用户名: 密码: 验证码:
埋入式PBL剪力连接件力学特性及承载机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新型组合结构桥梁的多样化发展,作为核心部件的PBL剪力连接件分为两大类:开孔钢板焊接在裸露结构上的叠合式PBL剪力连接件、开孔钢板及附属结构埋入混凝土中的埋入式PBL剪力连接件。现有研究成果表明:在理论模型方面,大量PBL剪力连接件的等效承载力模型间的差异较大,而有限元模型中的常用混凝土本构模型则存在显著缺陷,且求解方法的收敛性较差;在试验研究方面,推出试验适用于叠合式PBL剪力连接件,其试验结果在新型混合结构桥梁中应用时偏于保守;在受力机理研究方面,学者们多关注于连接件在加载初期的刚性特征,而忽略了承载全过程中的塑性行为。为此,本文基于试验结果和理论模型计算结果,揭示了埋入式PBL剪力连接件的力学特性和承载机理,主要完成了以下五个方面的工作:
     (1)埋入式PBL剪力连接件的试验研究:针对推出试验方法的局限性,基于南京长江第三大桥混合桥塔结合部试验和南京长江第四大桥锚固系统试验的成功经验,通过8组24个试件的破坏试验,对开孔孔径、开孔钢板厚度、横向约束和界面剪切力的影响进行了试验研究;基于试验结果对埋入式PBL剪力连接件的工作阶段进行了划分,并对其破坏形态进行了全面总结和分类;通过各种破坏形态下连接件的承载特点分析,提出了此类连接件的理想破坏形态:未发生外包混凝土破坏的情况下,钢板面附近混凝土榫剪切破坏和贯穿钢筋破坏共存。
     (2)基于微平面模型的PBL剪力连接件理论模型的建立:针对混凝土本构模型中参数确定困难的情况,建立了基于遗传优化算法的RBF神经网络参数识别方法,并提出了单轴应力和复杂应力状态下微平面混凝土本构模型的参数确定方法;基于钢板与混凝土间界面剪切力的实测结果,采用三段界面本构模型成功模拟了埋入式PBL剪力连接件中钢板与混凝土间的界面效应;基于上述研究内容,结合动力学显式求解方法,建立了基于微平面模型的PBL剪力连接件理论模型。验证结果表明,此理论模型能精确反映该连接件的承载全过程、各部件的破坏过程和力学特性。
     (3)埋入式PBL剪力连接件的破坏机理研究:基于理论模型的计算结果和试验结果对各种破坏形态下混凝土榫的受力状态进行了研究,揭示出各种破坏形态的破坏机理:埋入式PBL剪力连接件中混凝土榫剪切破坏是由于孔内混凝土的三向受压状态保证了其完好状态而产生的;孔内混凝土压缩破坏是由于孔内混凝土所受横向约束较小造成第一、第二主应力的比值过小而产生的,孔内混凝土割裂破坏是由于开孔钢板较薄造成孔内混凝土质量难以保证而产生的。基于此,提出了理想破坏形态在极限承载状态出现的必要条件是:保证垂直于钢板面方向具有足够的横向约束,且开孔钢板厚度应不小于20mmm。
     (4)理想破坏形态下埋入式PBL剪力连接件的承载机理研究:根据理想破坏形态下混凝土榫和贯穿钢筋的应力应变状态,分析了两者在各个工作阶段的力学特性,阐明了混凝土榫和贯穿钢筋的破坏过程,探讨了钢板与混凝土间界面剪切力的产生机理和发展过程,分析了连接件的荷载传递历程,从而揭示了理想破坏形态下埋入式PBL剪力连接件的承载机理:在塑性阶段内,钢板面附近的混凝土榫断面的前半部分先开裂,然后裂缝不断发展至贯通整个断面,而孔内混凝土则处于完好状态;在弹性阶段之后,贯穿钢筋逐渐从弯曲状态转化为受拉状态;在承载过程中,钢板与混凝土间的界面效应始终是此类连接件承载力和刚度的重要组成部分。
     (5)理想破坏形态下埋入式PBL剪力连接件的宏观力学行为的研究:基于试验结果,进行了连接件的各工作阶段的极限状态和刚度变化情况的影响因素分析;根据回归分析,提出了理想破坏形态下埋入式PBL剪力连接件在承载全过程中的荷载-滑移关系的统一计算公式;基于此类连接件的承载特点,将1.2mm作为设计滑移量,对应的荷载值作为设计承载力,并提出了此类连接件的设计承载力计算公式。计算结果表明,两式的计算值与实测值均吻合良好,建议在此类连接件的工程设计中应用。
With the diversified development of the new type of composite and hybrid bridges, the perfobond rib shear connector (in short, PBL), as the core component of the joint part, is divided into two kinds:the composite PBL whose perfobond rib is welded on the bare structure, and the embedded PBL whose perfobond rib and accessory structure is embedded into concrete. The research results show that there is great difference among many equivalent bearing capacity models of the PBL, and there are significant deficiencies in these theoretical models with the usual concrete constitutive models. It also shows that the push-out test, whose result is proved to be conservative for the hybrid bridges, is suitable for the composite PBL. The rigidity character of the PBL in the initial loading stage is paid more attention, while the plastic behavior during the whole loading process is ignored. Therefore, the mechanical property and load-bearing mechanism of the embedded PBL is studied based on the test results and calculation results, including the following five aspects:
