用户名: 密码: 验证码:
苎麻纤维增强聚乳酸复合材料的界面、结构改进及其力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国国民经济中,玻璃纤维复合材料以强度适中、成本较低等优势得到广泛应用,但是其固有的生产能耗大、材料回收难等问题,给生态环境带来沉重的负担。在世界各国把工业与环境协同发展作为经济发展重要指标的今天,大力开发天然纤维增强生物降解复合材料,使复合材料朝着低碳环保方向发展是一个必然的趋势。然而,目前的天然纤维复合材料由于普遍采用强度低的短纤维作为增强材料,加之短纤维在树脂中的无取向排列,导致复合材料的力学性能远远低于玻璃纤维复合材料,从一定程度上限制了其在结构承载部件方面的应用和发展,因此,研究和制备高强高模量的天然纤维增强生物降解复合材料,以扩大此类复合材料的应用范围有着非常重要的意义。在本论文中,主要围绕如何提高苎麻纤维增强聚乳酸复合材料的力学性能而开展研究,具体内容包括:复合材料界面性能的影响因素分析及其表征方法;循环往复拉伸织物预处理对复合材料力学性能的影响及其机理的研究;三维多孔树脂基复合材料的制备及其力学、吸音性能的研究;基于有限元法的三维复合材料细观结构模型建立及其仿真分析。具体内容如下:
     (1)复合材料界面性能的影响因素分析及表征方法。大量国内外研究通过麻纤维复合材料力学性能的表征来间接地研究纤维表面改性对复合材料界面性能的影响。而本文采用微滴抽拔的方法及其剪滞模型来计算界面剪切力,直接评价其界面粘结性能。采用碱液和硅烷偶联剂对纤维表面进行改性。关于界面粘结性能,碱液、硅烷偶联剂以及两者相结合处理过的试样界面剪切力分别提高了约为35%、20%和40%。由此可见,碱液与硅烷偶联剂相结合的处理是最为有效地提高该复合材料界面粘结性能的方法。关于纤维表面形态,碱液和硅烷偶联剂处理过的纤维表面比未处理的显得较为干净。关于纤维表面浸润性,碱液处理使纤维动态接触角从46.7°降低到38.5°,而硅烷偶联剂处理的提高到56.7°。关于纤维结晶度,经过硅烷偶联剂处理之后,纤维结晶度从67.1%降低到36.3%。
     (2)循环往复拉伸织物预处理对复合材料力学性能的影响及其机理的研究。根据相关研究报道,循环往复拉伸处理可以有效提高麻纤维和麻短纤纱的拉伸性能。但是在后续工序里会造成许多织造困难,同时处理效果也会随着内应力消失而有所减弱。因此,本文直接对吸水率为100%的机织物在经纱方向进行循环往复拉伸,再利用热压工艺来制备成复合材料。关于织物表面形貌,处理过的织物经纱密度增大了7-12%,而纬纱密度降低了7-9%。关于纤维微观结构,从X射线衍射分析结果发现,处理前后的纤维结晶度和结晶取向没有明显差异。关于织物拉伸性能,由于纱线在织物里屈曲程度减少以及纤维沿着纱线轴向取向排列,使得织物拉伸性能得到显著提高。基于织物拉伸性能的测试结果,最佳处理条件是拉伸载荷大小为织物平均断裂强度的70%,循环次数为10次,而该条件下处理过的织物拉伸强度比未处理的增长了约为38%。关于复合材料力学性能,由于织物本身力学性能的增强及其纤维体积含量的提高,处理过的织物增强复合材料力学性能得到了相应的提高。相比较未处理的试样,处理过的织物增强复合材料拉伸强度和杨氏模量分别提高了约为35%和32%,而弯曲强度和弯曲模量也分别得到了约为20%和17%的增长幅度。
     (3)三维多孔树脂基复合材料的制备及其力学、吸音性能的研究。为了开发高性能纺织复合材料,本文采用包覆纱来织造三维正交机织物作为复合材料预制件,再利用热压工艺成功地制备了三维多孔树脂基复合材料。其中,包覆纱的利用,使得树脂在预制件成型的阶段获得均匀的分布,并且在一定范围里方便调节纤维与树脂的比重。而相比较二维层合复合材料,采用三维正交机织物作为增强结构,既可获得杰出的层间剪切强度和抗冲击损伤性能,又能维持相对较高的平面内力学性能。此外,通过调整包覆纱树脂长丝的含量和三维机织物的经纱密度来制备出不同纤维体积含量和孔隙率的复合材料。关于复合材料形貌结构,纱线之间和表面树脂层分别存在大量的孔隙或气泡;Z纱沿着材料厚度方向产生倾斜与扭曲变形,但是材料整体性没有被破坏;复合材料由于采用树脂长丝含量较高的包覆纱而得到了较好的浸润效果。关于复合材料力学性能,树脂浸润效果最好的复合材料获得了最为突出的力学性能,经纬方向的拉伸强度分别为433MPa和91.9MPa,而其杨氏模量分别为8.5GPa和18.5GPa;纬向的冲击载荷最大值到达了134.3N,而冲击能量为0.59J。关于复合材料吸音性能,所有复合材料试样由于大量孔隙的存在及其扭曲形态而有效地吸收频率为1000Hz到2500Hz的声波,并且其吸波峰随着后腔深度的增大趋向于更低的频率。
     (4)基于有限元法的三维复合材料细观结构模型建立及其仿真分析。大部分工作是围绕三维正交碳或玻璃纤维增强热固性复合材料而展开研究,但很少会涉及到三维天然纤维增强热塑性复合材料。因此,在本文研究中,根据之前试验结果所获得的形貌特征以及结构参数,建立复合材料细观力学模型,并利用ANSYS有限元分析软件,对三维机织物增强多孔树脂基复合材料的弹性常数进行预测。首先,结合热塑性树脂浸润的实际情况,假设纱线截面为圆形,且横观各向同性,采用只有外层被聚合物树脂所包裹住的短纤纱作为纱线浸渍体模型来计算其弹性常数。接着,考虑到Z纱沿着材料厚度方向的变形及其对复合材料轴向力学性能产生较小的影响,通过省去Z纱部分从而简化了三维多孔复合材料的单元模型。最后,采用有限元仿真分析方法获得了复合材料弹性模量。结果表明,经纱方向的弹性模量预测值要比其实验值高出14%,而纬纱方向的弹性模量预测值要比其实验值低3%。
