用户名: 密码: 验证码:
龙胆八氢番茄红素脱氢酶(PDS)和番茄红素ε-环化酶(LYCE)基因启动子的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高等植物类胡萝卜素是在细胞质体内通过类异戊二烯途径合成而呈现黄色、橙红色和红色的一大类色素物质。类胡萝卜素是人类饮食结构中不可缺少的重要成分,它对人体健康有重要的生物功能,它不仅是维生素A合成的前体物质,而且在视觉保护、降低癌症和心血管疾病的发病率、提高人体免疫力等方面有重要作用。
     目前,通过类胡萝卜素基因工程获得“金水稻”、“金油菜”和“金马铃薯”等极大地增强了人们开展植物类胡萝卜素基因工程的信心。然而,人们对植物体内类胡萝卜素生物合成的调控机制以及类胡萝卜素生物合成基因的表达调控机制还不甚清楚。八氢番茄红素脱氢酶(PDS)和番茄红素ε-环化酶(LYCE)都是类胡萝卜素生物合成途径的关键调节酶,解析PDS和LYCE基因启动子的功能,不仅为阐明类胡萝卜素基因表达调控机制提供了理论依据,而且获得的组织或器官特异性表达启动子可应用于植物品质改良及园艺植物花颜色改变的分子育种等。因此对龙胆PDS和LYCE基因启动子的功能分析具有重要的理论意义和潜在的应用价值。
     朱长甫老师利用反向PCR技术,成功地从龙胆基因组中分离到PDS和LYCE基因启动子序列。应用PLACE和PlantCare数据库对这两个基因启动子进行顺式作用元件分析,结果表明:龙胆PDS基因启动子序列长1077 bp,在启动子上游-68 bp处有一个预测的TATA盒;龙胆LYCE基因启动子序列长938 bp,在启动子上游-69 bp处有一个预测的TATA盒;此外通过对比这两个启动子的顺式作用元件发现,二者都具有增强基因转录作用的CAAT盒,光调控顺式作用元件盒I、G盒、I盒、ATC元件,脱落酸(ABA)调控顺式作用元件ABRE等。推测这两个启动子相似的顺式作用元件可能对基因调控有相似的功能。
     应用双元载体pBI101系统,分别将龙胆PDS和LYCE基因启动子与GUS基因融合构建成重组质粒。应用农杆菌介导法,使重组质粒在番茄果实和叶组织中瞬时表达,研究结果表明:在叶片和含有大量叶绿体的未成熟的绿色番茄果实中,PDS和LYCE基因启动子驱动的GUS基因几乎不表达,伴随着果实的发育,果实中的叶绿体逐渐转化发育成有色体,PDS和LYCE基因启动子驱动的GUS基因表达量逐渐增强,在含有有色体的成熟番茄果实中表达量最大。推测PDS和LYCE基因启动子的表达与有色体的形成及果实的发育密切相关。为进一步探究PDS基因启动子在基因表达调控中的作用,本实验应用农杆菌介导法,使融合基因GlPDSPro:GUS在番茄植株中稳定表达,通过对转基因番茄基因组DNA的PCR检测,证实已经获得了转基因植物。
Carotenoids are a large class of yellow, orange and red pigments, which are synthesized within plastids in higher plants through isoprenoid biosynthetic pathway. Carotenoids are important nutritional composition in human diets and have important biological functions in human health. They are not only the precursors of vitamin A, but also playing important roles in protecting vision, decreasing the incidence of varieties of cancers and cardiovascular diseases, enhancing immune ability and so on.
     At present,“golden rice”,“golden canola”and“golden potato”have already been abtained through carotenoid genetic engineering. These achievements greatly enhanced the confidence in developing carotenoid genetic engineering in higher plants. However, a major limitation is our poor knowledge of the regulation mechanisms of carotenoid biosynthetic pathway and the expression regulation mechanisms of carotenogenic genes in higher plants.
     Phytoene desaturase (PDS) and Lycopene epsilon-cyclase (LYCE) are key regulatory enzymes in carotenoid biosynthetic pathway. Characterizing the functions of PDS and LYCE promoters could provide theoretic evidence in elucidating the molecular control mechanisms of carotenogenic gene expression. The abtained tissue or organ specific promoters could be used in the molecule breeding of nutritional improvement in major staple crops and flower colour modification in horticultural plants. Therefore, functional characterization of gentian (Gentiana lutea) PDS and LYCE gene promoters not only has great theoretical significance, but also has potential practical application value.
