用户名: 密码: 验证码:
基于SPH方法的波浪对水平板冲击作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对海洋资源的不断开发,海岸和近海工程建筑物的安全问题已成为研究的热点,特别是波浪对海工建筑物的的冲击作用问题。在波浪冲击过程中,当波峰刚接触到建筑物底面时会产生历时很短但强度极大的冲击压力,这种极强的冲击荷载会引起建筑物上部结构的失稳或造成结构连接处的疲劳破坏。因此,对波浪冲击建筑物过程的流场变化和力学特性的研究,有着重要的科学价值和实际意义。
     本文主要利用光滑粒子流体动力学方法(简称SPH方法,一种无网格方法)数值模拟位于浪溅区透空式结构物的波浪冲击问题,并结合物理模型试验,分析了影响波浪对水平板冲击的各种因素,以及冲击流场变化情况。具体内容包括:
     首先,本文将SPH方法引入到波浪与结构物相互作用的研究之中。对SPH方法的基本原理和数值实现过程进行详细论述,将亚格子湍流模型和Poisson方程迭代求解压力场的方法加入方程中,对流体的黏性和压力控制更加合理,能够准确的模拟波浪破碎时的湍流特性,以及波浪高速冲击结构物时产生的压力。重点对阻碍SPH方法发展的边界问题进行了深入的研究,对虚拟力法、镜像粒子法、虚拟粒子法、边界力法和固定边界粒子法等处理固定边界问题的方法进行了对比研究,分析各个方法的优缺点。并且,通过引入镜像的理念,改进了虚拟粒子法处理边界时的压力计算方法;同时,提出了一种新的边界压力计算方法(固定边界粒子法),通过实例验证了新方法的有效性和准确性,提高了边界压力的计算效率和精度。
     其次,建立了基于SPH方法的二维数值波浪水槽,对孤立波爬坡破碎、孤立波沿直墙爬高进行了数值模拟研究,并与实验结果进行对比分析,成功的模拟了孤立波破碎过程中先形成卷破波,之后,由于形成的射流水体下落所激发再次形成的卷破波,最后形成反向卷破波这样一个过程。另外,本文还对椭余波爬坡破碎进行了数值模拟研究,成功观察到了所谓的波扬现象。验证了本文基于SPH方法建立的数值水槽可以处理具有复杂自由面的水体大变形运动。
     第三,建立了基于SPH方法的孤立波和规则波与水平结构物相互作用的二维数值模型。系统的研究了规则波对二维水平板的冲击,得到了不同波高、周期和相对净空情况下,冲击压力在水平板下的分布情况,分析了二维水平板受力与波高、周期和相对净空的关系。通过与实验结果对比,以及对数值模拟结果的统计分析,使我们对波浪冲击压力的大小和分布规律有了进一步的认识。
     最后,进行了规则波对水平板冲击的三维试验研究,得到了不同波高、周期和相对净空情况下,冲击压力在三维水平板下的压力分布情况,分析了三维水平板受力与波高、周期和相对净空的关系。同时,建立了基于SPH方法的三维数值波浪水池,对规则波与三维水平板的相互作用问题进行了初步的数值模拟研究。
With the exploitation of marine resources, the safety of coastal and offshore engineering structures, espcially wave impact on the strucures, has become the focus. In the process of wave slamming, the impact pressures with short duration and high peaks occurs when the waves hit the subface of the structure, which causes the destabilization of superstructure and the fratigue failure of joints. Hence, it is of great scientific value and pratical significance to do the research on the characteristics of flow field and pressures in the process of irregular wave impact.
     This dissertation, in terms of Smoothed Particle Hydrodynamics (SPH), presents the experimental investigation and numerical simulation of the slamming on the horizontal plate suspended over the water surface in the splash zone. It analyzes various factors that infuence the wave impact on horizontal plate and the intaneous velocity field of wave slamming.
     Firstly, SPH method is applied to the study of the interaction between waves and structures in this dissertation. It elaborates on the theory of SPH method and the process of numerical simulation. SPH method is improved by iterative soluting of Poisson equation for pressures field, and meanwhile introduces sub-grid turbulence model into the equation so as to more accurately describe the turbulence characteristics at the time of wave breaking and the pressures generated by the high-speed wave impact in this paper. Profound research is also made on boundary conditions. Through comparative study of five different solid boundary treatment methods, the advanteges and disadvantages of each method are analyzed. Besides, virtual particle method is improved with the introduction of mirror image theory. Meanwhile, a new solid boundary treatment method (solid boundary particle method) is provided, whose validity and precision is proved by means of experiments. Thus, the accuracy and computational efficiency of the pressures on the boundary is improved.
