用户名: 密码: 验证码:
红肉脐橙(Citrus sinensis [L.] Osbeck)番茄红素β-环化酶基因(Lcyb)功能的初步验证和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红肉脐橙(Citrus sinensis[L.]Osbeck)是华盛顿脐(Citrus sinensis[L.]Osbeck)的红肉突变体,是果肉呈粉红的脐橙品种,其果肉中主要含有番茄红素和β-胡萝卜素,是研究柑橘果实类胡萝卜素代谢的良好素材。番茄红素β-环化酶(LCYB)在柑橘类胡萝卜素合成代谢途径中起关键作用,该酶能使反式番茄红素转化为β-胡萝卜素,是番茄红素向下游代谢物质转化的一个关键分支点。
     目前,本课题组已经从红肉脐橙中克隆到番茄红素β-环化酶基因(Lcyb),为了对该基因的功能进行鉴定分析,本研究以红肉脐橙中克隆到的番茄红素β-环化酶基因(Lcyb)两个转录本的cDNA为目的片段,通过农杆菌介导的转基因手段,以番茄(Lycopersicon esculentum Mill.)为受体材料进行了遗传转化,通过抗性筛选,获得转基因植株群体,通过对转基因植株群体及其后代进行分子水平的检测和生理指标测定分析,表明红肉脐橙中克隆到的番茄红素β-环化酶基因(Lcyb)及其产物具有正常功能。主要结果如下:
     1.利用已构建成功的含有红肉脐橙番茄红素β-环化酶基因(Lcyb)cDNA片段的载体,通过农杆菌介导的遗传转化方法将它们成功导入番茄品种中蔬5号中。获得卡那霉素抗性植株14棵,提取部分T_0代转化番茄PCR阳性植株的基因组DNA,经Southern杂交分析,证明载体的T-DNA区段已经整合到番茄基因组中,拷贝数1-3个不等。
     2.T_0代转化番茄中有两棵植株的果实在成熟时果实色泽表现出明显的改变,成熟果实呈黄色,对照的非转化植株成熟果实则为红色。对T_0代番茄果实进行了色差值的测定,发现多数转基因果实相对于对照偏黄。通过HPLC(高效液相色谱)测定黄色转基因果实的色素成分和比例发现,其β-胡萝卜素的含量极显著的高于对照,而番茄红素的含量则显著低于对照。说明转基因植株中,外源β-环化酶基因(Lcyb)确实超量表达,致使番茄红素大量向β-胡萝卜素转化,导致果实积累β-胡萝卜素而呈现出黄色。
     3.提取部分T_0代转化番茄PCR阳性植株的RNA,通过RT-PCR检测外源基因的相对表达量,14株转基因植株中有8株检测到目的基因的表达,表达量各有高低。通过Real-time PCR检测转基因植株果实中其他色素代谢相关基因的表达情况,发现在色素代谢途径中,位于Lcyb基因上游的基因在转基因植株中的表达量普遍降低,而位于Lcyb基因下游的基因在转基因植株中的表达量上升。
     4.对Southern杂交检测的阳性植株,收获T_1代种子。对T_1世代植株PCR扩增分析鉴定,发现单拷贝的植株NPTⅡ基因分离符合1:3的比例。
'Cara Cara' navel orange(Citrus sinensis[L.]Osbeck) red-fleshed cultivar,is a bud sport of 'Washington' navel orange.The major pigments in the flesh of 'Cara Cara' navel orange are lycopene and beta-carotene.It is useful for the research of the carotenoid biosynthesis of the citrus fruits,lycopene beta-cyclase(LCYB) plays a very important role in the carotenoid biosynthesis of the citrus fruit.Lycopene is transformed into beta-carotene by the action of lycopene beta-cyclase(LCYB).It's a key point in the transformation from Lycopene to other pigments in the carotenoid metabolic pathway.
     Based on the cloned lycopene beta-cyclase gene(Lcyb) from 'Cara Cara' navel orange, we transformed the cDNA fragment of this gene into tomato(Lycopersicon esculentum Mill.) plants 'Zhongshu No.5' using the Agrobacterium-mediated transformation to verify its function.We verified that the kanamycin-resistant gene had been integrated into the genome DNA after PCR and Southern blotting hybridization;and analyzed the physiological and biochemical characteristics of the transgenic plants.The main results were as follows:
     1.Expression vectors which were constructed with cDNA fragments of the Lcyb gene were introduced into the tomato plants via Agrobacterium-mediated transformation. A total of 14 kanamycin-resistant plants were obtained.The PCR and Southern blot analysis of the putative transgenic plants showed that the T-DNA was integrated into the tomato genome with various copy numbers from 1-3.
     2.The color of the fruits from two transgenic tomato plants were obvious yellow compared with the red fruits from the non-transgenic tomato plants.Measurements of the contents of lycopene and beta-carotene in the transgenic fruits by using high performance liquid chromatography(HPLC),showed that the contents of beta-carotene in yellow transgenic fruits were much higher than that in red fruits of wide-type plants.Oppositely, the contents of lycopene were very low in the yellow transgenic fruits.It's suggested that over-expression of lycopene beta-cyclase gene(Lcyb) in the transgenic plants resulted in accumulation of beta-carotene in the transgenic fruits which was absence in the wide-type plants.
     3.RT-PCR analysis showed that the activities of target gene in 8 out of 14 different transgenic plants expressed,whereas the expression levels were different in individuals. Real-Time PCR analysis showed the expression of genes had involved in the carotenoid biosynthesis in the transgenic fruits.
     4.The inheritance pattern of the transgenes in T_1 segregation population were analyzed based on PCR with NPTⅡprimers.And the results showed that NPTⅡgene inherited as a dominant genetic locus with the segregation ratio 3:1.
引文
1.安新民,徐昌杰,陶俊.柑橘酸性转化酶基因家族成员的克隆及特性分析.林业科学.2004,40(4):58-63
    2.陈大明.胡萝卜茄红素β-环化酶cDNA的分离及其在肉质根中的差异表达.植物学报,2001,12:10-13
    3.谌谋华.利用同源序列法克隆柑橘抗病基因类似物及其初步分析.[硕士学位论文].武汉:华中农业大学图书馆,2003
    4.程英豪,吴光,王继伟.表达黄瓜花叶病毒外壳蛋白的转基因番茄抗黄瓜花叶病毒侵染.植物学报,1997,39(1):16-21
    5.邓烈.2005年我国柑橘生产形势预测.中国果业信息,2005,22(4):32-34
