitter and receives to the target. Distributed passive radar imaging problems were analysised from the angles of froward and reverse respectively. Through positive analysis, this paper studies the imaging method based on non-uniform Fourier transform. Through reverse analysis, the method of imaging based on regularization was studied. After combing the sparse prior of target, imaging method based on compressive sensing is studied, and the performance of the method are analyzed and optimized, and the mismatch problem of imaging equation was studied.
     First of all, distributed passive radar imaging model is established in this article from the perspective of the signal and the geometry. The imaging model shows the Fourier transform relationship between the target scattering coefficient and the echo data in spatial spectrum. The distributed passive radar imaging performance is analyzed in the perspective of spatial spectrum. The relationship between the spatial spectrum filling and the station layout is studied. Study and put forward the distributed passive radar imaging method based on the non-uniform Fourier transform, and analyzes the performance of the method through the simulation, the research shows that the method can get a good imaging results in the uniform and dense space spectrum filling condition.
     This article study the distributed passive radar imaging problem from the perspective of inverse problem in more general condition. This paper suggests that imaging inverse problem is essentially an ill-posed problem. Analyzed the imaging characteristics of inverse ill-posed problem, and presents a general law between the ill degree and the station layout. Study and put forward a distributed passive radar imaging based on Tikhonov regularization method to weaken the influence of the ill-posed problem. A distributed passive radar imaging method based on truncated total least squares is proposed in order to weaken the system disturbance in reconstruction matrix. The imaging performance is analyzed and compared through the simulation.
     The distributed passive radar imaging problem based on compressive sensing is studied for the station number is limited in the actual environment, and the corresponding spatial spectrum filling in a state of sparse. Several classical algorithm was applied to imaging inversion. The reconstruction characters of orthogonal matching pursuit algorithm under the condition of noise carried on the research. The iterative parameter values and the probability of successful reconstruction is derived. The station layout optimization problem is studied under the condition of sparse imaging. The optimization performance is analyzed and compared through the simulation.
     Finally, two class reconstruction matrix mismatch problem in the sparse distributed passive radar imaging problem is studied respectively. The influence of position error on imaging process is studied based on the imaging model containing position error. The position error estimation and correction method based on auxiliary scattering point is proposed for the mismatch problem caused by position error. This paper proposes a direct solving scattering point location method based on spectrum estimation technique for mismatch problem caused by Off-Grid, and is verified by simulation.
引文
[1]徐浩.基于空间谱理论和时空两维随机辐射场的雷达成像研究[D]:中国科学技术大学,2011.
    [2]CURLANDER J C, MCDONOUGH R N. Synthetic aperture radar [M]. Wiley New York,1991.
    [3]HARDANGE J-P. Inverse Synthetic Aperture Radar [C]. In AGARD, Fundamentals and Special Problems of Synthetic Aperture Radar (SAR) 14 p (SEE N93-13049 03-32).1992.
    [4]GRIFFITHS H, LONG N. Television-based bistatic radar [C]. IEE Proceedings F (Communications, Radar and Signal Processing). IET,1986:649-657.
    [5]HOWLAND P E. Target tracking using television-based bistatic radar [C]. Radar, Sonar and Navigation, IEE Proceedings-. IET,1999:166-174.
    [6]WU Y, MUNSON JR D C. Multistatic synthetic aperture imaging of aircraft using reflected television signals [J]. Algorithms for Synthetic Aperture Radar Imagery VIII,2001,4382:1-12.
    [7]WU Y, MUNSON JR D C. Multistatic passive radar imaging using the smoothed pseudo Wigner-Ville distribution [C]. Image Processing,2001 International Conference on. Thessaloniki, Greece:IEEE,2001:604-607.
    [8]GINOLHAC G, SCHMITT F, DAOUT F, FORSTER P. Multifrequency and multistatic inverse synthetic aperture radar, with application to FM passive radar [J]. EURASIP Journal on Advances in Signal Processing,2010,2010:5.
    [9]PASTINA D, SEDEHI M, CRISTALLINI D. Passive bistatic ISAR based on geostationary satellites for coastal surveillance [C]. Radar Conference,2010 IEEE. Washington, DC, USA, 2010:865-870.