     Secondly, a numerical wave tank model is built on the basis of SPH method. A numerical simulation is implemented on solitary wave breaking on beaches and solitary wave ascending on the wall. Through the comparative analysis between the experiment and the results, it can be seen that the wave peak is at rather high speed, leading to the vertical shape of wave surface. The wave peak rushes in the form of a tongue until it falls into the water body below and a large number of bubbles are wrapped. Then wave splashes once again, presenting clear characteristics of wave breaking in form of a roller. Through the detailed analysis of the flow field and the impact pressures, we have a better understanding of the wave impact mechanism. At the same time, wave height rise of shallow-water waves is succesfully observed through the numerical simulation on cnoidal wave breaking on beaches.
     Thirdly, the two-dimensional numerical model of solitary wave and regular wave slamming to leveling board is built on the basis of SPH method. A systematic study is made on regular wave impact pressures on the two-dimensional horizontal deck, through which the distribution of wave impact pressures on the subface of the structure is achieved for different wave height, period and relative clearance and the relation between the impact pressures and wave height, period and relative clearance is analyzed. Through the comparison between the results of numerical and experimental data, we have a better understanding of the magnitude and the distribution rule of the regular wave impact pressures on the two-dimensional horizontal deck.
     Lastly, the three-dimensional experiment study is made on regular wave impact on horizontal plate. The distribution of wave impact pressures on three-dimensional structures is achieved for different wave height, period and relative clearance. The relation between the impact pressures and wave height, period and relative clearance is analyzed. Meanwhile, the three-dimensional numerical model is built on the basis of SPH method. An initial numerical simulation is performed on the interaction between regular wave and three-dimensional horizontal plate.
引文
[1]赵西增.畸形波的实验研究与数值模拟[D]:(博士学位论文).大连:大连理工大学,2009
    [2]波浪作用下码头面板上托力试验研究[R].南京:南京水利科学研究院,2001
    [3]H.Wang,Water Wave Pressure on Horizontal Plate[C].ASCE,1970
    [4]谷本胜利、高桥重雄和泉田芳和,水平版に働く揚压力に関する研究[R].港湾技术研究所报告,第17卷,第2号,1978.6
    [5]KAPLAN P.Wave impact force on offshore structures:re-examination and new Interpretations[C].OTC,1992,6814:79-86.
    [6]KAPLAN P,MURRAY J J and YU W C.Theoretical analysis of wave impact forces on platform deck structures[C].OMAE,1995,189-198.
    [7]GRφNBECH J,STERNDORFF M J,GRIGORIAN H,JACOBSEN V.Hydrodynamic modeling of Wave-In-Deck forces on offshore platform decks[C].OTC,2001.
    [8]交通部第一航务工程勘察设计院.海港码头结构设计手册[M].人民交通出版社,1975.
    [9]过达,蔡保华.透空式建筑物面板上波浪上托力的计算[J].河海大学学报,1980,1:14-33.
    [10]宋扔,白立兴.波浪对离岸透空式码头上部结构的作用[J].港工技术,1997,4:1-9.
    [11]李炎保,黄凌燕.开敞码头上部结构波浪上托力的试验研究[J].港口工程,1997,6:13.
    [12]周益人,陈国平,王登婷.透空式水平板波浪上托力计算方法[J].海洋工程,2004,22(2):26-30
    [13]周益人,陈国平,黄海龙,王登婷.透空式水平板波浪上托力分布[J].海洋工程,2003,21(4):41-47
    [14]王永学,任冰.波浪冲击过程的湍流数值模拟[J].水动力研究与进展,1999,A辑,14卷,4期,409-417.
    [15]任冰,王永学.非线性波浪对建筑物的冲击作用[J].大连理工大学学报,1999,39卷,4期,562-566.
    [16]任冰.随机波浪对不同接岸形式码头上部结构的冲击作用研究[D](博士学位论文).大连:大连理工大学,2003.