     The promoter fragments for gentian PDS and LYCE genes were cloned from genomic DNA by the inverse polymerase chain reaction (Zhu C., unpublished data). Using PLACE and PlantCare databases to analysis promoter cis-acting elements indicated that the full-length of PDS promoter (1077 bp) contained a putative TATA box located in the up-stream (-68 bp) of 3′end of promoter, the full-length of LYCE promoter (938 bp) contained a putative TATA box located in the up-stream (-69 bp) of 3′end of promoter. Furthermore, both of these two promoters had CAAT boxes whose function was enhancing gene transcription, light regulation cis-acting element box I, G box, I box, ATC motif, ABA regulation cis-acting element ABRE and so on. The similar cis-acting elements existed in PDS and LYCE gene promoters indicated that these two promoters might have similar functions in regulating gene expression.
     The full-length promoter fragments were fused to a gene encoding beta-glucuronidase (GUS) and the fusion constructs were introduced into tomato fruits and leaves by Agrobacterium-mediated transient transformation. The results of GUS transient expression indicated that PDS and LYCE gene promoters did not drive the GUS gene expression in chloroplasts-containing leaves and immature green fruits of tomato. During the development of tomato fruit, the transition from chloroplasts to chromoplasts occur, expression levels of the GUS gene driven by PDS and LYCE gene promoters gradually increased, the highest expression levels of GUS were found in mature chromoplast-containing fruits. This revealed that the expression of PDS and LYCE gene promoters was associated with chromoplast formation and the development of fruits of tomato. In order to extensively study the function of PDS gene promoter in tomato, fusion gene of GlPDSPro:GUS was introduced into tomato by Agrobacterium-mediated stable transformation. We extracted genomic DNA from transgenic tomato plants. Genomic DNA PCR analysis confirmed that stable transgenic tomato plants were obtained.
引文
[1] Choi S K, Harada H, Matsuda S, et al. Characterization of two β-carotene ketolases, CrtO and CrtW, by complementation analysis in Escherichia coli [J]. Appl Microbiol Biotechnol, 2007, 75: 1335–1341.
    [2] Bartley G E, Scolnik P A. Plant carotenoids: pigments for photoprotecion, visual attraction and human health [J]. Plant Cell, 1995, 7 (7): 1027-1038.
    [3] Tracewell C A, Vrettos J S, Bautista J A, et al. Carotenoid photooxdation in photosystem ?? [J]. Arch Biochem Biophys, 2001, 385 (1): 61-69.
    [4] Minhthy L, Ngugen, Steven J, et al. Lycopene: chemical and logical properties [J]. Food Technology, 1999, 53(2): 38-45.
    [5] 徐艳钢,喻宜洋.番茄红素生物学功能研究进展[J].现代预防医学,2004,31(5):725-727.
    [6] 孙庆杰,丁霄霖.番茄红素的保健作用与开发[J].食品与发酵工业,1998,23(4):72-75.
    [7] Snowdon D A, Gross M D, Butler S M. Antioxidants and reduced functional capacity in the elderly: findings from the nun study [J]. J Gerontol Ser A Biol Sci Med Sci, 1996, 51(1): 10-16.
    [8] van Vliet T, van Schaik F, Schreurs W H, et al. In vitro measurement of β-carotene cleavage activity: methodological considerations and the effect of other carotenoids on β-carotene cleavage [J]. Int J Vitam Nutr Res, 1996, 66(1): 77-85.
    [9] von Lintig J, Wyss A. Molecular analysis of vitamin A formation: cloning and characterization of β-carotene 15,15-dioxygenase [J]. Arch Biochem Biophys, 2001, 385(1): 47-52.
    [10]高建峰.β-胡萝卜素的营养价值及其生物合成[J].粮食与饲料工业,2001,1:48-50.
    [11]高晓岚,杨军,杨惠,等.β-胡萝卜素的抗氧化作用与疾病预防[J].中国公共卫生,2003,19(4): 479-480.
    [12]Sies H, Stahl W. Vitamin E and C, β-carotene and other carotenoids as antioxidants [J]. Am J Clin Nutr, 1995, 62: 1315-1321.
    [13]Burtun G W. Antioxidant action of carotenoids [J]. J Nutr, 1989, 119: 109-111.
    [14]Govannucci E, Ascherio A, Rimm E B, et al. Intake of carotenoids and retinol in relation to risk of prostate cancer [J]. J Natl Cancer Inst, 1995, 87: 1767-1776.
    [15]Bendish A. Beta-carotene and the immune response [J]. Proc Nutr Soc, 1991, 50: 263-274.
    [16]Stahl W, Heinrich U, Jungm ann H, et al. Carotenoids and carotenoids plus vitam in E protect against ultraviolet light-induced erthem a in humans [J]. Am J Clin Nutr, 2000, 71: 795-798.