    6.邓秀新.国内外柑橘产业发展趋势与柑橘优势区域规划.广西园艺,2004,15(4):6-10
    7.高蓝,李浩明.类胡萝卜素与癌症的化学预防.中草药,1998,5:346-348
    8.龚学臣,季静,王罡,抗艳红,任永霞.应用农杆菌介导法进行菊花的遗传转化.北方园艺,2005,2:66-67
    9.贺竹梅,李宝健,张绍松,等.番茄转基因受体系统的研究.应用与环境生物学报.1998,4(3):247-250
    10.抗艳红,季静,吴东,王罡.类胡萝卜素合成酶基因LycB导入番茄的研究。中国蔬菜,2006,5:11-13
    11.李斐雪,王雁玲.差异表达基因的高通量筛选方法.细胞生物学杂志,2004,26(4):339-343
    12.欧阳波.几种病程相关蛋白基因转化番茄的研究.[博士学位论文].武汉:华中农业大学,2002
    13.任永霞,王罡,郭郁频,王萍,季静.番茄组织培养及其农杆菌介导类胡萝卜素合成酶基因LcyB的遗传转化.北方园艺,2006,1:98-100
    14.任永霞,王罡,季静,王萍.根癌农杆菌介导的番茄遗传转化.河北北方学院学报,2005,21(5):35-38
    15.陶俊,张上隆,徐建国,刘春荣.柑橘果实主要类胡萝卜素成分及含量分析.中国农业科学,2003,36(10):1202-1208
    16.陶能国.甜橙(Citrus sinensis[L.]Osbeck)红肉突变体类胡萝卜素合成相关基因的克隆与特性分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    17.王彩霞,洪霓,王国平.CTV诱导柑橘差异表达基因的筛选.中国植物病理学会2007年学术年会论文集,2007:220
    18.王关林,方宏筠著.植物基因工程.北京:科学出版社,2002
    19.王慧中,杜近义,吴佩玲.番茄基因转化研究初报.杭州师范学院学报,1995,(3):76-78
    20.王纪报.类胡萝卜素合成酶基因PSY及HIV-1 gp120基因对水稻的遗传转化.[硕士学位论文].吉林大学,2006
    21.谢伟伟,王凭青,杨青川,刘博,李志中.植物差异表达基因克隆技术及研究进展.重庆大学学报(自然科学版),2005,28(12):96-100
    22.徐昌杰,张上隆.柑橘类胡萝卜素合成关键基因研究进展.园艺学报,2002,29(增刊):619-623
    23.徐昌杰.柑橘果实类胡萝卜素研究进展.园艺学进展,2004,6:60-65
    24.徐娟.几个柑橘产区果实色泽评价及红肉脐橙(Citrus sinensis L.cv.Cara cara)果肉呈色机理初探.[博士论文].武汉:华中农业大学图书馆,2002
    25.姚振.类胡萝卜素合成酶基因PSY、PDS、LycB、LycE对安祖花与蝴蝶兰的遗传转化.[硕士学位论文].吉林大学,2005
    26.叶华.柑橘果胶酯酶的基因克隆.[硕士学位论文].西华大学,2006
    27.叶志彪,李汉霞,周国林.番茄多聚半乳糖醛酸反义cDNA克隆的遗传转化与转基因植株再生.园艺学报,1994,21(3):305-308
    28.易图永,谢丙炎,张宝玺,高必达.植物抗病基因同源序列及其在抗病基因克隆与定位中的应用.生物技术通报,2002,2:16-20
    29.张爱香,季静,王罡,张艳贞,刘会清.枸杞中番茄红素β-环化酶基因(LycB)的分离.中国农学通报,2005,21(1):46-49
    30.张建民.利用农杆菌介导将外源基因导入番茄的研究.东北林业大学学报,1999,27(1):42-44.
    31.张赛群,叶志彪,吴昌银.异戊烯基转移酶基因导入番茄及转基因植株再生.园艺学报,1999,26(6):376-379
    32.张秀海,郭殿京,张利明,等.兔防御素NP-1在转基因番茄中表达的初步研究.遗传学报,2000,27(11):953-958.
    33.张玉,赵玉,祁春节.中国柑橘产业可持续发展制约因素与对策.中国热带农业,2007,5:10-11
    34.郑阳霞.枸杞类胡萝卜素合成酶基因(PSY、LycB)的克隆及其转化洋桔梗的研究.[博士学位论文].四川农业大学,2006
    35.朱长甫,陈星,王英典.植物类胡萝素生物合成及其相关基因在基因工程中的应用.植物生理与分子生物学学报,2004,30(6):609-618
    36.Adams M D,Kelley J M,Gocayne J D,Dubnick M,Polymeropoulos M H,Xiao H,Merril C R,Wu A,Olde B,Morenco R F,Kerlavage A R,MeCombie W R, Venter J C. Complementary DNA sequencing: Expressed sequence tags and human genome project. Science, 1991,252: 1651-1656
    
