用户名: 密码: 验证码:
波浪、水流与结构物耦合作用的时域模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海浪的传播过程中通常伴随着水流现象。波浪和水流共存时,它们间的相互作用将影响各自的传播特性。综合而形成的波流场并不是纯波动场与纯水流场的简单叠加,而是一个比较复杂的组合过程。。本文采用高阶边界元方法在时域内对波浪、水流与结构物相互作用问题进行了理论研究和数值模拟,重点研究了引入水流参数对单纯波浪作用下结构物水动力特性的影响。
     利用时域方法直接求解非线性问题时,速度势和波面在未知的瞬时水面上满足非线性自由水面动力学和运动学边界条件,致使每个时间步内自由水面都需要更新,这样耗费很长的计算时间。本文采用摄动展开理论,在物体运动的初始位置和平均自由水面离散网格,从而大大提高了时域方法解决波、流与结构物相互作用问题的效率。
     在势流理论假定下,本文分别研究了波浪、水流关于结构物的绕射和辐射作用问题。首先对建立的波、流与物体相互作用绕射模型进行验证,将直立圆柱的数值模拟结果与已发表的解析结果和频域结果对比,结果吻合良好。随后模拟了波、流与一个固定的四柱平台相互作用问题,模拟所得的数值结果与试验结果吻合良好,从而证实了固定物体与波、流相互作用模型的准确性。将模型延伸到波、流与浮动物体相互作用问题,通过漂浮半球的数值模拟结果与已发表的频域结果对比,结果吻合良好,证实了波、流与结构物相互作用辐射模型的准确性。接下来对水流和波浪作用下某坐底式三腿海洋平台所受的一阶激振力和迎浪侧波浪爬高进行了详细的数值模拟研究,重点研究了水流参数的引入对单纯波浪与结构物相互作用模拟结果的影响。进一步将模型延伸到系泊JIP Spar平台与波浪、水流相互作用模拟中,缆绳等系泊系统是强几何非线性结构,本文采用绷紧索系泊系统为研究对象,详细分析了不同参数的水流对缆绳力、平台水动力荷载以及运动响应等模拟结果的影响。最后,本论文开展了畸形波、水流与系泊JIP Spar平台相互作用问题研究,利用Jonswap谱来描述不规则波随机过程,对平台在畸形波和水流作用下的水动力特性进行了详细的模拟研究。
Process of wave propagation is usually accompanied by currents. The coexistence of wave and current can influence the propagating property of respective holders. Synthesis of wave and current field is a complex combination rather than the simple piling up of individual character. In the present dissertation, a time-domain higher-order boundary element method (THOBEM) is developed to simulate wave-current interaction with 3D bodies.The emphasis is focused on the influence of the current on the results of hydrodynamic characteristics for wave-body interaction.
     Solving nonlinear problems by time-domain method, both the velocity potential and the wave run-up satisfy the nonlinear kinematic and dynamic boundary conditions at unknown instantaneous free surface. This results in update of free surface each time step, which increases the computing time tremendously. In this paper, a perturbation procedure is introduced to solve the problem of the wave-current-body interaction. The meshes are discreted on the initial position of the body responses and the mean free surface, which improves the computational efficiency of the time-domain method.
     In linear potential theory regime, the present model is carried out on the diffraction and radiation problems of wave-current interaction with 3D bodies. At first, a numerical study testifies validity of the model.The numerical results of wave-current interaction with circular cylinder are all in close agreement with the published results of the frequency-domain method, analytic method, and time-domain method. Then wave-current interaction with a fixed four-column platform is investigated, and the results agree well with experimental data. The above results give evidence to the accuracy of the numerical model of wave-current interaction with fixed bodies. Whereafter, the numerical model is extended to simulate wave-current interaction with floating bodies. The numerical results of wave-current interaction with a floating hemisphere match well with the published results of the frequency-domain method, which validates the accuracy of the numerical model of wave-current interaction with floating bodies. Furthermore, the interaction of wave-current with a three-legged bottom-supported platform is investigated. The emphasis is focused on the influence of the current on hydrodynamic characteristics for wave-body interaction. In the nonlinear simulation of mooring buoy interaction with wave-current, the mooring system is strongly nonlinear. The tightly stretched rope is chosen as research object in this paper. The numerical model is extended to simulate wave-current interaction with a mooring JIP Spar, where the effects of current on the cable forces, hydrodynamic forces on JIP Spar and body responses are system analyzed. Then, the numerical model is extended to the simulation of the freak wave-current interaction with mooring JIP Spar. As the main way to study of irregular wave expressed by spectrum of stochastic process, the Jonswap spectrum is chosen as research object in this paper. The hydrodynamic characteristics of freak waves,current interaction with structures are investigated.