    [17]向智男,宁正祥.功能性色素—玉米黄质的特性、提取及其研究应用[J].食品与机械, 2005, 21(1): 74-77.
    [18]Street D A, Comstock G W, Salkeld R M, et al. Serum antioxidants and myocardial infarction. Are low levels of carotenoids and alpha-tocopherol risk factors for myocardial infarction? [J]. Circulation, 1994, 90(3): 1154-1161.
    [19]彭小兰.虾青素的生理功能及其生产与应用研究[J].兽药天地,2005,11:50-52.
    [20]Savoure N, Briand G, Amory-Touz M C, et al. Vitamin A status and metabolism of cutaneous polyamines in the hairless mouse after UV irradiation: action of beta-carotene and astaxanthin [J]. Int J Vitam Nutr Res, 1995, 65: 79-86.
    [21]董玉华,赵元凤.虾青素生物学来源和功能的研究进展[J].水产科学,2005,24(10):50-52.
    [22]Cunningham FX Jr, Gantt E. Genes and enzymes of carotenoid biosynthetic pathway in plants [J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 557-583.
    [23]Kuntz M, Romer S, Suire C, et al. Identification of cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening [J]. Plant J, 1992, 2(1): 25-34.
    [24]Zhu C F, Yamamura S, Koiwa H, et al. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea [J]. Plant Mol Biol, 2002, 8(3): 277-285 .
    [25]Isaacson T, Ronen G, Zamir D, et al. Cloning of tangerine from tomato reverals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants [J]. Plant Cell, 2002, 14(2): 333-342.
    [26]Mann V, Pecker I, Hirschberg J. Cloning and characterization of the gene for phytoene desturase (Pds) from tomato (Lycopersicon esculentum) [J]. Plant Mol Biol, 1994, 24(3): 429-434.
    [27]Park H, Kreunen S S, Cuttriss A J, et al. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar boby formation and photomorphogenesis [J]. Plant Cell, 2002, 14(2): 321-332.
    [28]Albrecht M, Klein A, Hugueney P, et al. Molecular cloning and functional expression in E.coli of a novel plant enzyme mediating ζ-carotene desaturation [J]. FEBS Lett, 1995, 372(2-3): 199-202.
    [29]Tian L, Musetti V, Kim J, et al. The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid epsilon-ring hydroxylation activity [J]. Proc Natl Acad Sci USA, 2004, 101(1) : 402-407.
    [30]Bouvier F, Keller Y, D’Harlingue A, et al. Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylase from pepper fruits (Capsicum annuum L.) [J]. Biophys Acta, 1998, 1391(3): 320-328.
    [31]Sun Z, Gantt E, Cunningham F X. Cloning and functional analysis of the β-carotene hydroxylase of Arabidopsis thaliana [J]. J Biol Chem, 1996, 271(40): 24349-24352.
    [32]Zhu C, Yamamura S, Nishihara M, et al. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development [J]. Biochim Biophys Acta, 2003, 1625(3): 305-308.
    [33]Marin E, Nussaume L, Quesada A, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana [J]. EMBO J, 1991, 15(10): 2331-2342.
    [34]朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在植物基因工程中的应用[J].植物生理与分子生物学学报,2004,30(6):609-618.
    [35]Al-Babili A, Hugueney P, Schledz M, et al. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum [J]. FEBS Lett, 2000, 485(2-3): 168-172.
    [36]Bouvier F, D’Harlingue A, Backhaus R A, et al. Identification of neoxanthin synthase as a carotenoid cyclase paralog [J]. Eur J Biochem, 2000, 267(21): 6346-6352.
    [37]Misawa N, Yamano S, Linden H, et al. Functional expression of the Erwinia uredevora carotenoid biosynthesis gene crtI in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon [J]. Plant J, 1993, 4: 833-840.
    [38]Kumagai M H, Keller Y, Bouvier F, et al. Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana [J]. The Plant Journal, 1998, 14(3): 305-315.
    [39]Lotan T, Hirschberg J. Cloning and expression in Escherichia coli of the gene encoding β-C-4 oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis [J]. FEBS Lett, 1995, 364: 125-128.
    [40]Mann V, Harker M, Pecker I, et al. Metabolic engineering of astaxanthin production in tobacco flowers [J]. Nat Biotechnol, 2000, 18: 888-892.
    [41]Shewmaker C K, Sheehy J A, Daley M, et al. Seed specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects [J]. The Plant Journal, 1999, 20(4): 401-412.
    [42]Ravanello M P, Ke D, Alvarez J, et al. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production [J]. Metab Eng, 2003, 5: 255-263.
