用户名: 密码: 验证码:
三维编织复合材料力学性能与工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料的三维编织技术是从20世纪80年代开始发展起来的一种新型复合材料成型技术,它将古老的编织技术与现代复合材料成型技术有机地融于一体,形成了一种具有独特结构的复合材料。应用三维编织技术制造复合材料,从编织、复合到成品,不分层,无机械加工,或仅做不损伤纤维的少量加工,从而保持了材料的整体性,克服了层合板复合材料层间强度和刚度不足的缺陷,显著地提高了材料的整体强度和刚度,也极大地提高了材料的综合性能。目前编织结构复合材料已广泛应用于许多高科技领域,例如体育用品、工业设备、医疗器械、汽车结构以及国防和航空航天等。本文对三维编织复合材料的编织工艺、力学性能和高科技工程应用等方面的问题进行了全面系统的研究。
     本文所做工作和创新主要表现在以下几个方面:
     在深入分析三维编织工艺和预制件细观结构的基础上,首次提出了一种固定网格法对三维编织工艺进行计算机仿真。采用MATLAB+3DMAX+AutoCAD VBA组合开发平台,绘制了三维编织预成型件的空间网格图和实体图,动态模拟了三维编织工艺全过程。
     在对三维编织复合材料基本的单胞力学模型进行分析的基础上,运用三细胞模型,对圆形截面三维编织复合材料的工程弹性常数进行了理论预测,通过数学推导和数值计算,首次提出了一种准横观各向同性材料的概念。这种材料的本构关系中有6个弹性常数,其特性介于横观各向同性材料和正交各向异性材料之间。圆形截面三维编织复合材料即可以看作准横观各向同性材料,这样可以简化三维编织复合材料力学分析。
     以Tsai-Wu强度准则的二阶表现形式为基础,提出了一种计算三维编织复合材料矩形截面梁纵向拉伸强度的理论方法。该方法把三维编织复合材料看作横观各向同性材料,从而在确定Tsai-Wu强度准则的各阶强度张量系数时可以进行简化,使Tsai-Wu强度准则能较好地应用于三维编织复合材料的强度计算。
     以单向复合材料轴向拉伸强度的统计模型为基础,首次提出了一种计算三维编织复合材料轴向拉伸统计强度的新方法。根据这种方法进行数值计算的结果表明,该方法能较好地预测三维编织复合材料的轴向拉伸统计强度。
     首次导出了三维编织复合材料剩余刚度和疲劳寿命的威布尔概率分布函数的表达式,并给出了上述两个分布函数中有关参数的确定方法,为以后进一步研究三维编织复合材料疲劳寿命试验和寿命预测提供一定的理论依据。
     通过对三维编织复合材料圆柱壳进行屈曲和应力分析,首次对三维编织复合材料高压储气瓶的临界载荷、强度和应力分布等技术指标进行了数值计算,其结果表明屈曲对三维编织复合材料高压储气瓶使用性能的影响是毋庸置疑的。基于圆形四步法三维编织工艺及上述理论分析,提出了三维编织复合材料高压储气瓶的结构优化设计数学模型,为气瓶在CNG汽车工业中的应用提供了重要的技术保证。
     分别用解析法和有限元方法,首次对三维编织复合材料高速飞轮进行了动力学分析和固有频率的计算,给出了飞轮极限转速和固有频率的理论计算公式。由于三维编织复合材料构件具有极高的比强度和比模量,因此三维编织飞轮能够在保证强度的前提下,大幅度地提高飞轮的极限转速,并具有极高的固有频率,满足了飞轮的使用性能。
The 3-D braiding procedure of composites is a new molding technology since 1980s’. In this method, the ancient braiding technology and the modern composites are combined organically to make the structure of composites unique. Using the 3-D braiding procedure in the manufacturing of composite, in the course of braiding, compositing and producing, materials are neither laminated nor machining, or small machining without the fiber damage. This can preserve the global properties of materials and overcome the shortage of laminae with low inter-layer strength and stiffness. the global strength and stiffness of composites are increased obviously, and the comprehensive characteristics of composites are also improved. At present, braided composites has been used in several high technologies, including national defense, astronavigation & aviation, industrial unit, medical instruments, automobile components, sport instruments. This paper goes deep into a thorough research on such subjects as braiding procedure, mechanical properties and high-tech engineering application for 3-D braided composites.