     (1) The experimental study of the embedded PBL:Accoding to the limitations of the push-out test,24specimens, sorted into8groups, were tested in the fracture test which was designed based on the joint part experiment of the hybrid pylon of the third Nanjing Changjiang river bridge and the anchorage system experiment of the fourth Nanjing Changjiang river bridge. The rib hole diameter, the rib thickness, the transversal confinement and the interface shear force was tested in this test. The working stages of the embedded PBL were divided based on the test results, and the failure modes were summarized and classified. The perfect failure mode of the embedded PBL is the coexistence of the shear-off failure of concrete dowel near the rib surfaces and the failure of perforated rebar without the failure of the surrounding concrete.
     (2) The establishment of the theoretical model of the PBL based on the micro plane model: According to the difficulty of the parameter determination in the concrete constitutive models, the RBF neural network parameter identification method was established based on the genetic optimization algorithm, and the parameter determination method of the micro plane model was proposed under the uniaxial and complicated stress state. The interface effect between the rib and concrete (in short, IFE) in the embedded PBL was simulated by the three-line interface constitutive model. According to the above, the theoretical model of the PBL based on the micro plane model was established with the help of the dynamics explicit solving method. The verification results show that the total bearing process of the connector, the failure process and the mechanical property of each component can be affected by the result of this model.
     (3) Study on the failure mechanism of the embedded PBL:The stress state of the concrete dowels under every failure mode was studied based on the calculation results of the theoretical model and the test results, and the failure mechanism under each failure mode was revealed. The results show that the shear-off failure of concrete dowels is caused by the sound condition of the concrete in the rib hole(in short, CRH) under the three-dimension stress state, the compressive failure of the CRH is caused by the small ratio between the first principal stress and the secondary principal stress under the weak transversal confinement, and the dissever failure of the CRH is caused by the poor quality of the CRH with the thin rib. Therefore, the necessary condition of the appearance of the perfect failure mode under the ultimate carrying state is the sufficient transversal confinement and the rib thickness no less than20mm.
     (4) Study on the load-bearing mechanism of the embedded PBL under the perfect failure mode:The mechanical property of the CRH and perforated rebar in each working state is analyzed, and their failure process is proved according to their stress state under the perfect failure mode. The generation mechanism and developing process of the IFE is investigated, and the process of load transmission and the load-bearing mechanism of the embedded PBL is analyzed. The results show that in the plastic stage, the front part of concrete dowel near the rib surface cracks firstly, and the crack gradually develops to a shear-break plane, while the intactness of the CRH. It also shows that the bending state of perforated rebar gradually changes to tensional state after the elastic stage; and the IFE is the important part of the bearing capacity and the stiffness of the embedded PBL during the whole bearing process.