引文
[1]董艳秋.深海采油平台波浪荷载及响应.天津:天津大学出版社,2005.
    [2]邹志利.水波理论及其应用.北京:科学出版社,2005.
    [3]王涛,李家春.波流相互作用研究进展.力学进展,1999,29(3):331-343.
    [4]曹凤帅.比例边界有限元法在势流理论中的应用:(博士论文).大连:大连理工大学,2009.
    [5]Cruse T A, Rizzo F J. A direct formulation and numerical solution of the general transient elasto-dynamic problem. Journal of Math, Analysis and Applications,1968, 32:244-259.
    [6]Brebbia C A. The boundary element method for engineers.London:Pentech Press,1978.
    [7]钱昆.浮体在大幅波浪中的运动和荷载计算研究:(博士论文).大连:大连理工大学,2004.
    [8]孙大鹏,李玉成.三维数值波动水槽波浪变型计算的0-1混和型边界元方法.水动力学研究与进展,1999,14(4):429-437.
    [9]Liu Y H, Kim C H, Lu X S. Comparison of higher-order boundary element method and constant panel methods for hydrodynamics loadings.International Journal of Offshore and Polar Engineering,1991,1(1):8-17.
    [10]刘勇辉,陆鑫森.边界元法中奇异积分计算的极坐标变换法.应用数学和力学,1988,9(10):899-907.
    [11]滕斌.波浪力计算中的一个新边界元方法.水动力学研究与进展,1994,9(2).:215-223.
    [12]滕斌,李玉成.波浪问题中唯一可解的高阶边界元方法.海洋工程,1996,14(1):30-38.
    [13]Maniar H. A three dimensional higher order panel method based on B-splines:[dissertation].Rhode Island:University of Rhode Island,1995.
    [14]Lee C H, Maniar H D, Newman J N et al.Computations of wave loads using a B-spline panel method. Proceedings of 21st Symposium on Naval Hydrodynamics,Washington, 1996:75-92.
    [15]Newman J N, Lee C H. Boundary-element methods in offshore structure analysis. Journal of Offshore Mechanics and Arctic Engineering,2002,124:81-89.
    [16]Liu Y H, Kim M H, Kim C H. The computation of second-order mean and double-frequency wave loads on a compliant TLP by HOBEM. International Journal of Offshore and Polar Engineering,1995,5(2):111-119.
    [17]Eatock Tylor R, Chau F P. Wave diffraction theory-some developments in linear and nonlinear theory. Journal of Offshore Mechanics and Arctic Engineering,1992, 114:185-194.
    [18]Teng B, Gou Y, Ning D Z. A higher order BEM for wave-current action on structures——direct computation of free-term coefficient and CPV integrals.China Ocean Engineering,2006,20(3):395-410.
    [19]Liu Y H, Kim C H, Kim M H. The computation of mean drift forces and wave run-up by higher-order boundary element method. Proceedings of International Offshore and Polar Engineering Conference,1990,3:476-481.
    [20]Newman J N. Algorithms for the free-surface green function. Journal of Engineering Mathematics,1985,19:56-67.
    [21]Longuet M S,Stewart R W. Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics,1960,8:565-583.
    [22]Hughes B A, Stewart R W. Interaction between gravity waves and a shear flow. Journal of Fluid Mechanics,1961,10:385-402.
    [23]Whitham G B. Mass, momentum and energy flux in water waves.Journal of Fluid Mechanics,1962,12:135-147.
    [24]Lambrakos K F. Wave-current interaction effects on water velocity and surface wave spectra. Journal of Geophysical Research,1981,86:10955-10960.