     The primary innovations of this dissertation are as follows:
     Based on the analyses of 3-D braiding procedure and the microstructure of perform, a type of fixed mesh method is proposed to simulate the procedure of 3-D braiding primarily. On the development platform which is composed of MATLAB, 3DMAX & AutoCAD VBA, the spatial mesh and the solid of the 3D-braided perform are plotted, and the full 3-D braiding procedure is simulated.
     Based on the analyses of the basic unit cell of 3-D braided composites, the three-cell model is adopted to predict the engineering elastic constants of the circular-section 3-D braided composites. According to the conclusion of mathematic derivation and the results of numerical calculation, a concept about quasi-transverse isotropic materials is declared primarily. The constitutive equations about this material are defined by six elastic constants. The characteristics of this material are between transverse isotropic material and orthogonal-anisotropic material. The circular-section 3-D braided composites can be regarded as the quasi-transverse isotropic materials. So this can make the mechanical analyses simple.
     A theoretic method is proposed to calculate the portrait draw strength of the 3D-Braided composite rectangle section beam based on the second-rank expression of Tsai-Wu rule. In this method, the 3D-Braided composites are regarded as traverse isotropy materials; thereby the tensor coefficients of every rank in Tsai-Wu rule can be decided by predigesting. So Tsai-Wu rule can be applied for the strength calculation of 3D-Braided composites.
     Based on the statistical model for the tensile statistical strength of unidirectional composite materials, a new method is proposed to calculate the tensile statistical strength of the 3-D braided composites. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted according to this method.
     The probability distribution functions of residual stiffness and fatigue life for 3-D braided composites where derived primarily, and the determination method of some parameters in distribution functions mentioned above were given. Definite theoretical bases were presented to conduct fatigue life test and life forecast for 3-D braided composites.
     Through analysis of buckling and stress for a composite cylindrical shell, such technique targets as critical load, strength and stress distribution of 3D-braided composite cylindrical shells are calculated numerically at first. These results indicate that the effect of buckling to the 3D-braided composite CNGV is indubitable. Based on the 4-step 3-D circular braiding procedure and the theoretical analysis mentioned above, a mathematic model about the structural optimum design of 3D-braided CNGV is proposed. According to this model, the calculated example shows better effects.
     Through the analytics and the finite element method (FEM), the limited rotate speed and the natural frequency of 3-D braided composites high-speed flywheel are proposed theoretically and calculated numerically primarily. Because the 3-D braided composites has large specific strength and specific module, the flywheel can reach a high limited rotate speed enough to satisfy the need of flywheel battery by ensuring the strength of flywheel, and the natural frequency of flywheel is very large.