     (5) Study on the macro mechanical behavior of the embedded PBL under the perfect failure mode:Influence factors on the ultimate bearing state and the stiffness development of the embedded PBL is analyzed based on the test results. The uniform calculation formula of the load-slip relationship during the whole bearing process under the perfect failure mode is established, and the calculation formula of the design carrying capacity with the design slip of1.2mm is established. The calculated result shows that their calculation results are in good agreement with their test result, and the two formulas can be used in the engineering design application of the embedded PBL.
引文
[1]项海帆.世界桥梁发展中的主要技术创新[J].广西交通科技,南宁,,2003,28(5):1-7
    [2]刘玉擎.组合结构桥梁[M].人民交通出版社,北京,2005
    [3]张清华,李乔,唐亮.桥塔钢-混凝土结合段剪力键破坏机理及极限承载力[J].中国公路学报,2007,20(1):85-90
    [4]宗周红,车惠民.剪力连接件静载和疲劳试验研究[J].福州大学学报,1999,27(6):61-67
    [5]谢红兵,柯在田,林广元.在动载作用下的连续结合梁的设计[J].国外桥梁,1998,,4:12-21
    [6]Roberts W. S., Heywood R. J.. Development and testing of a new shear connector for steel concrete composite brdiges[J]. Fourth international bridge engineering conference,1995:137-145
    [7]夏嵩,赵灿晖,张育智,等.PBL传剪器极限承载力的试验研究[J].西南交通大学学报,2009,44(2):166-170
    [8]王振海,赵灿晖,李乔.PBL剪力连接件荷载-滑移关系试验研究[J].西南交通大学学报,2011,46(4):1-6
    [9]Oguejiofor E. C., Hosain M. U.. A parametric study of perfobond rib shear connectors. Can J Civil Eng,1994;21:614-625
    [10]Oguejiofor E. C. Perfobond rib shear connectors for composite beams[M]. University of Saskatchewan, 1994
    [11]Valente I., Cruz P. J. S.. Experimental studies on shear connection between steel and lightweight concrete [J]. International conference on bridge maintenance, safety and management, 2, Kyoto,2004
    [12]Valente I., Cruz P. J. S.. Experimental analysis of Perfobond shear connection between steel and lightweight concrete[J]. Journal of constructional steel research, 2004,60:465-479
    [13]Valente I., Cruz P. J. S.. Design and experimental analysis of a new shear connector for steel and concrete composite structures[J]. International association for bridge maintenance and safety, 2004
    [14]Kim Hyeong-Yeol, Jeong Youn-Ju. Experimental investigation on behavior of steel-concrete composite bridge decks with perfobond ribs[J]. Journal of Constructional Steel Research,2006,62:463-471
    [15]刘玉擎,周伟翔,蒋劲松.开孔板连接件抗剪性能试验研究[J].桥梁建设.2006,6:1-5
    [16]Ahn J.-H., Kim S.-H., Jeong Y.-J.. Shear behaviour of perfobond rib shear connector under static and cyclic loadings [J]. Magazine of concrete research. 2007,60(5):347-357
    [17]Ahn J. H., Kim S. H., Jeong Y. J.. Shear behaviour of perfobond rib shear connector under static and cyclic loadings[J]. Magazine of concrete research.2008, 60(50):347-357
    [18]Vianna J.da.C., Costa-Neves L.F.. Vellasco P.C.G. da S., Andrade S.A.L. de. Experimental assessment of Perfobond and T-perfobond shear connectors' structural response[J]. Journal of Constructional Steel Research, 2009,65:408-421