    [17]Ren Bing,Li Xuelin,Wang Yongxue.An irregular wave maker of active absorption with VOF method.China Ocean Engineering[J].2008,22(4):623-634.
    [18]Li Xuelin,Ren Bing,Wang Yongxue.Numerical study of the irregular wave impacting[C].ISOPE,2009:510-517.
    [19]Ren Bing,Li Xuelin,Han Peng,Wang Yongxue.Numerical non-reflecting irregular wave flume based on VOF method.[C].OMAE 2009
    [20]KLEEFSMAN K M,FEKKEN G,VELDMAN E P,IWANOWSKI B.An improved volume-of-fluid method for wave impact problems[C].ISOPE,2004:334-341.
    [21]KLEEFSMAN T,LOOTS E,VELDMAN A,BUCHNER B,BUNNIK T,FALKENBERG E.The numerical simulation of green water loading including the vessel motions and the incoming wave field [C].OMAE,2005.
    [22]D.Violeau,Application of Smoothed Particle Hydrodynamics to the design of sea defence [J/OL].IARH Newsletter,February,2003.
    [23]D.Violeau and R.Issa,Modeling Turbulent Free Surface Flows with Smoothed Particle Hydrodynamics[R].Interior document of Reseach Engineer,EDF/LNHE,6 quaff Warier 78401Chatou Cedex,France,2004.
    [24] Koshizuka S, Tamako H. Moving-particle semi-implicit method [J]. Nuclear Science Engineering,1996,123: 421-434.
    [25] Belytsehko T., Lu Y.Y. and Gu L., Element-Free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994, 37:229-256.
    [26] Belytschko T., Krongauz Y, Organ D., Fleming M., and Krysl P., Meshless methods: an overview and recently developments [J]. Computer Methods in Apllied Mechanics and Engineering, 1996,139:3-47.
    [27] Belytschko T., Krongauz Y, Dolbow J. and Gerlach C, On the completeness of the meshfree particle methods [J]. International Journal for Numerical Methods in Engineering, 1998, 43(5): 785-819.
    [28] Yagawa G and Yamada T., Free mesh method: a new meshless finite element method [J].Computational Mechanics, 1996,18:383-386.
    [29] Yagawa G. and Yamada T., Meshless method on massively parallel processor with apllication to fracture mechanics [J]. Key Engineering Materials, 1998,145-149:201-210.
    [30] Cundall P. A., Distinct element models of rock and soil structure, In Brown (ED.) Analytical and Computational Methods in Engineering Rock Mechanics, London 1987,129-163.
    [31] Own D. R., Petrinic J. N. and Macedo J. P., Finite/discrete element models for masonry structures [C].First South African Conference on Apllied Mechanics, 1996, 1-5 July.
    [32] Nayroles B., Touzot G and Villon P., Generalizing the finite element method: diffuse approximation and diffuse elements [J]. Computational Mechanics, 1992,10:307-318.
    [33] Koshizukar S., Nobe A. and Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit method [J]. International Journal for Numerical Methods in Fluid, 1998, 26:751-769.
    [34] Gotoh H, Sakai T. Lagrangian Simulation of Breaking Waves Using Particle Method [J]. Coastal Engineering Journal, 1999, 41,Nos.3&4: 303-326.
    [35] Gotoh H, Shibahara T, Sakai T. Sub-particle-scale turbulence model for the MPS method-Lagrangian flow model for Hydraulic Engineering [J]. Computational Fluid Dynamics Journal, 2001, 9(4):339-347.
    [36] Felgueroso L. C, Colominas L, Mosqueira G., Navarrina F. and Casteleiro M., On the Galerkin formulation of the smoothed particle hydrodynamics method [J]. International Journal for Numerical Method in Engineering, 2004, 60:1475-1512.
    [37] Monaghan J. J., Why Particle Methods Work, SIAM Journal on Scientific and Statistical Computing,1982, 3:422-433.
    
    [38] Monaghan J. J., Particle Methods for Hydrodynamics[J]. Computer Physics Report, 1985, 3:71-124.
    [39] Monaghan J. J., An Introduction to SPH [J].Computer Physics Communications, 1988, 48:89-96.
    [40] Monaghan J.J., Smoothed Particle Hydrodynamics,Annual Review of Astronomicalan Astrophysics,1992, 30:543-574.