引文
[1] 肖丽华, 杨桂. 三维编织多功能结构复合材料的发展. 复合材料学报, 1994, 11(2): 23~27
    [2] Ko FK. Three-dimensional fabrics for composites. Elsevier Science Publshers, 1987: 129~171
    [3] RA Florentine. Characterization of 3D braided composites - Status of structure- property design data for magnaweave-reinforced carbon-epoxy aircraft composites. SAMPE, 1989: 433~443
    [4] ED Reese, AP Majidi, RB Pipes. Friction and wear behavior of fiber FP/aluminum composites. Journal of Reinforced Plastics and Composites, 1988, 7(11): 500~514
    [5] TD Kostar, Chou T-W. Microstructural design of advanced multi-step three-dimensional braided performs. Journal of Composite Materials, 1994, 28(13): 1180~1201
    [6] 马立. 三维编织复合材料及其 RTM 成型工艺. 航天返回与遥感, 2000, 21(2): 50~54, 58
    [7] M Schneider, AK Pickett, B Wulfhorst. New rotary braiding machine and CAE procedures to produce efficient 3D-braided textiles for composites. 45th International SAMPE Symposium and Exhibition, Long Beach, CA,USA, 2000: 266~276
    [8] 赵家祥, 周瑞发. 先进复合材料及其应用的现状与发展趋势. 复合材料学报, 1993, 10(4): 7~8, 31
    [9] LW Gause, J Alper. Structural properties of braided graphite/epoxy composites. ASTM Journal of Composites Technology Research, 1987, 9(4): 141~150
    [10] AB Macander, RM Crane, ET Camponeschi Jr. Fabrication and mechanical properties of multidimensionally(X-D) braided composite materials. 7th Conference of Composite Materials Testing and Design, Philadelphia, Pennsylvania, USA, 1984, 1986: 422~443
    [11] Ko FK, D Hartman. Impact behavior on 2-D and 3-D glass/epoxy composites.SAMPE Journal, 1986, 22(4): 26~30
    [12] T Norman, C Anglin, D Gaskin. Strength and damage mechanisms of notched two-dimensional triaxial braided textile composites and tape equivalents under tension. Journal of Composites Technology & Research , 1996, 18(1): 38~46
    [13] LV Smith, SR Swanson. Failure of braided carbon/epoxy composites under biaxial compression. Journal of Composite Materials, 1994, 28(12): 1158~1178
    [14] Fujihara K, Huang Z-M, Ramakrishna S, etc. Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites. Composites Science and Technology, 2004, 64(16): 2525~2534
    [15] AP Majidi, RB Pipes, ED Reese. Friction and wear behavior of 2-D and 3-D fiber reinforced metal-matrix composites. Journal of Reinforced Plastics and Composites, 1987, 6(4): 178~192.
    [16] Wu E, Wang J. Behavior of stitched laminates under in-plane tensile and transverse impact loading. Journal of Composite Materials, 1995, 29(17): 2254~2279
    [17] Chiu C-H, Cheng C-C. Progressive crush behaviour in 3-D braided composite square tubes with various braiding parameters. Polymers and Polymer Composites, 2000, 8(7): 461~470
    [18] P Pluvinage, A Parvizi-Majidi, Chou T-W. Damage characterization of two- dimensional woven and three-dimensional braided SiC-SiC composites. Journal of Materials Science, 1996, 31(1): 232~241
    [19] Maekawa Z, Hamada H, Yokoyama A, etc. Tensile behavior of braided flat bar with a circular hole. Journal of Japanese Society of Composite Materials, 1988, 14(3): 116~123
    [20] DS Brookstein. Joining methods for advanced braided composites. Composites Structure, 1986, 6(1~3): 87~94