    [19]Jeong Youn-Ju, Kim Hyeong-Yeol, Koo Hyun-Bon. Longitudinal shear resistance of steel-concrete composite slabs with perfobond shear connectors [J]. Journal of Constructional Steel Research,2009,65:81-88
    [20]Ahn Jin-Hee, Lee Chan-Goo, Won Jeong-Hun, Kim Sang-Hyo. Shear resistance of the perfobond-rib shear connector depending on concrete strength and rib arrangement[J]. Journal of Constructional Steel Research, 2010,66:1295-1307
    [21]Candido-Martins J.P.S, Costa-Neves L.F., Vellasco P.C.G. da S.. Experimental evaluation of the structural response of perfobond shear connectors [J]. Engineering structures,2010,32:1976-1985
    [22]Kim Sung-Hoon, Choi Jun-Hyeok. Experimental study on shear connection in unfilled composite steel grid bridge deck[J]. Journal of Constructional Steel Research, 2010,11(66):1339-1344
    [23]西南交通大学.南京长江第三大桥索塔钢-混结合段传力机理与试验研究[R].西南交通大学,成都,2005
    [24]李乔,武焕陵,唐亮,崔冰.南京长江三桥桥塔钢混结合段内力分布规律研究[J].中国公路学会桥梁和结构工程分会,北京,2005
    [25]周浩.南京长江三桥桥塔钢-混结合段剪力键选型试验研究[D].西南交通大学研究生学位论文,2005
    [26]胡建华,叶梅新,黄琼.PBL剪力连接件承载力试验[J].中国公路学报,2006,,19(6):65-72
    [27]胡建华,侯文崎,叶梅新.PBL剪力键承载力影响因素和计算公式研究[J].铁道科学与工程学报,,2007,4(6):12-18
    [28]西南交通大学.南京长江第四大桥锚固结构承载力及传力机理试验研究报告[R].西南交通大学,成都,2010
    [29]肖林,李小珍,卫星.PBL剪力键静载力学性能推出试验研究[J].中国铁道科学,2010,31(3):15-20
    [30]肖林.钢混组合结构中剪力连接件试验研究[D].西南交通大学,,2008
    [31]李小珍,肖林,张迅,刘德军.斜拉桥钢-混凝土结合段PBL剪力键承载力试验研究[J].钢结构,,2009,,24(9):22-27
    [32]Medberry S. B., Shahrooz B. M.. Perfobond shear connector for composite construction[J]. Engineering Journal, 2002,39(1):2-12.
    [33]Ushijima Y., Hosaka T., Mitsuki K., Watanabe H., Tachibana Y., Hiragi H.. An experimental study on shear characteristics of perfobond strip and its rational strength equations[J]. In:eligehausen R, editor. Proceedings of the international symposium on connections between steel and concrete.2001:1066-1075.
    [34]Machacek J., Samec J.. Perforated shear connector[J]. Steel composite struction, 2002, 2(1):51-66.
    [35]Machacek J., Samec J., Studnicka J.. Numerical analysis of perfobond shear connector [J]. In: Proceedings of the 4th international conference on advanced engineering design. 2004.
    [36]EN1994 Eurocode 4:Design of composite steel and concrete structures.2005
    [37]Kalfas C., Pavlidis P., Galoussis E.. Inelastic behavior of shear connection by a method based on FEM[J]. J. Construc. Steel Res.,1997, 44:107-114
    [38]Sebastian W. M., McConnel R. E.. Nonlinear FE analysis of steel-concrete composite structures[J]. Journal of structural engineering, 2000, 126(6),662-674.
    [39]白玲.超静定组合结构桥梁受力特性的3D-FEM模拟分析[D].铁道科学研究 院,2003
    [40]Bursi O. S., Sun F-F, Postal S.. Non-linear analysis of steel-concrete composite frames with full and partial shear connection subjected to sesmic loads[J]. Journal of constructional steel research, 2005,61:67-92.
    [41]周伟翔,刘玉擎,曾明根,邵长宇.连续组合梁桥钢与混凝土连接技术的研究[J].第十七届全国桥梁学术会议,2006
    [42]Queiroz F. D., Vellasco P.C.G.S., Nethercot D.A.. Finite element modeling of composite beams with full and partial shear connection[J]. Journal of constructional steel research, 2007,63:505-521.