Glass fiber reinforced composites have been widely used in the industrial field with their advantages of moderate strength and low cost, playing an important role in the economy development. However, their large energy consumption and difficult recyclability have brought a heavy burden for the ecological environment. All countries in the world have made the industrial and environmental development more coordinated, making composites more environmental friendly. Natural fiber reinforced biopolymers have been rapidly developed as a new kind of renewable, recyclable and carbon storage composites. But they have lower mechanical properties than glass fiber ones because of the low tensile strength of short natural fiber and its random orientation in the composite. In order to develop their industrial applications with high load bearing capacity, it is very essential to produce natural fiber reinforced biodegradable composites with good mechanical performance. In this study, much effort has been made on how to improve the mechanical properties of ramie fiber reinforced poly (lactic acid)(PLA) composites. There are four parts in our work:(1) Analyses and characterization of the composite interfacial properties;(2) Effect of the cyclic load pretreated fabrics on the composite mechanical properties and its mechanism;(3) Fabrication, mechanical and sound absorption properties of3D cellular matrix composites;(4) Micro-structural modeling and simulation of3D cellular matrix composites.
     (1) The composite interfacial properties were respectively analyzed and characterized. Most of the published studies have measured the composite mechanical properties to investigate how fiber surface modification affected the composite interfacial properties. In this part, the composite interfacial adhesion was investigated in terms of the fiber/matrix interfacial shear strength (IFSS) using the micro-bond test and its shear lag model. The alkali, silane and alkali-silane combined treatments could greatly improve the IFSS respectively by about35%,20%and40%. And the combined treatment was thought as the most efficient method for enhancing the interfacial adhesion. For fiber surface morphology, the alkali or silane treated fibers had cleaner surface than the untreated ones. For fiber surface wettability, the dynamic contact angle of the alkali treated fibers was increased to46.7°and that of the silane treated ones was decreased to56.7°, compared with that of the untreated ones (38.5°). For fiber crystalline structure, the crystallinity of the silane treated fibers was decreased to36.3%while that of the untreated ones was67.1%.