    [21] Tensile and compressive properties of 3D braided composite. Journal of the Japan Society for Composite Materials, 1996, 22(4): 136~147
    [22] Tamaki H, Matsumoto M, Kimbara M, etc. Shear property of 3D braided composite.Journal of the Japan Society for Composite Materials, 1996, 22(5): 174~183
    [23] Kobayashi H, Nakama N, Maekawa Z, etc. Fabrication and mechanical properties of braided composite truss joint. 37th International SAMPE Symposium and Exhibition, Anaheim, CA, USA, 1992: 1089~1103
    [24] Tamaki H, Matsumoto M, Kimbara M, Fukuta K. Mechanical properties of a three-dimensionally braided composite material. Proceedings of the 5th Japan International SAMPE Symposium, Tokyo, Japan, USA, 1997: 675~680
    [25] Jenq S-T, Mo J-J. Stiffness degradation of three-dimensional braided textile composites due to quasi-static penetration. Journal of Chinese Mechanical Engineers Society, 1995, 16(5): 477~487
    [26] 刘谦, 李嘉禄, 李学明. 三维编织复合材料的弯曲和压缩性能探讨研究. 材料工程. 2000, (8): 3~6
    [27] 孙慧玉. 三维编织复合材料拉伸性能研究. 南京航空航天大学学报. 1995, 27(6): 721~725
    [28] 刘文宁, 周光明, 乔新. 三维编织复合材料力学性能的实验研究. 南京航空航天大学学报. 1993, 25(6): 828~831
    [29] DO Adams, AC West. Axial yarn crimping effects in braided composite materials. Journal of Composite Materials, 1995, 33(5): 402~419
    [30] Hamada H. Fabrication and mechanical properties of braided composites. International Conference on Advanced Composites (ICAC 98), Hurghada, Egypt, 1998, Auburn University, 1998: 801~808
    [31] WP Seneviratne, JS Tomblin. Design of a braided composite structure with a tapered cross-section. 47th International SAMPE Symposium and Exhibition, Long Beach, California, USA, 2002: 1435~1446
    [32] Mohajerjasbi S. Fiber architecture of three-dimensional braided composites. AIAA Journal, 1998, 36(4): 613~617
    [33] 李嘉禄, 孙颖. 二步法方型三维编织复合材料的细观结构. 复合材料学报.2002, 19(4): 69~75
    [34] 黄小平, 徐宁光, 孙良新. 复合材料三维四向矩形类编织物表面结构研究. 宇航材料工艺. 2000, 30(3): 14~19, 41
    [35] Li W, M Hammad, Ei-Shiekh Aly. Structural analysis of 3-D braided performs for composites, Part 1: The four-step perform. Journal of Industrial Textiles, 1990, 19(40):515~537
    [36] Wang Y-Q, Wang ASD. On topological yarn structure in 3-D rectangular and tubular braided composite preforms. Composites Science and Technology, 1994, 51(4):575~586
    [37] Sun X, Wang Y. Geometry of 3d braided rectangular preform with axial yarns. SAMPE. 2001, 46: 2455~2462
    [38] R Pandey, Hahn H-T. Visualization of representative volume elements for three- dimensional four-step braided composites. Composites Science and Technology. 1996, 56(2):161~70
    [39] C Huye, Jr, G Farley. Development of generalized 3-D braiding machines for composite performs. Composites Engineering, 1993, 3(3): 209~213, 215~218
    [40] TD Kostar, Chou T-W. A methodology for Cartesian braiding of three- dimensional shapes and special structures. Journal of Materials Science, 2002, 37(13): 2811~2824
    [41] K Pochiraju, Chou T-W. Three-dimensionally woven and braided composites. I. A model for anisotropic stiffness prediction. Polymer Composites, 1999, 20(4): 565~580
    [42] K Pochiraju, Chou TW. Three-dimensionally woven and braided composites. II. An experimental characterization. Polymer Composites, 1999, 20(6): 733~747