    [43]赵洁,聂建国.钢板-混凝土组合梁的非线性有限元分析[J].工程力学.,2009,26(4):105-112
    [44]张清华,李乔,卜一之.PBL剪力连接件群传力机理研究(I)——理论模型[J].土木工程学报,,2011,44(4):71-76
    [45]张清华,李乔,卜一之.PBL剪力连接件群传力机理研究(II)——极限承载力[J].土木工程学报,2011,44(5):101-108
    [46]Oguejiofor E.C., Hosain M.U.. Numerical analysis of push-out specimens with perfobond rib connectors[J]. Computers & Structures,1997,62(4):617-624
    [47]Nguyen H. T., Kim S. E.. Finite element modeling of push-out tests for large stud shear connectors [J]. Journal of Constructional Steel Research,2009,65:1909-1920
    [48]Kim S. E., Nguyen H. T.. Finite element modeling and analysis of a hybrid steel-PSC beam connection[J]. Engineering Structures,2010
    [49]张清华,李乔,唐亮.剪力连接件的三维非线性仿真分析方法[J].西南交通大学学报,2005,40(5):595-599
    [50]Lam D., EI-Lobody E.. Behavior of headed stud shear connectors in composite beam[J]. Journal of structural engineering, 2005,131(1):96-107
    [51]张霞,向中富.钢-混凝土组合梁中两种新型连接件的有限元分析[J].重庆交通学院学报,2007,26(2):5-8
    [52]白玲,史永吉.复合结构桥梁的特性[J].中国铁道科学,北京,2003,,24(1):80-87
    [53]刘玉擎,曾明根,陈艾荣.开孔钢板连接件及其在组合结构桥梁中的应用[J].第十六届全国桥梁学术会议论文集,2004:679-683
    [54]赵晨,刘玉擎,吴文明.开孔板连接件抗剪强度研究[J].哈尔滨工业大学学报,2007,39(增刊2):280-282
    [55]刘玉擎,周伟翔.开孔钢板连接件的受力性能及其应用[J].哈尔滨工业大学学报,2005,37(增刊):381-384
    [56]赵晨,刘玉擎,张喜刚.组合结构在斜拉桥中的应用发展[C].第十八届全国桥梁学术会议论文集,2008:181-186
    [57]陈开利,余天庆,习刚.混合梁斜拉桥的发展与展望[J].桥梁建设,武汉,.2005,2:1-4
    [58]刘玉擎.混合梁接合部设计技术的发展[J].世界桥梁,武汉,2005,4:9-12
    [59]徐国平,刘高,吴文明,唐亮.钢-混凝土结合部在桥梁结构中应用新进展[J].公路,北京,,2010.2:18-23
    [60]同济大学.特大跨径混合梁斜拉桥钢混结合段安全、可靠性及耐久性能试验研究[R].同济大学,上海,2008
    [61]崔冰,赵灿晖,董萌,唐亮.南京长江第三大桥主塔钢混结合段设计[J].公路,2009(5)
    [62]黄琼.钢-混凝土混合梁自锚式悬索桥受力性能与计算方法研究[J].中南大学.2007
    [63]唐进,叶梅新.钢-混凝土组合结构中密集型剪力钉群的受力状态[J].长沙铁道学院学报,1999,17(4):68-73
    [64]刘玉擎.有限弹簧元在桥梁结构分析中的应用研究[J].桥梁建设,2005,06:19-22
    [65]中华人民共和国国家标准.《钢结构设计规范》(GB 50017-2003).中国计划出版社.2003
    [66]中华人民共和国国家标准.《钢结构设计规范》(GB 50017-2003)条文说明.中国计划出版社.2003
    [67]BS 5400:Code of practice for the design of composite bridges.2005
    [68]中华人民共和国标准:普通混凝土力学性能试验方法标准(GB/T 50081-2002).2002
    [69]Bazant Z. P., Prat P. C. Microplane model for brittle plastic material:I. Theory[J]. Journal of engineering mechanics, 1988,114:1689-1702.