    [10]ANTONIOU M, ZENG Z, FEIFENG L, CHERNIAKOV M. Experimental Demonstration of Passive BSAR Imaging Using Navigation Satellites and a Fixed Receiver [J]. Geoscience and Remote Sensing Letters, IEEE,2012,9(3):477-481.
    [11]王大海,王俊.单发多收模式下无源雷达成像研究[J].电子学报,2006,34(6):1138-1141.
    [12]王俊,赵洪立,张守宏,保铮.非合作连续波雷达中存在强直达波和多径杂波的运动目标检测方法[J].电子学报,2005,33(3):419-422.
    [13]王俊,牛溢华.基于多电视台的两种无源雷达成像算法[J].系统工程与电子技术,2007,29(8):1263-1267.
    [14]WN B. Aperture synthesis [J]. Methods in Computational Physics,1975,14:131-175.
    [15]DUTT A R V. Fast Fourier transforms for nonequispaced data [J]. SIAM J Sci Comput,1993, 14(6):1368-1393.
    [16]NATTERER F, NATTERER F. The mathematics of computerized tomography [M]. Springer, 1986.
    [17]RUNDELL W, ENGL H W. Inverse Problems in Medical Imaging and Nondestructive Testing [J].1997.
    [18]SNIEDER R, TRAMPERT J. Inverse problems in geophysics [J]. Wavefield inversion,1999: 119-190.
    [19]ENGL H W, HANKE M, NEUBAUER A. Regularization of inverse problems [M]. Springer, 1996.
    [20]HADAMARD J. Lectures on Cauchy's problem in linear partial differential equations [M]. Courier Dover Publications,2003.
    [21]张贤达.矩阵分析与应用[M].清华大学出版社有限公司,2004.
    [22]HANSEN P C. The discrete Picard condition for discrete ill-posed problems [J]. BIT Numerical Mathematics,1990,30(4):658-672.
    [23]KIRSCH A. An introduction to the mathematical theory of inverse problems [M]. Springer, 2011.
    [24]MOROZOV V A, NASHED Z, ARIES A. Methods for solving incorrectly posed problems [M]. Springer,1984.
    [25]WAHBA G. Spline models for observational data [M]. Siam,1990.
    [26]CRAVEN P, WAHBA G. Smoothing noisy data with spline functions [J]. Numerische Mathematik,1978,31(4):377-403.
    [27]HANSEN P C. Analysis of discrete ill-posed problems by means of the L-curve [J]. SIAM review,1992,34(4):561-580.
    [28]ENGL H W, GREVER W. Using the L--curve for determining optimal regularization parameters [J]. Numerische Mathematik,1994,69(1):25-31.
    [29]HANSEN P C, O'LEARY D P. The use of the L-curve in the regularization of discrete ill-posed problems [J]. SIAM Journal on Scientific Computing,1993,14(6):1487-1503.
    [30]FIERRO R D, GOLUB G H, HANSEN P C, O'LEARY D P. Regularization by truncated total least squares [J]. SIAM Journal on Scientific Computing,1997,18(4):1223-1241.
    [31]BARANIUK R. Compressive sensing [J]. IEEE signal processing magazine,2007,24(4):
    [32]ENDER J H. On compressive sensing applied to radar [J]. Signal Processing,2010,90(5): 1402-1414.
    [33]BARANIUK R, STEEGHS P. Compressive radar imaging [C]. Radar Conference,2007 IEEE. Boston, USA, MA:IEEE,2007:128-133.
    [34]FORNASIER M, RAUHUT H. Compressive sensing [M], Handbook of Mathematical Methods in Imaging. Springer.2011:187-228.
    [35]杨海蓉,张成,丁大为,韦穗.压缩传感理论与重构算法[J].电子学报,2011,39(1):142-148.
    [36]JI S, XUE Y, CARIN L. Bayesian compressive sensing [J]. Signal Processing, IEEE Transactions on,2008,56(6):2346-2356.
    [37]GORODNITSKYIF, RAO B D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm [J]. Signal Processing, IEEE Transactions on,1997, 45(3):600-616.