     (2) Effect of the cyclic load pretreated fabrics on the composite mechanical properties and its relative mechanism were investigated. It was reported that the cyclic load treatment can help natural fibers and their staple yarns achieve the improved tensile properties which could be reversed over time. But the enhanced tensile performance may bring more difficulties in the weaving process. So in this part, woven fabrics were directly pretreated with the cyclic loading along the warp direction and then reinforce thermoplastic matrix by the hot-press approach. For fabric surface morphology, the warp counts became7-12%bigger and the weft counts were7-9%smaller after the treatment. For fiber crystallinity and crystalline orientation, no significant differences between untreated and treated fibers were found. And effect of the pre-treatment on the fabric tensile properties and its composite mechanical properties was investigated. The fabrics treated by70%of the mean fracture load of the untreated ones with10cycles had the greatest improvement of about38%on the tensile strength because of the decreasd yarn crimp in the fabric and enhanced fiber orientation along the yarn axis. Compared with the control group, the cyclically loaded ramie fabric reinforced PLA composites had35%higher tensile strength,32%higher Young's modulus,20%higher flexural strength and17%higher flexural modulus, mainly due to the increased fiber volume fraction and improved tensile properties of the fabrics.
     (3) Fabrication, mechanical and sound absorption properties of3D cellular matrix composites were studied. In order to achieve good resin infiltration, three dimensional fabrics woven with the co-wrapped yarns were used to manufacture a cellular thermoplastic matrix composite by the hot-pressing approach. The co-wrapped yarns as intermediate products have been developed to achieve better resin distribution and can easily adjust the weight content of resin filament for the co-wrapped yarn. Three dimensional woven composites can not only provide the outstanding delamination resistance but also maintain relatively high in-plane mechanical properties, compared with2D woven laminated composites. In this part, the weight content of resin filaments for the co-wrapped yarns and the warp yarn density of3D woven orthogonal fabrics were varied to manufacture three different composite samples with different fiber volume fraction and porosity. For composite's surface morphology and cross sectional view, all the composite samples had some small macro-air pockets distributed in the resin on the composite surface and the large interstices between the warp and the weft yarns; Z-yarns were distorted in all the samples although their structural integrity was still maintained; the composites had a better resin infiltration due to the higher weight content of resin filament for the co-wrappe yarn. For composite mechanical properties, the best resin infiltrated composites had the highest tensile strengths and Young's moduli in the warp and weft directions which respectively reached the highest value of43.3MPa,91.9MPa,8.5GPa and18.5GPa. And its impact load and energy were respectively about134.3N and0.59J. All composite samples could absorb the sound energy in the frequency range from1000to2500Hz. And the sound absorption peak of the composites tended to occur in the lower frequencies with increasing depth of back cavity.
     (4) Simulation of3D cellular matrix composites was given based on the micro-structural modeling. Much work on the finite element analysis (FEA) of3D orthogonal glass or carbon woven fabric reinforced composites has been done, but few studies on natural fiber reinforced thermoplastic composite have been reported. In this part, FEA of3D cellular matrix composites was done to predict their elastic properties according to the previous experimental results. Firstly, the cross section of warp and weft yarn was assumed as round and natural fiber staple yarn wrapped with the thermoplastic matrix was selected as the resin infiltrated yarn model. Then the unit cell of3D cellular matrix composites was simplified by removing the Z yarn part, due to the fact that the distorted Z yarn had little effect on the in-plane mechanical properties of composite. Lastly, FEA based on ANSYS software was given to predict the elastic modulus of composites along the warp and weft directions. The modulus calculated from the FEA model is14%higher in warp direction and3%lower in weft direction than the corresponding experimental values.