    [25]Grant W D, Madsen O S.Combined wave and current interaction with a rough bottom. Journal of Geophysical Research,1979,84:1797-1808.
    [26]Liu L F. Wave-current interactions on a slowly varying topography. Journal of Geophysical Research,1983,88:4421-4426.
    [27]Jonsson I G, Wang J D. Current-depth refraction of water waves.Ocean Engineering, 1980,7:153-171.
    [28]Kirby J T. A note on linear surface wave-current interaction over slowly varying topography. Journal of Geophysical Research,1984,89:745-747.
    [29]李玉成,滕斌,陈兵.波浪在水流作用下的变形.水动力学研究与进展,1995,10(2):173-180.
    [30]吴永胜,练继建,张庆河等.波浪和水流共同作用下时均流速分布.水利学报,2001,1:35-41.
    [31]吴永胜,练继建,王兆印等.波浪-水流相互作用模型.水利学报,2002,4:13-17.
    [32]Zhang H, Madsen O S,Sannasiraj S A et al.Hydrodynamic model with wave-current interaction in coastal regions.Coastal and Shelf Science,2004,61:317-324.
    [33]高祥宇.波流共同作用下的底部剪切力研究.海洋工程,2005,23(4):92-104.
    [34]Yang S Q, Tan S K, Lim S Y et al.Velocity distribution in combined wave-current flows.Advances in Water Resources,2006,29:1196-1208.
    [35]Zhang H S, Zhao H J, Ding P X et al. On the modeling of wave propagation on non-uniform currents and depth. Ocean Engineering,2007,34:1394-1404.
    [36]Liu Y Z, Shi J Z, Perrie W. A theoretical formulation for modeling 3D wave and current interactions in estuaries. Advances in Water Resources,2007, 30:1737-1745.
    [37]徐祥德,冉令坤.波流相互作用与波动传播模态.大气科学,2007,6:1237—1250.
    [38]李冠星.近岸波流对港口工程影响的数值模拟研究:(硕士学位论文).广东:中山大学,2008.
    [39]Teng B, Zhao M, Bai W. Wave diffraction in a current over a local shoal.Coastal Engineering,2001,42:163-172.
    [40]Sarpkaya T, Isaacson M. Mechanics of wave forces on offshore structure.New York: Van Nostrand Reinhold,1981.
    [41]Chakrabarti S T. Hydrodynamics of offshore structure.Boston:Springer-Verlag, 1987.
    [42]Faltinsen O M. Wave loads on offshore structures.Annual Review of Fluid Mechanics, 1990,22:35-56.
    [43]Moe G, Gudmestad 0 T. Predictions of Morison type forces in irregular high Renolds number waves.Proceeding of 7th International Offshore and Polar Engineering Conference, Honolulu,1997.
    [44]Sarpkaya T, Bakmis C, Storm M A. Hydrodynamic forces from combined wave and current flow on smooth and rough circular cylinders at high Reynolds number. Proceeding of 16th OTC, Houston,1984.
    [45]Sarpkaya T. In-line force on a cylinder translating in oscillatory flow. Applied Ocean Research,1985,7(4):188-196.
    [46]王涛,李家春.波作用量守恒原理在波流相互作用中的应用.力学学报,1996,28(3):281-290.
    [47]王风龙,李玉成.顺向逆向流对串列双桩桩列上波流力的影响.大连理工大学学报,1995,35(5):714-718.
    [48]李玉成,王凤龙,王洪荣.作用于并列双桩桩列上的波流力.海洋学报,1992,14(2):106-121.
    [49]李玉成,王凤龙.作用于串列双桩桩列上的波流力.水动力研究与进展,1992,7(2):141-149.
    [50]李玉成,张福然.作用于垂直桩柱上的波流力.海洋学报,1986,8(6):751-761.
    [51]Maccamy R C, Fuchs R A. Wave forces on piles:a diffraction theory. Beach Erosion Board Technology Memorandum,1954,69.
    [52]Grue J, Palm E. Wave radiation and wave diffraction from a submerged body in a uniform current.Journal of Fluid Mechanics,1985,151:257-278.
    [53]Zhao R,Faltinsen O M. Interaction between waves and current on a two-dimensional body in the free surface. Applied Ocean Research,1988,10(2):87-99.