    [41] Monaghan J.J. and Kocharyan., A SPH simulation of mufti-phase flow [J]. Computer Physics Communication, 1995, 87:225-235.
    [42] Morris J.P., Fox P.J. and Zhu Y Modeling low Reynolds number incompressible flows using SPH [J].Journal of Computational Physics, 1997, 136:214-226.
    [43] Monaghan J.J. Simulating gravity currents with SPH lock gates [J]. Applied Mathematics Reports and Print, Monash University, 1995, 95118.
    [44] Morris J.P., Zhu Y. and Fox P.J. Parallel simulation of pore-scale flow though porous media [J].Computers and Geotechnics, 1999, 25:227-246
    [45] Zhu Y, Fox P.J. and Morris J.P., A pore-scale numerical model for flow through porous media [J].Interactional Journal for Numerical and Analytical methods in Aeromechanics, 1999,23:881-904.
    [46] Harlow F. fL, The particle-in-cell computing method for numerical solution of problems in fluid dynamics [J]. Proceedings of Symposia in Apllied Mathematics, 1963.
    [47] Harlow F. H., The particle-in-cell computing method for fluid dynamics [J]. In Methods in Computational Physics, Fundamental Methods in Hydrodynamics, vol.3, Academic Press, New York,1964.
    [48] Libersky L. D., Petscheck A. G, Carnet' T. C, Hipp J. R. and Allahdadi F. A., Highh srain Lagrangian hydrodynamics - a three-dimensional SPH code for dynamic material response [J]. Journal of Computational Physics, 1993,109:67-75.
    [49] Liu M. B., Liu G R., Zong Z. and Lanm K.Y, Numerical simulation of incompressible flows by SPH [C]. International Conference on Scientific & Engineering Computing, 2001, Beijing.
    [50] Liu M. B,Liu G. R. and Lanm K. Y, Investigations into water mitigations using a meshless particle method [J]. Shock Waves, 2002,12(3):181-195.
    [51] Randies P. W. and Libersky L. D., Smoothed particle hydrodynamics some recent improvements and applications [J]. Computer Methods in Applied Mechanics and Engineering, 1996,47:1445-1462.
    [52] Takedat H., Miyama S. M., Numerical simulation of viscous flow by smoothed particle hydrodynamics [J]. Progress of Theoretical Physics, 1994, 92:939-960.
    [53] Oger, G., Doring, M., Alessandrini, B. and Ferrant P., Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213: 803-822
    [54] Campbell J., Vignjevic R., Libersky L., A contact algorithm for smoothed particle hydrodynamics [J].Computer Methods in Applied Mechanics and Engineering, 2000,184:49-65.
    [55] Parshikov A. N., Medin S. A., Smoothed particle hydrodynamics using inter-particle contact algorithms[J]. Journal of Computational Physics, 2002,180:358-382.
    [56] Kulasegaram S., Bonet J., Lewis R. W, and profit M. A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications [J]. Computational Mechanics,2003,10:466-534.
    [57] Bonet J. and lok T. S. L., Variational and momentum preservation aspects of Smooth Particle Hydrodynamics formulations[J]. Computer Methods Applying, Mech. Engrg, 1999, 180:97-115.
    [58] Monaghan J. J. and Kos A., Solitary waves on a Cretan beach [J]. Journal of Waterway, Port, Coastal,and Ocean Engineering, 1999, 125/3.
    
    [59] Monaghan J. J. and Kos A., Scott Russell's wave generator [J].Physical of Fluids, 2000, 12/3.
    [60] Shao. S. D., Lo E. Y M., Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface [J]. Advances in Water Resources, 2003, 26:787-800.
    [61] Lo. E. Y M., Shao S. D., Simulation of near-shore solitary wave mechanics by an incompressible SPH method, Applied Ocean Research, 2002, 24:275-286.
    [62] A. Khayyer, H. Gotoh, S.D. Shao, Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves [J]. Coastal Engineering , 2007.
    [63] Colagrossi A., landrini M., Numerical simulation of interfracial flows by smoothed particle hydrodynamics [J]. Journal of Computational Physics, 2003, 191:448-475.
    [64] D. Violeau, S. Piccon and J. P. Chabard, Two attempts of turbulence modeling in Smoothed Particle Hydrodynamics [J]. Advance in Fluid Modelling and Turbulence Measurements, World Scientific,2002, 339-346.