引文
[1]Wambua P, Ivens J and Verpoest I. Natural fibres:can they replace glass in fiber reinforced plastics. Compos. Sci. Technol.2003; 63:1259
    [2]Pervaiz M and Sain MM. Carbon storage potential in natural fiber composites. Resour. Conserv Recy.2003; 39:325
    [3]Bledzki AK and Gassan J. Composites reinforced with cellulose based fibers. Prog. Polym. Sci.1999:24:221
    [4]La Mantia FP and Morreale M. Green composites:a brief review. Compos. Part A. Suppl. S.2011; 42:579
    [5]Kalia S, Kaith BS and Kaur I. Pretreatments of natural fiber and their application as reinforcing material in polymer composites- a review. Polym. Eng. Sci.2009; 49:1253
    [6]Huang G and Liu LY. Research on properties of thermoplastic composites reinforced by flax fabrics. Mater. Design 2008; 29:1075
    [7]Kanana TG, Wu MC and Cheng KB. Effect of different knitted structure on the mechanical properties and damage behavior of flax/PLA (Poly Lactic acid) double covered uncommingled yarn composites. Compos. Part B:Eng.2012; 43,2836
    [8]Svensson N, Shishoo R and Gilchrist M. Manufacturing of thermoplastic composites from commingled yarns - a review. J Thermoplast Compos Mater 1998; 11:22
    [9]Zhang L and Miao MH. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos. Sci. Technol.2010; 70:130
    [10]Khondker OA. Ishiaku US, Nakai A and Hamada H. A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos. Part A:Appl. Sci.2006; 37:2274
    [11]Li Y, Mai YW and Ye L. Sisal fibres and its composites:a review of recent developments. Compos. Sci. Technol.2000; 60:2037
    [12]Graupner N, Herrmann AS and Mussig J. Natural and man-made cellulose fibre-reinforced poly (lactic acid) (PLA) composites:An overview about mechanical characteristics and application areas. Compos. Part A. Suppl. S.2009; 40:810
    [13]Oksman K, Mathew AP, Langstrom R, Nystrom B and Joseph K. The influence of fiber microstructure on fiber breakage and mechanical properties of natural fiber reinforced polypropylene. Compos. Sci. Technol.2009; 69:1847
    [l]鲁博,张林文等.天然纤维复合材料[M].北京:化学工业出版社,2005
    [2]Robson D, Hague J, Newman G, Jeronimidis G, Ansell M. Survey of natural materials for use in structural composites as reinforcement and matrices. Crown Copyright, The Biocomposites Centre, University of Wales,1993
    [3]Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC and Zeng HM. Natural vegetable fiber/plasticized natural vegetable fiber — a candidate for low cost and fully biodegradable composite. Adv. Compos. Lett.1995; 8:231
    [4]Angelini LG, Lazzeri A, Levita G, Fontanelli D and Bozzi C. Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials:agronomical aspects, morphology and mechanical properties. Ind. Crop. Prod.2000; 11:145
    [5]La Mantia FP and Morreale M. Green composites:a brief review. Compos. Part A. Suppl. S.2011; 42:579
    [6]冯刚,裘秀利.聚乳酸的改性与成型加工研究进展.塑料工业.2010;7:14
    [7]张玉霞,刘伟.聚乳酸的性能及其加工技术.塑料包装.2010;1:53
    [8]Gu SY, Yang M, Yu T, Ren TB and Ren J. Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym. Int.2008: 57:982
    [9]Wambua P, Ivens J and Verpoest I. Natural fibres:can they replace glass in fiber reinforced plastics. Compos. Sci. Technol.2003; 63:1259
    [10]Kalia S, Kaith BS and Kaur I. Pretreatments of natural fiber and their application as reinforcing material in polymer composites- a review. Polym. Eng. Sci.2009; 49:1253
    [11]Monteiro SN, Lopes FPD, Barbosa AP, Bevitori AB, Da Silva ILA and Da Costa, LL. Natural lignocellulosic fibers as engineering materials-an overview. Metall. Mater. Trans. A.2011; 42(a):296
    [12]Wotzel K, Wirth R and Flake R. Life cycle studies on hemp fiber reinforced components and ABS for automotive parts. Angew. Makromol. Chem.1999; 272: 121
    [13]Leao AL, Rowell R and Tavares N. Application of natural fibres in automotive industry in Brazil-thermoforming process. In:Prasad PN, editor. Science and technology of polymers and advanced materials. New York:Plenum Press; 1998
    [14]Pervaiz M and Sain MM. Carbon storage potential in natural fiber composites. Resour. Conserv Recy.2003; 39:325