    [54]Taylor E R, Hu C S, Nielsen F G. Mean drift forces on slowly advancing vertical cylinders in long waves. Applied Ocean Research,1990,12(3):141-152.
    [55]Matsui T, Lee S Y, Sano K. Hydrodynamic forces on a vertical cylinder in current and waves.Journal of the Society of Naval Architects of Japan,1991,170:277-287.
    [56]Emmerhoff O J, Sclavounos P D. The slow drift motion of arrays of vertical cylinders. Journal of Fluid Mechanics,1992,242:31-50.
    [57]Kinoshita T, Sunahara S, Bao W G. Wave drift damping acting on multiple circular cylinders(model tests).Offshore Technology,1995,1:443-454.
    [58]Kim M H, Niedzwecki J M, Johnson R P. Responses of a spar platform in random waves and currents (experiment vs.theory).International Journal of Offshore and Polar Engineering,1996,6(1):27-34.
    [59]姚熊亮,戴绍仕,王宏.串列弹性圆柱在波流联合场中的阻力和升力.海洋工程学术会议,北京,2005.
    [60]兰雅梅,刘桦,皇甫熹等.东海大桥桥梁桩柱承台水动力模型试验研究——第二部分作用于群桩及承台上的波流力.水动力学研究与进展,2005,20(3):332-339.
    [61]杨宪章,刘毅,李文玉.波流联合作用下的船舶系泊.中国港湾建设,2006,1:8-11.
    [62]黄华定,于旭东.金塘大桥波流力的分析研究.公路,2009,1:127-129.
    [63]Wu G X, Eatock Taylor R. Radiation and diffraction of water waves by a submerged sphere at forward speed. Proceeding of the Royal Society, London,1988.
    [64]Wu G X, Eatock Taylor R. The hydrodynamic force on an oscillating ship with low forward speed. Journal of Fluid Mechanics,1990,211:333-353.
    [65]Nossen J, Grue J, Palm E. Wave forces on three-dimensional floating bodies with forward speed. Journal of Fluid Mechanics,1991,227:135-160.
    [66]Grue J, Biberg D. Wave forces on marine structures with small speed in water of restricted depth. Applied Ocean Research,1993,15(3):121-135.
    [67]陶建华,刘连武.波浪和水流对大直径圆柱的共同作用力.水动力学研究与进展,1993,8(3):265-272.
    [68]岳琳,刘滋源,刘应中等.计及定常流的三维物体的辐射问题.水动力学研究与进展,1995,10(2):181-196.
    [69]Teng B, Eatock Taylor R. Application of a higher order BEM in the calculation of wave run-up on bodies in a weak current.International Journal of Offshore and Polar Engineering,1995,5(3):219-224.
    [70]Teng B, Eatock Taylor R. New higher-order boundary element methods for wave diffraction/radiation. Applied Ocean Research,1995,17:71-77.
    [71]滕斌.深水中波浪与弱流对结构物的作用.海洋学报,1996,18(5):117-126.
    [72]Chen X B,Malenica S.Uniformly valid solution of the wave-current-body interaction problem. The 11th International WWWFB, Hamburg,1996.
    [73]Lin P Z,Li C W. Wave-current interaction with a vertical square cylinder. Ocean Engineering,2003,30:855-876.
    [74]Malenica S,Clark P J, Molin B. Wave and current forces on a vertical cylinder free to surge and sway. Applied Ocean Research,1995,17:79-90.
    [75]Jian Y J, Zhan J M, Zhu Q Y. Short crested wave-current forces around a large vertical circular cylinder. European Journal of Mechanics B/Fluids,2008, 27:346-360.
    [76]Isaacson M, Cheung K F. Wave-current interaction with a large structure. Proceedings of International Conference on Civil Engineering in Oceans,ASCE, Texas, 1992.
    [77]Ferrant P. Nonlinear wave-current interactions in the vicinity of a vertical cylinder. The 12th WWWFB, Marseille,1997.
    [78]Kim M H, Kim D J. Fully nonlinear interactions of waves with a three-dimensional body in uniform currents.Applied Ocean Research,1998,20:309-321.