    [43] Chou T-W. Microstructural design of fiber composites. Cambridge University Press, 1991
    [44] V Savino, Chou T-W. Mechanical characterization of triaxially braided hybrid composites. Polymer Composites, 1998, 19(4): 473~486
    [45] Chou T-W, Ruan X, A Safari. Effective elastic, piezoelectric and dielectric properties of braided fabric composites. Composites Part A: Applied Science and Manufacturing, 1999, 30A(12): 1435~1444
    [46] Du G-W, Ko FK. Unit cell geometry of 3-D braided structures. Journal of Reinforced Plastics and Composites. 1993, 12(7): 752~768
    [47] A Rahman, Chu J-N, Ko F. Use of least squares method to obtain relaxation function of AS4 carbon-PEEK 3D braided composites from DMA data. Journal of Advanced Materials, 1996, 27(3): 51~54
    [48] Yau S-S, Chou T-W, Ko FK. Flexural and axial compressive failures of three-dimensionally braided composite I-beams. Composites, 1986, 17(3): 227~232
    [49] R Postle, Tang Z-X. Mechanics of three-dimensional braided structures for composite materials. II. Prediction of the elastic moduli. Composite Structures, 2001, 51(4): 451~457
    [50] A Aggarwal, S Ramakrishna, VK Ganesh. Predicting the in-plane elastic constants of diamond braided composites. Journal of Composite Materials, 2001, 35(8): 665~688
    [51] D Bigaud, P Hamelin. Mechanical properties prediction of textile-reinforced composite materials using a multiscale energetic approach. Composite Structures. 1997, 38(1~4): 361~371
    [52] SR Kalidindi, E Franco. Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites. Composites Science and Technology, 1997, 57(3): 293~305
    [53] Mohajerjasbi S. Predictions for coefficients of thermal expansion of three- dimensional braided composites. AIAA Journal, 1997, 35(1): 141~144
    [54] E Zywicz, T Nguyen. On the flexural and extensional behavior of a large-tow triaxial braided composite. Composites Science and Technology, 2000, 60(16): 2989~2999
    [55] Jenq S-T, Mo J-J. Ballistic impact response for two-step braided three-dimensionaltextile composites. AIAA Journal, 1996, 34(2): 375~384
    [56] Chiu C-H, Lu C-K, Wu C-M. Crushing characteristics of 3-D braided composite square tubes. Journal of Composite Materials. 1997, 31(22): 2309~2327
    [57] SJ Beard, Chang F-K. Energy absorption of braided composite tubes. International Journal of Crashworthiness, 2002, 7(2): 191~206
    [58] Chiu C-H, Tsai K-H, Huang W-J. Effects of braiding parameters on energy absorption capability of triaxially braided composite tubes. Journal of Composite Materials, 1998, 32(21): 1964~1983
    [59] JN Baucom, MA Zikry, Qiu Y. Dynamic and quasi-static failure evolution of 3d woven cellular composite systems. Journal of Reinforced Plastics And Composites, 2004, 23(5): 471~481
    [60] Mohajerjasbi S. Structure and properties of three-dimensional braided composites including axial yarns. AIAA Journal, 1996, 34(1): 209~211
    [61] D Bigaud, P Hamelin. A Monte Carlo simulation for the study of three- dimensional Cartesian braided composites failure. Journal of Materials: Design and Applications, 2000, 214 (4): 199~209
    [62] 庞宝君, 杜善义, 韩杰才, 王铎. 三维多向编织复合材料非线性本构行为的细观数值模拟. 2000, 17(1): 98~102
    [63] 李水乡, 孙慧玉, 黄传奇. 用人工神经网络模拟三维编织复合材料的力学性能. 南京航空航天大学学报. 1997, 29(4): 397~401