    [15]Karmaker AC and Youngquist JA. Injection molding of polypropylene reinforced with short jute fibres. J. Appl. Polym. Sci.1996; 62:1147
    [16]Herrera-Franco PJ and Valadez-Gonzalez A. A study of the mechanical properties of short natural fiber reinforced composites. Compos. Part B:Eng.2009; 36:597
    [17]Oksman K, Mathew AP, Langstrom R, Nystrom B and Joseph K. The influence of fiber microstructure on fiber breakage and mechanical properties of natural fiber reinforced polypropylene. Compos. Sci. Technol.2009; 69:1847
    [18]Hu RH and Lim JK. Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J. Compos. Mater.2007; 41:1655
    [19]Graupner N, Herrmann AS and Mussig J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites:An overview about mechanical characteristics and application areas. Compos. Part A:Suppl. S.2009; 40:810
    [20]Yu T, Ren J, Li SM, Yuan H and Li Y. Effect of fiber surface-treatments on the properties of poly(lactic acid)/raime composites. Compos. Part A Appl. S.2010; 41:499
    [21]Moyeenuddin AS, Pickering KL and Fernyhough. Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. Part A:Appl. S.2011; 42:310
    [22]Chen DK, Li J and Ren J. Biocomposites based on ramie fibers and poly (1-Iactic acid) (PLLA):morphology and properties. Polym. Adv. Technol.2012; 23:198
    [23]Khondker OA. Ishiaku US, Nakai A and Hamada H. A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos. Part A:Appl. Sci.2006; 37:2274
    [24]Li Y, Moyo S, Ding Z, Shan Z and Qiu Y. Helium plasma treatment of ethanol-pretreated ramie fabrics for improving the mechanical properties of ramie/polypropylene composites. Ind. Crops. Prod.2013; In press DOI: 10.1016/j.indcrop.2013.09.028
    [25]Zhang L and Miao MH. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos. Sci. Technol.2010; 70: 130
    [26]Kanana TG, Wu MC and Cheng KB. Effect of different knitted structure on the mechanical properties and damage behavior of flax/PLA (Poly Lactic acid) double covered uncommingled yarn composites. Compos. Part B:Eng.2012; 43, 2836
    [27]Huang G and Liu LY. Research on properities of thermoplastic composites reinforced by flax fabrics. Mater. Design 2008; 29:1075
    [28]吴学东,丁辛.热塑性树脂基纺织结构型复合材料.玻璃钢/复合材料,1996;6:34
    [29]Svensson N, Shishoo R and Gilchrist M. Manufacturing of thermoplastic composites from commingled yarns- a review. J. Thermoplast. Compos. Mater. 1998; 11:22
    [30]于伟东,储才元.纺织物理[M].上海:东华大学出版社,2002
    [31]Matthews FL and Rawlings RD. Composites Materials:Engineering and Science. London:Chapman and Hall,1994.
    [32]Zeronian SH, Kawabata H and Alger KW. Factors affecting the tensile properties of nonmercerized and mercerized cotton fibers. Text. Res. J.1990; 60:179
    [33]Semsarzadeh MA. Fiber matrix interactions in jute reinforced polyester resin. Polym. Composite 1986; 7:23
    [34]Shah AN, Lakkad SC. Mechancial properties of jute reinforced plastics. Fib. Sci. Technol.1981; 15:41
    [35]Ray PK, Chakravary AC and Bandyopadhyay SB. Fine structure and mechanical properties of jute differently dried after retting. J. Appl. Polym. Sci.1976; 20: 1765
    [36]Sinha E, Panigrphi S. Effect of plasma treatment on structure, wettablility of jute fiber and flexural strength of its composite. J. Compos. Mater.2009; 43:1791
    [37]Zhou Z, Wang JL, Huang X, Zhang LW, Moyo S, Sun SY and Qiu YP. Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers. Appl. Surf. Sci.2012; 258:4411
    [38]Mukherjee A, Ganguly PK and Sur D. Structural mechanics of jute:the effects of hemicellulose or lignim removal. J. Text. I.1993; 84:348
    [39]Li X, Tabil LG and Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites:A review. J Polym. Environ.2007; 15:25
    [40]Xie YJ, Callum AS, Xiao ZF, Militz H and Mai C. Silane coupling agents used for natural fiber/polymer composites:A review. Compos. Part A:Appl. Sci.2010; 41:806
    [41]Mutje P, Vallejos ME, Girones J, Vilaseca F, Lopez A, Lopez JP and Mendez JA. Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. J. Appl. Polym. Sci.2006:102:833
    [42]Sawpan MA, Pickering KL and Fernyhough A. Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. Part A:Appl. Sci.2011; 42:310