    [79]Celebi M S.Nonlinear transient wave-body interactions in steady uniform currents. Computer Methods in Applied Mechanics and Engineering,2001,190:5149-5172.
    [80]Sen D. Time-domain computation of large amplitude 3D ship motions with forward speed. Ocean Engineering,2002,29(8):973-1002.
    [81]王本龙,刘桦.基于高阶Boussinesq方程的波流相互作用数值模拟.第十一届中国海岸工程学术讨论会暨2003年海峡两岸港口及海岸开发研讨会,海南,2003,234-238.
    [82]程雪玲,胡非,邹光远.浅水波-流对直立桩柱作用的分层数值解法.水动力学研究与进展,2004,19(6):801-808.
    [83]Shi J Z, Wang Y. The vertical structure of combined wave-current flow. Ocean Engineering,2008,35:174-181.
    [84]Buchmamm B,Skourup J, Cheung K F. Run-up on a structure due to second-order waves and a current in a numerical wave tank.Applied Ocean Research,1998,20:297-308.
    [85]Skourup J, Cheung K F, Bingham H B et al.Loads on a 3D body due to second-order waves and a current.Ocean Engineering,2000,27:707-727.
    [86]Kim D J, Kim M H. Wave-current-body interaction by a time-domain high-order boundary element method. Proceedings of the 7th International Offshore and Polar Engineering Conference,Honolulu,1997.
    [87]Kim D J, Kim M H. Wave-current interaction by a large 3D body by THOBEM. Journal of Ship Research,1997,41(4):273-285.
    [88]冯仰德.单侧接触埋置结构与波的动力相互作用—时域边界元数值分析:(博士论文).北京:北方交通大学,2001.
    [89]Manolis G D, Beskos D E. Dynamic stress concentration studies by boundary integrals and Laplace transform. International J. Num. Meth. Eng.,1981,17:573-599.
    [90]Durbin F. Numerical inversion of laplace transforms:an efficient improvement to dubner and abate's method. Computer J.,1974,17:371-376.
    [91]Niwa Y, Kobayashi S,Azuma N. An analysis of transient stress produced around cavities of arbitrary shape during passage of traveling waves. Mar. Fac. Engng.,1975,37:28-46.
    [92]Niwa Y, Kobayashi S, Fukui T. Application of integral equation method to some geomechanical problems. Numerical Method in Geomechanics ASCE, New York,1976.
    [93]Niwa Y, Kitahara M, Ikeda H. The BIE approach to transient wave propagation around elastic inclusions. Jeoret.Appl.Mech.,1983,32:183-197.
    [94]Kobayashi S.Some applications of boundary element method to Geodynamics. Computational Mechancis, Berlin,1986.
    [95]Friedman M B, Shaw R P. Diffraction of pluses by cylindrical obstacles of arbitrary cross section. Journal of Applied Mechanics,1962,29:40-46.
    [96]Das S,Aki K. A numerical study of two-dimensional spontaneous rupture propagation. Geophys.J.,1977,50:643-648.
    [97]Cole D M, Kosloff D,Minster J B. A numerical boundary integral equation method for elastodynamics. Bull.Seismol.Soc. Am.,1978,68:1331-1357.
    [98]Niwa Y. Fukui T, Kato S et al.An application of the integral equation method to two-dimensional elastodynamics.Theor. App. Mech.,1980,28:281-290.
    [99]Manolis G D, Tetepoulidis P, Talaslidis D G et al.Seismic analysis of buried pipeline in a 3D soil continuum. Eng. Anal.Bound:Elem.,1995,15:371-391.
    [100]李玉成,滕斌.波浪对海上建筑物的作用.北京:海洋出版社,2002.
    [101]Bai W, Teng B. Second-order wave diffraction around 3-D bodies by a time-domain method. China Ocean Engineering,2001,15(1):73-85.
    [102]Ferrant P. Three-dimensional unsteady wave-body interactions by a Rankine boundary element method. Ship Technology Research,1993,40:165-175.
    [103]宁德志.快速多极子边界元方法在完全非线性水波问题中的应用:(博士论文).大连:大连理工大学,2005.
    [104]Montic V. A new formula for the C-matix in the somigliana identity. Journal of Elasticity,1993,33:191-201.