    [64] 刘振国, 陆萌, 麦汉超等. 三维四向编织复合材料弹性模量数值预报. 北京航空航天大学学报, 2000, 26(2): 182~185
    [65] Sun H-Y, Qiao X. Prediction of the mechanical properties of three-dimensionally braided composites. Composites Science and Technology, 1997, 57(6): 623~629
    [66] 程伟, 赵寿根, 刘振国. 三维四向编织复合材料等效热特性数值分析和试验研究. 航空学报. 2002, 23(2): 102~105
    [67] 蔡敢为.具有三维纤维增强复合材料构件的机构动力学研究.[博士学位论文].武汉: 华中理工大学,1998
    [68] Wu D-L. Three-cell model and 5D braided structural composites. Composites Science and Technology. 1996, 56(3): 225~233
    [69] 周光明, 王鑫伟, 乔新. Inclined laminal combination model of 3D braid composites(三维编织复合材料的倾斜层板组合模型). 南京航空航天大学学报(英文版), 1995, 12(1): 8~14
    [70] 冯淼林, 吴长春等. 三维均匀化方法预测编织复合材料等效弹性模量. 材料科学与工程. 2001, 19(3): 34~37
    [71] Tao, X-M, Chen L, Choy C-L. Mechanical analysis of 3-D braided composites by the finite multiphase element method. Composites Science and Technology, 1999, 59(16): 2383~2391
    [72] 连尉平, 崔俊芝. 三维编织复合材料模量的双尺度有限元计算. 计算力学学报, 2005, 22(3): 268~273
    [73] 宛琼, 李付国, 梁宏等. 三维四向编织复合材料基本性能的有限元模拟. 航空材料学报, 2005, 25(1): 30~35
    [74] 孙颖, 李嘉禄, 亢一澜. 二步法三维编织复合材料弹性性能的有限元法预报. 复合材料学报, 2005, 22(1): 108~113
    [75] 练军. 动力有限元在三维编织复合材料弹道冲击性能研究中的应用. 玻璃钢/复合材料, 2006, (3): 14~17
    [76] 杨桂等. 编织结构复合材料、工艺及工业实践. 北京: 科学出版社. 1999
    [77] [美] 蔡为仑. 复合材料设计. 北京: 科学出版社. 1989
    [78] 张双寅等. 复合材料结构的力学性能. 北京: 北京理工大学出版社, 1990
    [79] 王兴业等. 复合材料力学分析与设计. 长沙: 国防科技大学出版社, 1999
    [80] DA Christopher, R Beach. Flywheel technology development program for aerospace applications. IEEE AES Systems Magazine, 1998, 13(6): 9~14
    [81] DA Towgood, DL Satchwell. Composite material flywheel development for energy storage. American Society for Metals, 1981: 891~904
    [82] DA Towgood, DJ Dean, MA Johnson. High specific energy composite material flywheel. Materials & Processes—Continuing Innovations, 1983, 28: 917~924
    [83] SP Wells, Pang D-C, Kirk JA. Design, manufacture, and testing of a composite flywheel for energy storage. ASME, 1994, 194: 397~404
    [84] SP Wells, Pang D-C. Manufacturing and testing of a magnetically suspended composite flywheel energy storage system. Second International Symposium on Magnetic Suspension Technology, NASA Langley Research Center, 1994, 2: 543~556
    [85] Fuji J, Kabushiki K. Composite material flywheel device. Patent Applicant, No. EP0984197, Publication Date: 2000/03/08
    [86] 王瑞, 李聚献. 天然气汽车和电动汽车发展的几个问题. 汽车技术. 1998, (5): 44~45
    [87] 刘水纯, 董雨达, 王秉权. 复合材料压缩天然气(CNG)气瓶应用研究. 纤维复合材料. 2000, (3): 50~52
    [88] 华新. 天然气汽车关键设备——压缩天然气复合材料气瓶. 化工新型材料. 1998, 26(12): 17~18
    [89] Zheng X-T, Ye T-Q. Microstructure analysis of 4-step three-dimensional braided composite. Chinese Journal of Aeronautics, 2003, 16(3): 142~150
    [90] 陈 利, 李嘉禄, 李学明.三维四步法圆型编织结构分析.复合材料学报, 2003, 20(2):76~80
    [91] 孙 颖. 二步法方型三维编织复合材料的细观结构及其力学性能分析. [博士学位论文] . 天津: 天津纺织工学院, 2000
    [92] Byun J-H, Chou T-W, Process microstructure relationships of 2-step and 4-step braided composites. Composites Science and Technology, 1996, 56(3): 235~251
    [93] 郑锡涛. 三维编织复合材料细观结构与力学性能分析. [博士学位论文]. 西安: 西北工业大学, 2003
    [94] 孙祥, 徐流美, 吴清. MATLAB7.0 基础教程. 北京: 清华大学出版社, 2005
    [95] 黄心渊. 3DS max 高级编程-使用脚本制作动画. 北京: 清华大学出版社, 2004
    [96] 王钰. 用 VBA 开发 AutoCAD 2000 应用程序.北京: 人民邮电出版社. 1999
    [97] 韩其睿 . 复合材料三维编织工艺底盘运动规律 . 天津纺织工学院学报 , 1994,13(2):1~5
    [98] [美] RS Pressman. 软件工程——实践者的研究方法. 北京: 机械工业出版社, 2002