    [38]CHI Y, SCHARF L L, PEZESHKI A, CALDERBANK A R. Sensitivity to basis mismatch in compressed sensing [J]. Signal Processing, IEEE Transactions on,2011,59(5):2182-2195.
    [39]ZHU H, LEUS G, GIANNAKIS G B. Sparsity-cognizant total least-squares for perturbed compressive sampling [J]. Signal Processing, IEEE Transactions on,2011,59(5):2002-2016.
    [40]HAN X, ZHANG H, LI G. Fast Algorithms for Sparse Recovery with Perturbed Dictionary [J]. arXiv preprint arXiv:11116237,2011:
    [41]TANG G, BHASKAR B N, SHAH P, RECHT B. Compressive sensing off the grid [C]. Communication, Control, and Computing (Allerton),2012 50th Annual Allerton Conference on. Monticello, IL, USA:IEEE,2012:778-785.
    [42]YANG Z, XIE L, ZHANG C. Off-grid direction of arrival estimation using sparse Bayesian inference [J]. Signal Processing, IEEE Transactions on,2013,61(1):38-43.
    [43]GURBUZ A C, TEKE O, ARIKAN O. Sparse ground-penetrating radar imaging method for off-the-grid target problem [J]. Journal of Electronic Imaging,2013,22(2):021007-021007.
    [44]LEHMANN N H, HAIMOVICH A M, BLUM R S, CIMINI L. High Resolution Capabilities of MIMO Radar [C]. Signals, Systems and Computers, ACSSC '06 Fortieth Asilomar Conference on. Pacific Grove, CA, USA 2006:25-30.
    [45]ROBEY F C, COUTTS S, WEIKLE D, MCHARG J C, CUOMO K. MIMO radar theory and experimental results [C]. Signals, Systems and Computers,2004 Conference Record of the Thirty-Eighth Asilomar Conference on.2004:300-304 Vol.301.
    [46]DANG WEI W, XIAO YAN M, CHEN A L, YIS. High-Resolution Imaging Using a Wideband MIMO Radar System With Two Distributed Arrays [J]. Image Processing, IEEE Transactions on,2010,19(5):1280-1289.
    [47]LU H, WANG T, LIU C, CHEN W. Sparse passive radar imaging based on direct broadcasting satellite [C]. Signal Processing (ICSP),2012 IEEE 11th International Conference on. Beijing, China 2012:1852-1855.
    [48]ODENDAAL J W, BARNARD E, PISTORIUS C W I. Two-dimensional superresolution radar imaging using the MUSIC algorithm [J]. Antennas and Propagation, IEEE Transactions on, 1994,42(10):1386-1391.
    [49]TIANYUN W, CHANGCHANG L, HONGCHAO L, WEIDONG C. Sparse passive radar imaging based on digital video broadcasting satellites using the MUSIC algorithm [C]. Signal Processing (ICSP),2012 IEEE 11th International Conference on. Beijing, China,2012:1925-1930.
    [50]韩兴斌.基于空间谱域分析的雷达成像技术研究[D]:国防科技大学,2006年1月.
    [51]韩兴斌,胡卫东,郁文贤,杜小勇.分布式多通道雷达成像技术[J].电子与信息学报,2007,29(10):2354-2358.
    [52]徐伟,袁斌,薛瑞峰,程方.多站雷达成像系统成像特性分析[J].现代雷达,2007,28(12):41-44.
    [53]严镇军.数学物理方程[M].第二版ed.:中国科学技术大学出版社,2002.
    [54]保铮,邢孟道,王彤.雷达成像技术[M].电子工业出版社,2005.
    [55]F W A. Fast approximate Fourier transforms for irregularly spaced data [J]. SIAM Rev,1998, 40(4):838-856.
    [56]O'SULLIVAN J D. A Fast Sine Function Gridding Algorithm for Fourier Inversion in Computer Tomography [J]. Medical Imaging, IEEE Transactions on,1985,4(4):200-207.
    [57]GREENGARD L L J. Accelerating the nonuniform fast Fourier transform [J]. SIAM Rev,2004, 46(3):443-454.
    [58]HANSEN P C. Rank-deficient and discrete ill-posed problems:numerical aspects of linear inversion [M]. Siam,1998.