    37. Al-Babili S, Hobeika E, Beyer P. A cDNA Encoding Lycopene Cyclase (GenBank X98796) from Narcissus pseudonarcissus L. (PGR96-107). Plant Physiol, 1996, 112:1398
    
    38. Albrecht M, Klein A, Hugueney P, Sandmann G, and Kuntz M. Molecular cloning and functional expression in E.coli of a novel plant enzyme mediating ζ-carotene desatura-tion, FEBS Lett.,1995, 372: 199-202
    
    39. Ambrosio C D, Giorio G, Marino I, Merendino A, Petrozza A, Salfi L,Stigliani A L, Cellini F. Virtually complete conversion of lycopene into beta-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase(tlcy-b) cDNA.Plant Science ,2004,166: 207-214
    
    40. Asif M H, Nath P. Expression of multiple forms of polygalacturonase gene during ripening in banana fruit. Plant Physiol Bioch, 2005,43: 177-184
    
    41. Bachem C W, van der Hoeven R S, de Bruijn S M, Vreugdenhill D, Zabeau M, Visser R G.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J, 1996,9: 745-753
    
    42. Bausher M, Shatters R, Chaparro J, Dang P, Hunter W, Niedz R. An expressedsequence tag (EST) set from Citrus sinensis L. Osbeck whole seedlings and the implications of further perennial source investigations. Plant Sci, 2003,165(2):415-422
    
    43. Bramley P M. Regulation of carotenoid formation during tomato fruit ripening and development. J Exp Bot, 2002, 377: 2107-2113
    
    44. Busch M, Seuter A, Hain R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol, 2002,128:439-453
    
    45. Chamovitz D , Sandmann G., and Hirschberg J , 1993, Molecula and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis, J. Biol. Chem. ,268(23): 17348-17353
    
    46. Connors B J, Maynard C A, Powell W A. Expression sequence tags from stem tissue of American chestnut. Biotechnol Lett, 2001,23: 1407-1411
    
    47. Costa M G C, Otoni WC, Moore G A. An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep, 2002, 21 (4): 365-373
    
    48. Cunningham F X, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Phys, 1998,49: 557-583
    
    49. Cunningham F X., Gantt E. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases. Proc. Natl. Acad. Sci.,2001,98(5): 2905-2910
    
    50. Cunningham F X., Pogson B , Sun Z, McDonald K A., DellaPenna D , and Gantt E. Functional analysis of theβ and εlycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell, 1996,8(9): 1613-1626
    
    51. D'Ambrosio C, Giorio G , Marino I, Merendino A, Petrozza A, Salfi L, Stigliani AL, Cellini F. Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Sci, 2004, 166(1): 207-214
    
    52. Del Villar-Martinez A A, Garcia-Saucedo P A, Carabez-Trejo A, Cruz-Hernandez A , Paredes-Lopez O. Carotenogenic gene expression and ultrastructural changes during development in marigold. J Plant Physiol, 2005,162(9): 1046-1056
    
    53. Dharmapuri S, Rosati C, Pallara P, Aquilani R., Bouvier F, Camara B, Giuliano G. Metabolic engineering of xanthophyll content in tomato fruits. FEBS letters, 2002, 519:30-34
    
    54. Forment J, Gadea J, Huerta L, Abizanda L, Agusti J, Alamar S, Alos E, Andres F, Arribas R, Beltran J P, Berbel A, Blazquez M A, Brumos J, Canas L A, Cercos M, Colmenero-Flores J M, Conesa A, Estables B, Gandia M, Garcia-Martinez J L et al. Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol, 2005, 57 (3): 375-391
    
    55. Fraser P D, Truesdale M R, Bird C R, Schuch W, Bramley P M. Carotenoid biosynthesis during tomato fruit development (Evidence for tissue-specific gene expression). Plant physiol, 1994,105(1): 405-413
    
    56. Fraser P D, Bramley P M. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res, 2004,43: 228-265
    
    57. Fraser P D, Kiano J W, Truesdale M R, Schuch W, Branley P M. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid biosynthesis in ripening fruit, Plant Mol. Biol.,1999,40(4): 687-698
    
    58. Fraser P D, Romer S, Shipton A, Mills B, et al. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. PNAS,2002,99(2):1092-1097
    
    59. Fraser P D, Romer S, Shipton C A, Mills P B, Kiano J W, Misawa N, Drake R G, Schuch W, Bramley P M. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc.Natl, Acad. Sci.,2002, 99(2): 1092-1097
    