    [99] 周金平. MATLAB 6.5 图形图像处理与应用实例. 北京: 科学出版社, 2003
    [100] 王君泽, 曹红蓓. 三维编织物的计算机仿真系统研制. 纺织学报. 2004, 25(4): 106~107
    [101] 成玲. 三维编织物的计算机模拟技术. 天津工业大学学报, 2002, 21(2): 26~29
    [102] Yang J-M, Ma C-L, Chou T-W. Fiber inclination model of three-dimensional textile structural comosites. Journal of Composite Materials, 1986, 20(9): 472~483
    [103] SR Kalidindi, A Abusafieh. Longitudinal and transverse modules and strengths of low angle 3-D braided composites. Journal of Composite Materials, 1996, 30(8): 885~905
    [104] 晏石林, 沈大荣, 王满廷. 一种三维纺织复合材料的本构关系及其性能分析. 复合材料学报. 1995, 12(2): 83~88
    [105] 吴家龙. 弹性力学. 上海: 同济大学出版社, 1993
    [106] 王震鸣. 复合材料力学和复合材料结构力学. 北京: 机械工业出版社, 1991
    [107] 易洪雷, 丁辛. 三维机织复合材料力学性能研究进展. 力学进展, 2001,31(2): 161~171
    [108] Sun H-Y, Qiao X. Prediction of the mechanical properties of three- dimensionally braided composite. Composites Science and Technology, 1997, 57:623~629
    [109] 卢子兴, 刘振国, 麦汉超, 陈作荣. 三维编织复合材料强度的数值预报. 北京航空航天大学学报. 2002,28(5): 563~565
    [110] DE Gucer, J Gurland. Comparison of statistics of two fracture nodes. Journal of Mechanical Physics Solids, 1962, 10: 365~373
    [111] 曾庆敦, 马锐, 范赋群. 复合材料正交叠层板最终拉伸强度的细观统计分析.力学学报, 1994, 26(4): 451~461
    [112] BW Rosen. Tensile failure of fibrous composites. AIAA Journal,1964, 2: 1985~1991
    [113] 唐国翌, 闫允杰, 陈锡花等. 多向编织碳纤维复合材料的断裂及微观形貌. 清华大学学报(自然科学板), 1999, 39(10): 4~7
    [114] Ding YQ, Yan Y, etc. Comparison of the fatigue behavior of 2-D and 3-D woven fabric reinforced composites. Journal of Materials Processing Technology, 1995, 55(3~4): 171~177
    [115] 李实. 各向异性弹性体的通用强度准则研究. 强度与环境, 1990,(1): 34~43
    [116] Zhu YT, Zhou GH, Zheng ZG. A statistical theory of composite materials strength. Journal of Composite Materials, 1989, 23(3): 280~287
    [117] 曾庆敦. 复合材料的细观破坏机制与强度. 北京: 科学出版社, 2002
    [118] Hahn H-T, Kim R-Y. Proof testing of composite materials. Journal of Composite Materials, 1975, 9(7): 297~311
    [119] Yang J-N, Liu M-D. Residual strength degradation model and theory of periodic proof tests for graphite/epoxy laminates. Journal of Composite Materials, 1977, 11: 176~203
    [120] 罗祖道, 王震鸣. 复合材料力学进展. 北京: 北京大学出版社, 1988
    [121] 贺才兴, 童品苗等. 概率论与数理统计. 北京: 科学出版社, 2000
    [122] 现代工程数学手册编委会. 工程数学手册(第IV卷). 武汉: 华中工学院出版社, 1985
    [123] 孙济美. 天然气和液化石油气汽车. 北京: 北京理工大学出版社, 1999
    [124] WE Dick. Application of aerospace and defense composites technology to compressed natural gas vehicle fuel tanks: a success story. 45th International SAMPE Symposium and Exhibition, Long Beach, CA, USA, 2000: 2369~2380
    [125] 张雪丽, 果立成等. 三维编织复合材料圆柱壳的稳定性研究. 哈尔滨工业大学学报. 2003, 35(2): 222~226
    [126] 罗祖道, 李思简. 各向异性材料力学. 上海: 上海交通大学出版社, 1994
    [127] 陈利, 李嘉禄, 冯志海等. 三维四向编织复合材料的叠层板理论分析. 宇航材料工艺, 2003, (2): 29~33
    [128] 许贤泽. 纤维缠绕复合材料壳体设计方法及其理论研究.[博士学位论文]. 武汉: 武汉理工大学, 2002
    [129] 汤双清. 飞轮电池磁悬浮支承系统理论及应用研究. [博士学位论文] . 武汉: 华中科技大学, 2003
    [130] TJ Pieroneck, DK Decker, VA Speckor. Spacecraft flywheel systems——benefits and issues. Proceedings of the IEEE 1997 Aerospace and Electronics Conference, 1997: 589~593
    [131] 徐芝纶. 弹性力学(上册). 北京: 高等教育出版社, 1982
    [132] 伍章健, 罗祖道. 圆柱正交异性体三维热弹性问题的一个解法. 固体力学学报, 1993, 14(1): 16~24
    [133] 王勖成, 邵敏. 有限单元法基本原理和数值方法. 北京: 清华大学出版社, 1996(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700