    [43]Bledzki AK and Jaszkiewicz A. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres — A comparative study to PP. Compos. Sci. Technol.2000; 70:1687
    [44]Herrera-Franco PJ and Valadez-Gonzalez. A study of the mechancial properites of short natural-fiber reinforced composites. Compos. Part B:Eng.2005; 36:597
    [45]Karmarkar A, Chauhan SS, Modak JM and Chanda M. Mechanical properties of wood-fiber reinforced polypropylene composites:Effect of a novel compatibilizer with isocyanate functional group. Compos. Part A:Appl. Sci. 2007; 38:227
    [46]Oksman K. Mechanical properties of natural fibre mat reinforced thermoplastic. Appl. Compos. Mater.2000; 7:403
    [47]Jayaraman K. Manufacturing sisal-polypropylene composites with minimum fibre degradation. Compos. Sci. Technol.2003; 63:367
    [48]Bannister MK. Development and application of advanced textile composite. P. I. Mech. Eng. L-J. Mater.2004; 218:253
    [49]Bos HL, Mussig MJ and van den Oever M. Mechancial properties of short-flax-fibre reinforced compounds. Compos. Part A:Appl. Sci.2006; 37: 1591
    [50]Miao MH and Shan MJ. Highly aligned flax/polypropylene nonwoven preforms for thermoplastic composites. Compos. Sci. Technol.2011; 71:1713
    [51]Ramakrishna S. Energy absorption characteristics of knitted fabric reinforced epoxy composite tubes. J. Reinf. Plast. Comp.1995; 14:1121
    [52]Bledzki AK, Fink HP and Specht K. Unidirectional hemp and flax EP- and PP-composites:influence of defined fiber treatments. J. Appl. Polym. Sci.2004; 93: 2150
    [53]Madsen B, Hoffmeyer P and Liholt R. Hemp yarn reinforced composites. Part 2: Tensile properties. Compos. Part A:Appl. Sci.2007; 38:2204
    [54]姜继圣,杨慧玲.建筑功能材料及应用技术.北京:中国建筑工业出版社.1998
    [55]Huda S and Yang YQ. A novel approach of manufacturing light-weight composites with polypropylene web and mechanically split cornhusk. Ind. Crop. Prod.2009; 30:17
    [56]Zou Y, Huda S and Yang YQ. Lightweight composites from long wheat straw and polypropylene web. Bioresource Technol.2010; 101:2026
    [57]Zou Y, Xu HL and Yang YQ. Lightweight polypropylene composites reinforced by long switchgrass stems. J. Polym. Environ.2010; 18:464
    [58]Huda S, Reddy N and Yang YQ. Ultra-light-weight composites from bamboo strips and polypropylene web with exceptional flexural properties. Compos. Part B:Eng.2012;43:1658
    [59]Chen DK, Li J and Ren J. Study on sound absorption property of ramie fiber reinforced poly (L-lactic acid) composites:Morphology and properties. Compos. Part A:Appl. Sci.2010; 41:1012
    [60]Carus M, Kaup M and Lohmeyer D. Study on markets and prices for natural fibres (Germany and EU) [R]. Cologne:Nova Institute,2000.
    [61]Carus M, Ortman S, Gahle C and Pendarovski C. Use of natural fibers in composites for the German automotive production from 1999 till 2005. Slowed growth in the past two year's new production techniques arising [R]. Cologne: Nova Institute GmbH,2006.
    [62]Bledzki AK, Faruk O and Sperber VE. Cars from bio fibres. Macromol. Mater. Eng.2006,291:449
    [63]Chabba S and Nertrali AN. "Green" composites Part 1:Characterization of flax fabric and glutaraldehyde modified soy protein concentrate composites. J Mater. Sci.2005,40:6263
    [64]Mullen CK and Roy PJ. Fabrication and properties description of Avco 3D carbon-carbon cylindrical composites, National SAMPE Symposium,11-13 April, Los Angeles, California, USA, SAMPE,1972; 8
    [65]Farley GL.; Smith B.T., and Maiden J. Compressive response of thick layer composite laminates with through-the thickness reinforcement. J. Reinf. Plast. Comp.1992; 11:787
    [66]Dickinson LC, Farley GL and Hinders MK. Prediction of effective three-dimensional elastic constants of translaminar reinforced composites. J. Compos. Mater.1999; 33:1002
    [67]Miravete A.3D Textile Reinforcements in composites materials. Boston, New York, Woodhead Publishing Limited; 1999
    [68]Mouritz AP, Bannister MK, PJ Falzon and Leong KH. Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A:Appl. Sci. 1999;30:1445