    [43]陶俊,张上隆,徐昌杰,等.类胡萝卜素合成的相关基因及其基因工程[J].生物工程学报,2002, 18(1):276-281.
    [44]Ye X, Al-Babili S, Kloti A, et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm [J]. Science, 2000, 287: 303-305.
    [45]Paine J A, Shipton C A, Chagger S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content [J]. Nat Biotechnol, 2005, 23: 482–487.
    [46]Romer S, Fraser P D, Kiano J W, et al. Elevation of the provitamin A content of transgenic tomato plants [J]. Nat Biotechnol, 2000, 18(6): 666-669.
    [47]Dharmapuri S, Rosati C, Pallara P, et al. Metabolic engineering of xanthophyll content in tomato fruits [J]. FEBS Lett. 2002, 519: 30–34.
    [48]D’Ambrosio C, Giorio G, Marino I, et al. Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase(lcy-b) cDNA [J]. Plant Sci, 2004, 166: 207–214.
    [49]Davuluri G R, van Tuinen A, Fraser P D, et al. Fruit-specifc RNAi-mediated suppression of DET1 enhances tomato nutritional quality [J]. Nat Biotechnol, 2005, 7: 825–826.
    [50]Wurbs D, Ruf S, Bock R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome [J]. Plant J, 2007, 49: 276-288.
    [51]Romer S, Lubeck J, Kauder F, et al. Genetic engineering of a zeaxanthin-rich potato by antisenseinactivation and co-suppression of Carotenoid Epoxidation [J]. Metab Eng, 2002, 4(3): 263-272.
    [52]Ducreux L J, Morris W L, Hedley P E, et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein [J]. J Exp Bot, 2005, 56 (409): 81-89.
    [53]Morris W L, Ducreux L J M, Fraser P D, et al. Engineering ketocarotenoid biosynthesis in potato tubers [J]. Metab Eng, 2006, 8: 253-263.
    [54]Diretto G, Al-Babili S, Tavazza R, et al. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway [J]. PLoS ONE, 2007, 2(4): 350.
    [55]Lu S, Eck J V, Zhou X, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high-levels of β-caroten accumulation [J]. Plant Cell, 2007, 18: 3594-3605.
    [56]Jayaraj J, Devlin R, Punja Z. Metabolic engineering of novel ketocarotenoid production in carrot plants [J]. Trans Res in press. 2007. DOI 10.1007/s11248-007-9120-0
    [57]Suzuki S, Nishihara M, Nakatsuka T, et al. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway [J]. Plant Cell Rep, 2007, 26: 951-959.
    [58]Yang Q J, Li Q R, Qian R, et al. Regulation and biotechnology of carotenoid formation in flowers [C]. From genomics to plant improvement. In: Li Z K, Fang X J, eds. Proceedings of the 2nd International Conference on Plant Molecular Breeding. Sanya, Hainan, China, 2007. 190-191.
    [59]Zhu C, Gerjets T, Sandmann G. Nicotiana glauca engineered for the production of ketocarotenoid in flowers and leaves by expressing the cyanobacterial crtO ketolase gene [J]. Trans Res, 2007, 16: 813-821.
    [60]朱玉贤,李毅.现代分子生物学[M].2 版.北京:高等教育出版社,2004.71.
    [61]于翠梅,马莲菊,张宝石.特异性启动子在植物基因工程中的应用[J].生物工程学报,2006,22(6): 882-890.
    [62]Fickett J W, Hatzigeorgiou A G. Eukaryotic promoter recognition [J]. Genome Res, 1997, 7(9): 861-878.
    [63]姜树原,邸娜,王瑞刚,等.外源基因在植物体内的表达调控机制[J].生物学通报,2005,40(4): 13-14.
    [64]曹仪植.植物分子生物学[M].1 版.北京:高等教育出版社,2002.252-253.
    [65]Orzaez D, Mirabel S, Willemien W H, et al. Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit [J]. Plant Physiol, 2006, 140: 3-11.
    [66]Sun H J, Uchii S, Watanabe S, et al. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics [J]. Plant Cell Physiol, 2006, 47(3): 1-6.
    [67]Welsch R, Medina J, Giuliano G, et al. Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana [J]. Planta, 2003, 216: 523-534.
    [68]Bouvier F, Backhaus R A, Camara B. Induction and control of chromoplast-specific carotenoid genes by oxidative stress [J]. J Biol Chem, 1998, 273(46): 30651-30659.
    [69]Corona V, Aracri B, Kosturkova G, et al. Regulation of a carotenoid biosynthesis gene promoter during plant development [J]. Plant J, 1996, 9(4): 505-512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700