    [59]NEUBAUER A. An a posteriori parameter choice for Tikhonov regularization in Hilbert scales leading to optimal convergence rates [J]. SIAM Journal on Numerical Analysis,1988,25(6): 1313-1326.
    [60]ARMIJO L. Minimization of functions having Lipschitz continuous first partial derivatives [J]. Pacific Journal of mathematics,1966,16(1):1-3.
    [61]VOGEL C R. Non-convergence of the L-curve regularization parameter selection method [J]. Inverse problems,1996,12(4):535.
    [62]HE X, LIANG J, WANG X, YU J, QU X, WANG X, HOU Y, CHEN D, LIU F, TIAN J. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method [J]. Optics Express,2010,18(24):24825-24841.
    [63]DONOHO D L. Compressed sensing [J]. Information Theory, IEEE Transactions on,2006, 52(4):1289-1306.
    [64]CAND S E J, ROMBERG J, TAO T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J]. Information Theory, IEEE Transactions on, 2006,52(2):489-509.
    [65]TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. Information Theory, IEEE Transactions on,2007,53(12):4655-4666.
    [66]CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit [J]. SIAM Journal on Scientific Computing,1998,20(1):33-61.
    [67]WIPF D P, RAO B D. Sparse Bayesian learning for basis selection [J]. Signal Processing, IEEE Transactions on,2004,52(8):2153-2164.
    [68]DAVENPORT M A, WAKIN M B. Analysis of orthogonal matching pursuit using the restricted isometry property [J]. Information Theory, IEEE Transactions on,2010,56(9):4395-4401.
    [69]DONOHO D L, ELAD M, TEMLYAKOV V N. Stable recovery of sparse overcomplete representations in the presence of noise [J]. Information Theory, IEEE Transactions on,2006, 52(1):6-18.
    [70]ELAD M. Optimized projections for compressed sensing [J]. Signal Processing, IEEE Transactions on,2007,55(12):5695-5702.
    [71]PATEL V M, EASLEY G R, HEALY JR D M, CHELLAPPA R. Compressed synthetic aperture radar [J]. Selected Topics in Signal Processing, IEEE Journal of,2010,4(2):244-254.
    [72]TROPP J A. Greed is good:Algorithmic results for sparse approximation [J]. Information Theory, IEEE Transactions on,2004,50(10):2231-2242.
    [73]王福保,闵华玲,叶润修.概率论及数理统计[M].同济大学出版社,1994.
    [74]KIRKPATRICK S. Optimization by simulated annealing:Quantitative studies [J]. Journal of statistical physics,1984,34(5-6):975-986.
    [75]CAND S E J, WAKIN M B. An introduction to compressive sampling [J]. Signal Processing Magazine, IEEE,2008,25(2):21-30.
    [76]何琛,史济怀,徐森林.数学分析[M].高等教育出版社,1985.
    [77]GOLUB G H, VAN LOAN C F. An analysis of the total least squares problem [J]. SIAM Journal on Numerical Analysis,1980,17(6):883-893.
    [78]DING L, LIU C, WANG T, CHEN W. Sparse self-calibration via iterative minimization against phase synchronization mismatch for MIMO radar imaging [C]. Radar Conference (RADAR), 2013 IEEE. Ottawa, ON, Canada:IEEE,2013:1-4.
    [79]LIU C, CHEN W. Sparse self-calibration imaging via iterative MAP in FM-based distributed passive radar [J]. Geoscience and Remote Sensing Letters, IEEE,2013,10(3):538-542.
    [80]KIM S-J, KOH K, LUSTIG M, BO YD S, GORINEVSKY D. An interior-point method for large-scale 11-regularized least squares [J]. Selected Topics in Signal Processing, IEEE Journal of,2007,1(4):606-617.
    [81]张贤达.现代信号处理[M].清华大学出版社有限公司,2002.
    [82]HAARDT M, NOSSEK J A. Unitary ESPRIT:How to obtain increased estimation accuracy with a reduced computational burden [J]. Signal Processing, IEEE Transactions on,1995,43(5): 1232-1242.
    [83]何学智.微波凝视关联成像的信息处理方法与仿真[D]:中国科学技术大学,2013.