    [69]Cox BN, Dadkhah MS, Morris WL and Flintoff JG. Failure mechanisms of 3D woven composites in tension, compression, and bending. Acta Metall.1994; 42: 3967
    [70]Chou TW and Ko FK. Textile Structural Composites, Composite Material Series Volume 3. New York:Elsevier Science Publisher B.V.1989
    [71]Yasui Y, Anahara M and Omori H. Three-dimensional fabric and method for making the same. United States Patent 5091246,25 February 1992
    [72]Farley GL. Method and apparatus for weaving a woven angle ply fabric. US Patent 5224519,1993
    [73]Ruzand JM and Guenot G Multiaxial three-dimensional fabric and process for its manufacture. International Patent WO 94/20658,15 September 1994
    [74]Whitney TJ and Chou TW. Modeling of 3D angle-interlock textile structural composites. J. Compo. Mater.1989; 23:890
    [75]Brandt J, Drechsler K and Arendts FJ. Mechanical performance of composites based on various three-dimensional woven-fiber preforms. Compos. Sci. Technol. 1996; 56:381
    [76]Brandt J, Drechsler K, Mohamed M and Gu P. Manufacture and performance of carbon/epoxy 3D woven composites.37th International SAMPE Symposium, Anaheim, California.1992 Mar 9-12
    [77]Drechsler K.3D Textile Reinforced Composites for the transportation industry. Miravete A.3D Textile Reinforcements in Composites Materials. Bsoton, New York, Woodhead Publishing Limited:1999
    [78]Mohamed MH. Three-dimensional Textiles:Machines that build complex fiber architectures are reshaping our two-dimensional view of textiles. Am. Sci.1990; 78:530
    [79]Mohamed MH, Bogdanovich AE, Dickinson LC, Singletary JN and Lienhart RB. A new generation of 3D woven fabric preforms and composites. Sampe Journal 2001; 37:8
    [80]Bilisik A and Mohamed MH. Multiaxial 3-D weaving machine and proper ties of multi axial 3-D woven carbon/epoxy composites. Proceedings of American Society of Composites,14 April,1994:868
    [81]Brandt J, Drechsler K and Richter M. The application of 2D and 3D woven thermoplastic fiber preforms for aerospace composites.36th International SAMPE Symposium, San Diego.1991
    [82]Kuo WS and Fang J. Processing and characterization of 3D woven and braided thermoplastic composites. Compos. Sci. Technol.2000; 60:643
    [83]Bandyopadhyay S, Gellert EP, Silva VM and Underwood JH. Microscopic aspects of failure and fracture roughness in advanced composite materials. J. Compos. Mater.1989; 23:1216
    [84]Cox BN and Dadkhah MS. Macroscopic elasticity of 3D woven composites. J. Compos. Mater.1995; 29:785
    [85]Cox BN. Dadkhah MS and Morris WL. On the tensile failure of 3D woven composites. Compos. Part A:Appl. Sci.1996; 27:447
    [86]Cox BN. Dadkhah MS, Morris WL and Flintoff JG. Failure mechanisms of 3D woven composites in tension, compression and bending. Acta Metall.1994; 42:3967
    [87]Callus PJ. Mouritz AP. Bannister MK and Leong KH. Tensile properties and failure mechanisms of 3D woven GRP composites. Compos. Part A:Appl. Sci. 1999; 30:1277
    [88]Guess TR and Reedy ED. Comparison of interlocked fabric and laminated fabric Kevlar 49/epoxy composites. J. Comp. Tech. Res.1985:7:136
    [89]Tan P, Tong LY, Steven GP and Ishikawa T. Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation. Comp.2000;31:259
    [90]Qiu YP. Xu W, Wang YJ. Zikry MA and Mohamed MH. Fabrication and characterization of three-dimensional cellular-matrix Composites reinforced with woven carbon fabric. Compos. Sci. Technol.2001; 61:2425
    [91]Xu W. Development and analysis of three-dimentionally reinforced cellular matrix composites. Raleigh, NC:North Carolina State University; 2000
    [92]Lomov S.V., Bogdanovich A.E., Ivanov D.S.,Mungalov D, Karahan M and Verpoest I. A study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1:Materials, methods and princ ipal results. Compos. Part A:Appl. Sci.2009; 40:1134
    [93]Ivanov DS, Lomov SV, Bogdanovich AE, Mungalov D, Karahan M and Verpoest I. A study of tensile properties of non-crimp 3D orthogonal weave andmulti-layer plain weave E-glass composites. Part 2:Comprehensive experimental results. Compos. Part A:Appl. Sci.2009; 40:1144