    [65] Gesteira M. G, Crequeiro D., Crespo C, Dalrymple R. A,Green water overtopping analyzed with a SPH model [J]. Ocean Engineering, 2005, 32:223-238.
    [66] Rodriguez-paz M., Bonet J., A corrected smooth particle hydrodynamics formulation of the Shallow-water equations [J].Computers and Structure, 2005, 83:1396-1410.
    [67] Dalrymple R. A., Rogers B. D., Numerical modeling of water wave with SPH method [J].Coastal Engineering, 2006,53(2-3), 141-147
    [68] Rogers B. D., Leduc J., Marongiu J.-C, Leboeuf F., "Comparison and evaluation of multi-phase and surface tension models"[C]. In Proc. 4th SPHERIC Int. Workshop, Nantes, 30-37, 2009.
    [69] Crespo A. J. C, Marongiu J.-C, Parkinson E., Gomez-Gesteira M., Dominguez J. M., "High Performance of SPH Codes: Best approaches for efficient parallelization on GPU computing"[C]. In Proc. 4th SPHERIC Int. Workshop, Nantes, 69-76, 2009.
    [70] Herault A., Vicari A., Del Negro C, Dalrymple R. A., "Modeling Water Waves in the Surf Zone with GPUSPHysics"[C]. In Proc. 4th SPHERIC Int. Workshop, Nantes, 77-84, 2009.
    [71] Dalrymple R. A., Herault A., "Levee breaching with GPU-SPHysics code"[C]. In Proc. 4th SPHERIC Int. Workshop, Nantes, 352-355, 2009.
    
    [72] Smoothed particle hydrodynamics: A mesh particle method[M]. G.R.Liu M.B.Liu (2002)
    [73] Monaghan J.J. Simulating free surface flow with SPH [J]. Journal Computational Physics, 1994, 110:399-406
    [74] Libersky, L. D., Petscheck, A. G., Carney, T. C, Hipp, J. R. and Allahdadi, F. A., High strain Lagrangian hydrodynamics-a three-dimensional SPH code for dynamic material response [J]. Journal of Computational Physics, 1993,109: 67-75
    
    [75] Gomez-Gesteira, M. and Dalrymple, R., A., Using a Three-Dimensional Smoothed Particle Hydrodynamics Method for Wave Impact on a Tall Structure [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2004, 130(2): 63-69
    [76] Guignard, S., Marcer, R., Rey, V., Kharif, C. and Fraunie, P. (2001). "Solitary wave breaking on slopingbeaches: 2-D two phase flow numerical simulation by SL-VOF method." [J]. European Journal of Mechanics - B/Fluids, 20: 57-74.
    [77] Li, Y. and Raichlen, F. (2003). "Energy balance model for breaking solitary wave runup." [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 129(2), 47-59.
    [78] Li, Y. and Raichlen, F. (2002). "Non-breaking and breaking solitary wave run-up." Journal of fluidmechanics, 456: 259-318.
    [79] Chan K.C., Street R.L., A computer study of finite amplitude water wave[J].Journal of Computational Ph ysics,1970,6: 68-9
    [80] Su, C. H. and Mirie, R. M. (1980). "On head-on collisions between two solitary waves." [J].Journal of Fluid Mechanics, 98: 509-525.
    [81]Ting,F.C.K.,Kirby,J.T.Observation of undertow and turbulence in a laboratory surf zone[J].Coastal Engineering 1994,24:51-80.
    [82]French.A.Wave uplift pressure on horizontal platforms,Report No.KH_R_19,W.M.Keck Laboratory of Hydraulics and Water Resources,California Inst.of Tech.,Pasadena,Calif.,1969.
    [83]任冰,王永学.不规则波对透空式建筑物上部结构冲击作用时域分析[J].大连理工大学学报,2003,43(6):818-824.
    [84]任冰,王永学.不规则波对浪溅区结构物冲击作用的试验研究—频域分析[J].海洋工程,2003,21(4):53-60.
    [85]Ursell F,Dean R G,and Yu Y S.Forced Small-Amplitude Water Waves:a Comparison of Theory and Experiment.[J].Fluid Mechanics,1960,7(1),33-52.
    [86]Dean R G.Water Wave Mechanics for Engineers and Scientists.Prentice-Hall,Englewood,Cliffs,N.[J].1984,170-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700