    [105]Li H B, Han G M, Mang H A. A new method for evaluating singular integrals in stress analysis of solids by the direct boundary element method, International Journal for Numerical Methods in Engineering,1985,21:2071-2098.
    [106]Zhao R, Faltinsen 0 M. Interaction between current,waves and marine structures. The 5th International Conference of Numerical Ship Hydrodynamics,Hiroshima,1989.
    [107]Beck R F, Magee A R. Time-domain analysis for predicting ship motions.Proceedings of Symp on the Dynamics of Marine Vehicles and Structures in Waves, Amsterdam,1990.
    [108]Huijsmans R H M. Mathematical modeling of the mean wave drift forces in current:(Phd Thesis).Holand:Technical University Delft,1996.
    [109]杜双兴.完善的三维主航行船体线性水弹性力学频域分析方法:(博士论文).北京:中国船舶科学研究中心,1996.
    [110]段文洋,汪玉.船舶兴波流场 求解的边界元计算方法.燕山大学学报,2004,28(2):164-167.
    [111]戴愚志,余建星.几何独立的高阶面元法在波流物相互作用问题项求解中的应用.水动力研究与进展,2006,21(2):205-209.
    [112]杜平安.有限元网格划分的基本原则.机械设计与制造,2000,1:34-36.
    [113]Pedersen P T. Equilibrium of offshore cables and pipelines during laying. Int. Ship Prog.,1975,22:399-408.
    [114]于定勇.水下锚泊系统计算——一种单链动力分析的数值方法.青岛海洋大学学报,1995,6:100-105.
    [115]马鉴恩,李风来.锚泊阵列的设计与研究.海洋工程,1996,14(2):55-60.
    [116]余龙,谭家华.深水多成分悬链线锚泊系统优化设计及应用研究.华东船舶工业学院学报(自然科学版),2004,18(5):8-13.
    [117]余龙,谭家华.基于准静定方法的多成分锚泊线优化.海洋工程,2005,23(1):69-73.
    [118]杨敏冬,滕斌,勾莹等.海洋系泊缆索非线性有限元静力分析.海洋工程,2009,27(2):14-20.
    [119]Baldock T E, Swan C, Taylor P H. A laboratory study of nonlinear surface waves on water. Phil.Trans. R. Soc. Lond.,1996,354:649-676.
    [120]Johannessen T B, Swan C. Nonlinear transient water waves-Part Ⅰ.A numerical method of compution with comparisons to 2-D laboratory data. Applied Ocean Research,1997,19:293-308.
    [121]Borthwick A GL, Hunt A C, Feng T, et al.Flow kinematics of focused wave group on a plane beach in the U K. coastal research gacility.Coastal Engineering,2006,53:1033-1044.
    [122]Zang J, Ning D Z, Liu S X, et al.A new Boussinesq model for wave run-up on curved structure using Cartesin cut cell grids.International Society of Offshore and Polar Engineering,2007.
    [123]柳淑学,李金萱,Hong K Y.多向聚焦破碎波的实验研究.水动力研究与进展A辑,2007,22(3):293-304.
    [124]Walker D A G, Eatock Taylor R. Wave diffraction from linear arrays of cylinders. Ocean Engineering,2005,32:2053-2078.
    [125]Moscowitz L. Estimates of the power spectrums for fully developed seas for wind speeds of 20 to 40 knots. Journal of Geophysical Research,1964,69(24):5161-5179.
    [126]Pierson W J, Moscowitz L.A proposed spectral form for fully developed wind seas based on the similarity theory of S A Kitaigordskii.Journal of Geophysical Research, 1964,69(24):5181-5190.
    [127]Lindgren G. Some properties of a normal process near a local maximum. Ann Math Stat,1970,41:1870-1883.
    [128]Boccotti P. Some new results on statistical properties of wind waves. Applied Ocean Research,1983,5:134-140.
    [129]Tromans P S, Anaturk A, Hagemeijer P A. A new model for the kinematics of large ocean waves-application as a design wave.Proceedings of 1st International of Offshore and Polar Engineering Conference,Edinburgh,1991,3:64-71.
    [130]王科.新波浪理论在系留船舶二阶波浪力计算中的应用研究.船舶力学,2008,12(1):1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700