    [84]余景景.基于正则化的生物发光断层成像重建算法研究[D]:西安电子科技大学,2011.
    [85]薛会,张丽,刘以农.非标准快速傅里叶变换算法综述[J].CT理论与应用研究,2010,19(3):33-46.
    [86]徐强.反问题中正则化方法的某些研究[D]:大连理工大学,2006.
    [87]赵翔.概率统计方法在微波生物医学成像和雷电电磁效应评估中的应用[D]:四川大学,2005.
    [88]李英超.基于模态参数识别的海洋平台结构模型修正技术研究[D]:中国海洋大学,2012.
    [89]郑恩希.几种不适定问题的正则化方法及其数值实现[D]:吉林大学,2009.
    [90]胡邦.岩溶含水层中连续体管道耦合流模型及若干相关反问题的研究[D]:复旦大学,2011.
    [91]刘妮.关于求解反Stefan问题方法的研究[D]:西安理工大学,2009.
    [92]黄艳,张永利,刘志铭.一种基于点目标的雷达影像质量评价方法[J].测绘工程,2012,21(1):30-33.
    [93]刘超,刁现芬,汪元美.超声逆散射成像问题中的正则化方法研究[J].浙江大学学报:工学版,2005,39(2):195-199.
    [94]杨磊,赵拥军,王志刚.基于酉ESPRIT算法的极化干涉相位估计[J].测绘科学,2007,32(2):57-59.
    [95]BANIAK J, BAKER G, CUNNINGHAM A M, MARTIN L. Silent sentry passive surveillance [J]. Aviation week and space technology,1999,7:120-125.
    [96]杜朝平.无处遁形——捷克“维拉”-E反隐形雷达系统[J].兵器,2005,(2):34-37.
    [97]吴翼虎.外辐射源雷达目标检测与定位技术[J].西安:西安电子科技大学,2010:
    [98]徐浩,尹治平,刘畅畅,王东进,陈卫东.基于压缩感知的稀疏无源雷达成像[J].系统工程与电子技术,2011,33(12):2623-2630.
    [99]徐浩,刘畅畅,何学智,王东进,陈卫东.分布式无源雷达成像及其空间谱特性分析[J].现代雷达,2011,33(9):42-47.
    [100]FESSLER J A. On NUFFT-based gridding for non-Cartesian MRI [J]. Journal of Magnetic Resonance,2007,188(2):191-195.
    [101]孟小红,郭良辉,张致付,李淑玲,周建军.基于非均匀快速傅里叶变换的最小二乘反演地震数据重建[J].地球物理学报,2008,51(1):235-241.
    [102]SONG J, LIU Q H, TORRIONE P, COLLINS L. Two-dimensional and three-dimensional NUFFT migration method for landmine detection using ground-penetrating radar [J]. Geoscience and Remote Sensing, IEEE Transactions on,2006,44(6):1462-1469.
    [103]ZHOU X, SUN H, HE J, LU X. NUFFT-based iterative reconstruction algorithm for synthetic aperture imaging radiometers [J]. Geoscience and Remote Sensing Letters, IEEE,2009,6(2): 273-276.
    [104]HERMAN M A, STROHMER T. High-resolution radar via compressed sensing [J]. Signal Processing, IEEE Transactions on,2009,57(6):2275-2284.
    [105]TELLO ALONSO M, L PEZ-DEKKER P, MALLORQU J J. A novel strategy for radar imaging based on compressive sensing [J]. Geoscience and Remote Sensing, IEEE Transactions on,2010,48(12):4285-4295.
    [106]ZHANG L, XING M, QIU C-W, LI J, SHENG J, LI Y, BAO Z. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing [J]. Geoscience and Remote Sensing, IEEE Transactions on,2010,48(10):3824-3838.
    [107]GURBUZ A C, MCCLELLAN J H, SCOTT JR W R. Compressive sensing for subsurface imaging using ground penetrating radar [J]. Signal Processing,2009,89(10):1959-1972.
    [108]POTTER L C, ERTIN E, PARKER J T, CETIN M. Sparsity and compressed sensing in radar imaging [J]. Proceedings of the IEEE,2010,98(6):1006-1020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700