    [70]小林昭一.混凝土的破坏机理,见:混凝土的强度和破坏译文集[M],北京,水利出版社,1982.
    [71]陈惠发.土木工程材料的本构方程(第一卷,弹性与建模)[M].武汉:华中科技大学出版社,2001
    [72]陈惠发.土木工程材料的本构方程(第二卷,塑性与建模)[M].武汉:华中科技大学出版社,2001
    [73]殴碧峰.基于微平面模型的桥梁船撞数值模拟与简化动力分析[D].上海:同济大学,2008.
    [74]Kaplan M. F.. Crack propagation and the fracture of concrete [J]. ACI Journal, 1961, 58(11):591-610.
    [75]Kesler C., Naus D. J.. James L.. Behavior of materials[J]. In:Proceedings of the international conference on mechanical behavior of materials,1971:15-20.
    [76]Bhattacharjiee S. S., Leger P.. Seismic cracking and energy dissipation in concrete gravity dams[J]. Earthquake engineering and structure dynamics, 1993,22(11):991-1007.
    [77]Bachmann S. P. Discrete crack modeling for dynamically loaded unreinforced concrete structures [J]. Earthquake engineering and structure dynamics.1986,14(2):297-315.
    [78]余寿文,冯西桥.损伤力学[M].1997,清华大学出版社.
    [79]Rabotnow Yu N. On the equation of state for creep. Progress in applied mechanics, 1963: 307-315.
    [80]Janson J, Hult J. Fracture mechanics and damage mechanics, a combined approach[J]. J. de Mech. Appl.1977,1(1):59-64.
    [81]蔡四维,蔡敏.混凝土的损伤断裂[M].北京,人民交通出版社,1999:90-91.
    [82]Taylor G. I. Plastic strain in Metals[J]. J. Inst. Metals,1938,62:307-324.
    [83]Beghini A., Bazant Z. P.. Microplane model m5f for multiaxial behavior and fracture of fiber-reinforced concrete[J]. Journal of engineering mechanics, 2007,133(1):66-75
    [84]Bazant Z. P., Oh B.-H. Microplane model for fracture analysis of concrete structures. Proc., Symp. On the interaction of Non-nuclear munitions with structures[C]. U.S. Air force academy, Colorado Springs, Colo.,1983:49-53.
    [85]Bazant Z. P., Caner F. C. Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. Ⅰ. theory [J]. Journal of engineering mechanics. 2005,131(1):31-40.
    [86]Bazant Z. P., Caner F. C. Microplane model M5 with kinematic and static constraints for concrete fracture and anelasticity. Ⅱ. Computation[J]. Journal of engineering mechanics, 2005,131(1):41-47.
    [87]Bazant Z. P. Prat P. C. Microplane model for brittle plastic material: Ⅰ. theory[J]. Journal of engineering mechanics,1988,114:1689-1702.
    [88]Bazant Z. P., Xiang Y., Prat P. C., Microplane model for concrete:I. Stress-strain boundaries and finite strain[J]. Journal of engineering mechanics,1996,122(3):245-254.
    [89]Bazant Z. P., Oh B.-H. Microplane model for progressive fracture of concrete and rock[J]. Journal of engineering mechanics, 1985,114(4):559-582.
    [90]Bazant Z. P., Oh B.-H. Efficient numerical integration on the surface of a sphere[J]. Zeitschrift Fur angewandte mathematic und mechanic, Berlin, Germany, 1986,66(1):37-49.
    [91]Bazant Z. P. Caner F.C., Adley M. A., Akers S. A. Fracturing rate effect and creep in microplane model for dynamics[J]. Journal of engineering mechanics,2000,126(9):962-970.
    [92]Bazant Z. P., Caner F. C., Akers S. A. Microplane model M4 for concrete:I:formulation with work-conjugate deviatoric stress[J]. Journal of engineering mechanics,2000, 126(9):944-953.