    60. Giuliano G, Bartley G E, Scolnik P A. Regulation of carotenoid biosynthesis during tomato development. Plant Cell, 1993,5: 379-387
    
    61. Hirschberg J, Cohen M, Harker Met al. Molecular genetics of thecarotenoid biosynthesis pathway in plants and algae.Pure Appl Chem,1997,69:2151~2158
    
    62. Hisada S, Kita M, Endo-Inagaki T, Omura M, Moriguchi T. Refinement of cDNA clone expression analysis in random sequencing from the rapid cell development phase of citrus fruit. J Plant Physiol, 1999,155: 699-705
    
    63. Hofte H, Desprez T, Amselem J, Chipello H et al. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J, 1993,4:1051-1061
    
    64. Hooykaas P J,Schiperoort R A. A grobacterium and plantgenetic engineering. Plant Mol Biol, 1992,( 19): 15-18.
    
    65. Hugueney P, Badillo A, Chen H C, Klein A, Hirschberg J, Camara B, Kuntz M. Metabolism of cyclic carotenoids: a model for the alteration of thisbiosynthetic pathway in Capsicum annuum chromoplasts. Plant J, 1995, 8:417-424
    
    66. Ikoma Y, Komatsu A, Kita M, Ogawa K, Omura M, Yano M, Moriguchi T. Expression of a phytoene synthase gene and characteristic carotenoid accumulation during citrus fruit development. Physiol Plantarum, 2001, 111 (2): 232-238
    
    67. Isaacson T, Ronen G, Zamir D, Hirschberg J. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell, 2002, 14: 333-342
    
    68. Jiang Y Q, Ma R C. Generation and analysis of expressed sequence tags from almond (Prunus dulcis Mill.) pistils. Sex Plant Reprod, 2003, 16: 197-207
    
    69. Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in Citrus fruit. Plant Physiol, 2004,134: 824-837
    
    70. Kita M, Komatsu A, Omura M, Yano M, Ikoma Y, Moriguchi T. Cloning and expression of CitPDS1, a gene encoding phytoene desaturase in citrus. Biosci Biotechnol Biochem, 2001, 65: 1424-1428
    71.Kuntz M , Romer S, Suire C.Hugueney P,Weil J H ,Schantz R, Camara B. Identification of a cDNA for theplastid-located geranylgeranyl pyrophosphate synthase fromCapsicum annuumxorrelative increase in enzyme activity and transcript level during fruit ripening.Plant J., 1992,2(1):25-34
    
    72. Lang P, Zhang C K, Ebel R C, Dane F, Dozier W A. Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene, 2005, 359 (SUPPL): 111-118
    
    73. Lee H S. Characterization of carotenoids in juice of red navel orange (Cara Cara). J Agr Food Chem, 2001,49: 2563-2568
    
    74. Lee H S. Objective measurement of red grapefruit juice color. J Agric Food Chem, 2000,48:1507-1511
    
    75. Liao Z, Chen M, Gong Y, Guo L, Tan Q, Feng X, Sun X , Tan F, Tang K. A new geranylgeranyl diphosphate synthase gene from Ginkgo biloba, which intermediates the biosynthesis of the key precursor for ginkgolides. DNA Sequence, 2004,15 (2): 153-158
    
    76. Lichtenthaler H K, Schwender J, Disch A, Rohmer M. Biosynthesis of isoprenoids in higher plants chloro-plasts proceeds via a mevalonate independent pathway. FEBS Lett.,1997,40(3): 271-274
    
    77. Moehs C P, Tian L, Osteryoung K W, Dellapenna D. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol, 2001,45(3): 281-93
    
    78. Moriguch T, Kita M, Hisada S, Endo-Inagaki T, Omura M. Characterization of gene repertoires at mature stage of citrus fruits through random sequencing and analysis of redundant metallothionein-like genes expressed during fruit development. Gene, 1998,211: 221-227
    