    [93]Caner F.C., Bazant Z. P. Microplane model M4 for concrete Ⅱ: algorithm and calibration[J]. Journal of engineering mechanics, 2000,126(9):954-961.
    [94]Bazant Z. P. M. D. Adley, Y. Xiang, P.C. Prat, S. A. Akers. Microplane model for concrete:Ⅱ. Data delocalization and verification[J]. Journal of engineering mechanics, 1996,122(3):255-262.
    [95]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993.
    [96]姜绍飞.基于神经网络的结构优化与结构检测[M].北京:科学出版社,2002.
    [97]Cybenko G. Approximation by superposition of sigmoid function[J]. Mathematics of Control. signals and system.1989(2):304-314.
    [98]Simon Haykin著,叶世伟,史忠植译,神经网络原理[M].北京:机械工业出版社.2004.
    [99]Hofbauer J, Sigmund K. The theory of evolution and dynamical systems[M]. Cambridge University Press,1988
    [100]陈国良,王煽法.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [101]边擎琪,张学工.模式识别(第2版)[M].北京:清华大学出版社,1999.
    [102]周明,孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社,1999.
    [103]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [104]白光亮.大跨度斜拉桥索塔锚固区结构行为与模型试验研究[D].成都:西南交通大学,2009.
    [105]吴立彬.基于三线性粘结-滑移本构模型的FRP-混凝土界面行为研究[D].广州:暨南大学.2010.
    [106]唐占锋.考虑粘结滑移的钢筋混凝土非线性有限元分析方法研究[D].重庆:重庆大学,2007.
    [107]陆新征.FRP-混凝土界面行为研究[D].北京:清华大学,2004.
    [108]陆新征,谭壮,叶列平,江见鲸.FRP布-混凝土界面粘结性能的有限元分析[J].工程力学,2004.
    [109]Wriggers P. Finite element algorithms for contact problems[J]. Arch. Comp. Meth. Engrg.,1995,2(4):1-49.
    [110]Wriggers P., Miehe C. Contact constraints within coupled thermomechanical analysis:a finite element model[J]. Computer methods in applied mechanics and engineering,1994,113:301-319.
    [111]Abaqus SIMULIA users'manual Version 6.10, USA:Dassault system's Providence, 2010.
    [112]Belytschoko T., Liu W. K., Moran B. Nonlinear Finite Elements for continua and structures[M]. John Wiley & Sons Ltd. 2000.
    [113]Belytschoko T. Methods and programs for analysis of fluid-structure systems[J]. Nucl. Engrg. Deisgn, 1976,42:41-52.
    [114]Belytschoko T., Lin J. I., Tsay C. S. Explicit algorithms for the nonlinear dynamics of sheels[J]. Computer methods in applied mechanics and engineering, 1984,42:225-251.
    [115]Belytschoko T., Bazant Z. P., Hyun Y. W., Chang T. P. Strain softening materials and finite element solutions [J]. Comput. Struct, 1986,23(2):163-180.
    [116]Chandrasekharaiah D. D., debnath L. Continuum Mechanics[M].1994, Academic Press, Boston, MA.
    [117]Chung L., Hulbert G. A time integration algorithm for strcutral dynamics with improved numberical dissipation; the generalized α-method[J]. J. Appl. Mech.,1993, 60:371-375.
    [118]Cook R. D., Malkus D. S., Plesha M. E. Concepts and application of finite element analysis, 3rd edn[M]. Wiley, Chichester, 1989.
    [119]Hallquist J. O. LS-DYNA theoretical manual[M].1994.
    [120]Hallquist J. O., Whirley R. G. DYNA3D users'manual:nonlienar dynamics analysis of structures in three dimensions[M]. Lawrence livermore national laboratory, 1989, CA.
    [121]Kleiber M. Incremental finite element modelling in non-linear solid mechanics[D]. Ellis Horwood, Chichester, 1989.