    79. Morris W L, Laurence J M, Fraser P D, Millam S, Taylor M A. Engineering ketocarotenoid biosynthesis in potato tubers. Metabolic Engineering,2006, 8:253-263
    
    80. Morris W L,Ducreux L, Griffiths D W, Stewart D, Davies H V, Taylor M A. Carotenogenesis during tuber development and storage in potato. J Exp Bot, 2004, 55(399): 975-982
    
    81. Moser C, Segala C, Fontana P, Salakhudtinov I, Gatto P, Pindo M, Zyprian E, Toepfer R, Grando M S, Velascol R. Comparative analysis of expressed sequence tags from different organs of Vitis vinifera L.. Functi Integr Genomics, 2005, 5(4): 208-217
    82. Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005,56:165-185
    
    83. Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol, 2000,122(4): 1045-56
    
    84. Park H, Kreunen S S, Cuttriss A J, DellaPenna D, Pogson B J. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell, 2002,14: 321-332
    
    85. Pecker I, Chamovitz D, Linden H, Sandmann G, Hirshberg J. A single polypeptide catalyzing the conversion of phytoene to Z-carotene is transcriptionally regulated during tomato fruit ripening. RNA,1992, 89:4962-4966
    
    86. Pecker I, Gabbay R, Cunningham F J, Hirschberg J. Cloning and characterization of the cDNA for lycopene cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol, 1996, 30: 807-819
    
    87. Rapisarda P, Fallico B, Izzo R, MacCarone E. A simple and reliable method for determining anthocyanins in blood orange juices. Agrochimica, 1994,38:157-164
    
    88. Rodrigo M J, Marcos J F, Zacarias L. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. J Agric. Food Chem.,2004, 52(22): 6724-6731
    
    89. Romer S, Fraser PD. Recent advances in carotenoid biosynthesis, regulation and manipulation. Planta, 2005, 221: 305-308
    
    90. Ronen G, Carmel G L, Zamir D, Hirschberg J. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natal Acade Sci USA, 2000,97(20): 11102-11107
    
    91. Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G.Metabolic engineering of beta-carotene and lycopene contentin tomato fruit. The Plant Journal, 2000,24(3): 413-419
    
    92. Shimada T, Kita M, EndoT, Fujii H, Ueda T, Moriguch T, Omura M. Expressed sequence tags of ovary tissue cDNA library in Citrus unshiu Marc. Plant Sci, 2003, 165:167-168
    
    93. Simkin A J, Breitenbach J, Kuntz M, Sandmann G.In vitro and in situ inhibition of carotenoid biosynthesis in Capsicum annuum by bleaching herbicides. J. Agric. Food Chem.,2000,48(10): 4676-4680
    
    94. Sun Z R, Cunningham F X, Gantt E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte.Proc. Natl. Acad. Sci.,1998,95(19): 11482-11488
    
    95. Tian L, DellaPenna D. Characterization of a second carotenoid beta-hydroxylase gene from Arabidopsis and itsrelationship to the LUT1 locus. Plant Mol. Biol.,2001,47(3):379-388
    
    96. Tian L, Magallanes-Lundback M, Musetti V, DellaPenna D. Functional analysis of beta- and epsilon-ring carotenoid hydroxylases in Arabidopsis. Plant Cell,2003,15(6): 1320-1332
    
    97. Zhu C, Yamamura S, Nishihara M, Koiwa H, Sandmann G.cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development. Biochim Biophys Acta, 2003,1625 (3): 305-308
    
    98. Zhu X F, Suzuki K, Okada K,Tanaka K,Nakagawa T,Kawamukai M, Matsuda K . Cloning and functional expression of a novel gera-nylgeranyl pyrophosphate synthase gene from Arabidopsis thaliana in Escherichia coli, Plant Cell Physiol,1997 ,38:357-361
    
    99. Zupan J R, Zambrysk i P. Transfer of T-DNA from Agrobactenum to the plant cell. Plant physiol. 1995,(107): 1041-1047

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700