    [122]Simo J. C., Hughes T. J. R. Computational inelasticity[M]. Springer-Verlag, 1998, New York.
    [123]Riks E. The application of Newton's method to the problem of elastic stability [J]. J. Appl. Mech.,1972,39:1060-1066.
    [124]Oden J. T., Reddy J.N. An introduction to the mathematical theory of finite elements[J]. Wiley, 1976, New York.
    [125]Belytschko T., Hughes T. J. R. Computational methods for transient analysis[D]. North-Holland. Amsterdam.1984.
    [126]Belytschko T.,Lin J. I.,Tsay C.S. Explicit Algorithms for the Nonlinear Dynamics of Shells[J]. Computer Methods in Applied Mechanics and Engineering, 1984(43): 251-276.
    [127]BerganP. B., Horrigmoe G., Krakeland B., Soreide T. H. Solution Techniques for Non-Linear Finite Element Problems[J]. International Journal for Numerical Methods in Engineering, 1978(12):1677-1696.
    [128]Cormeau I. Numerical Stability in Quasi-Static Elasto-Visco Plasticity [J]. International Journal for Numerical Methods in Engineering, 1975(9):109-127.
    [129]Green A. E., Naghdi P. M. A General Theory of an Elastic-Plastic Continuum[M]. Archives of Rational Mechanics and Analysis, 17
    [130]Gurson A. L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part Ⅰ—Yield Criteria and Flow Rules for Porous Ductile Materials[J]. Journal of Engineering Materials and Technology, 1977(99):2-15.
    [131]Kennedy J. M., Belytschko T., Lin J. I. Recent Developments in Explicit Finite Element Techniques and Their Applications to Reactor Structures [J]. Nuclear Engineering and Design, 1986(96):1-24.
    [132]Benzeggagh M. L., Kenane M., Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus [J]. Composites Science and Technology, 1996(56):439-449.
    [133]Camanho P. P., Davila C. G. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials[J]. NASA/TM-2002-211737: 1-37.
    [134]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004.
    [135]庄茁,由小川,廖剑晖等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [136]陈惠发,A.F.萨里普.弹性与塑性力学[M].北京:中国建筑工业出版社,2004
    [137]Stoughton T. B. A general forming limit criterion for sheet metal forming [J]. International Journal of Mechanical Sciences,2000(42):1-22.
    [138]van Mier J. G. M. Multiaxial strain-softening of concrete. I:Fracture; Ⅱ:Load histories[J]. Material and Structure,1986,111(19):179-200.
    [139]Petersson P. E. Crack growth and development of fracture analysis:nonlocal microcrack·interaction approach[J]. Int. J. Number. Methods in Engrg., Chichester, U.K. 1996,39:635-661.
    [140]Kupfer H., Hilsdorf H. K., Rusch H. Static constitutive relations for concerte[J]. J. Am. Concrete Inst.,1969,66:656-666.
    [141]Balmer G. G. Shearing strength of concrete under high triaxial stress-computation of Mohr's envelop as a curve[R]. Struct. Res. Lab. Rep. No. SP-23, U.S.1949, Department of the Interior and Bureau of Reclamation, Denver.
    [142]van Mier J. G. M. Multiaxial strain-softening of concrete. Ⅰ:Fracture; Ⅱ:Load histories[J]. Material and Structure, 1986, 111(19):179-200.
    [143]Petersson P. E. Crack growth and development of fracture analysis:nonlocal microcrack interaction approach[J]. Int. J. Number. Methods in Engrg., Chichester, U.K. 1996.39:635-661.
    [144]Kupfer H., Hilsdorf H. K., Rusch H. Static constitutive relations for concerte[J]. J. Am. Concrete Inst.,1969,66:656-666.
    [145]Balmer G. G. Shearing strength of concrete under high triaxial stress-computation of Mohr's envelop as a curve[R]. Struct. Res. Lab. Rep. No. SP-23, U.S.1949, Department of the Interior and Bureau of Reclamation. Denver.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700