    [94]Mouritz AP. Tensile fatigue properties of 3D composites with through-thickness reinforcement. Compos. Sci. Technol.2008; 68:2503
    [95]Karahan M, Lomov SV, Bogdanovich, AE and Verpoest, I.Fatigue tensile behavior of carbon/epoxy composite reinforced with non-crimp 3D orthogonal woven fabric. Compos. Sci. Technol.2011; 71:1961
    [96]Lee L, Rudov-Clark S, Mouritz AP, Bannister MK and Herszberg I. Effect of weaving damage on the tensile properties of three-dimensional woven composites. Compos. Struct.2002; 57:405
    [97]Yao L, Li WB, Wang N, Guo X and Qiu YP. Tensile, impact and dielectric properties of three dimensional orthogonal aramid/glass fiber hybrid composites. J. Mater. Sci.2007; 42:6494
    [98]Baucom JN and Zikry MA. Evolution of failure mechanisms in 2D and 3D woven composite systems under quasi-static perforation. J. Compos. Mater.2003; 37:1651
    [99]Baucom JN, Zikry MA and Qiu YP. Dynamic and quasi-static failure evolution of 3D woven cellular composite systems. J. Reinf. Plast. Comp.2004; 23:471
    [100]Walter TR, Subhash G, Sankar BV and Yen CF. Damage modes in 3D glass fiber epoxy woven composites under high rate of impact loading. Compos. Part B:Eng.2009; 40:584
    [101]Luo YS, Lv LH, Sun BZ, Qiu YP and Gu BH. Transverse impact behavior and energy absorption of three-dimensional orthogonal hybrid woven composites. Comp. Struct.2007; 81:2007
    [102]Tarnopol'skii YM, Polakov VA and Zhigun IG. Composite materials reinforced with a system of three straight, mutually orthogonal fibers, I: calculation of elastic characteristics. Polym. Mech.1973; 9:853
    [103]Tan P, Tong L and Steven GP. Modeling approaches for 3D orthogonal woven composites. J. Reinf. Plast. Comp.1998; 17:545
    [104]Pochiraju K and Chou TW. Three-dimensionally woven and braided Composites. I:A model for ranisotropic stiffness prediction. Polym. Comp.1999; 20:565
    [105]Cox BN, Carter WC and Fleck NA. Binary model of textile composites formulation. Acta Metall.1994; 42:3463
    [106]Blackketter DM, Walrath DE and Hansen AC. Modeling damage in a plain weave fabric-reinforced composite material. J. Compos. Tech. Res.1993; 2:136
    [107]Srirengan K, Whitcomb J and Chapman C. Modal technique for three-dimensional global/local stress analysis of plain weave composites. Compos. Struct.1997; 39:145
    [108]Whitcomb J and Kyeongsik W. Enhanced direct stiffness method for finite element analysis of textile composites. Compos. Struct.1994; 28:385
    [109]Aitharaju VR and Averill RC. Three-dimensional properties of woven-fabric composites. Compos. Sci. Technol.1999; 59:1901
    [110]Medri G, Nicoletto G and Riva E. Modeling texture effects on tensile properties of woven fabric composite laminates. Key Eng. Mater.1998; 144:283
    [111]Tan P, Tong LY and Steven GP. Behavior of 3D orthogonal woven CFRP composites. Part II. FEA and analytical modeling approaches. Comp.2000; 31: 273
    [1]Rafael A, Bruce H and Susan S. An overview of polylactides as packaging materials. Macromol. Biosci.2004; 4:835
    [2]Suprakas SR and Mosto B. Biodegradable polymers and their layered silicate nanocomposites:in greening the 21st century materials world. Prog. Mater. Sci. 2005:50:962
    [3]Wambua P, Ivens J and Verpoest I. Natural fibres:can they replace glass in fibre reinforced plastics? Compos. Sci. Technol.2003; 63:1247
    [4]Gu SY, Yang M, Yu T, Ren TB and Ren J. Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym. Int.2008; 57:982
    [5]Gupta AP and Kumar V. New emerging trends in synthetic biodegradable polymers-polylactide:a critique. Eur. Polym. J.2007; 43:4053
    [6]Huda MS, Drzal LT, Misra M, Mohanty AK, Williams K, Mielewski DF, Masud SH and Lawrence TD. A study on biocomposites from recycled newspaper fiber and poly (lactic acid). Ind. Eng. Chem. Res.2005; 44:5593
    [7]Graupner N, Herrmann AS and Mu ssig J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites:An overview about mechanical characteristics and application areas. Compos. Part A:Suppl. S.2009; 40:810
    [8]Iji. M. Highly functional bioplastics used for durable products. In:The Netherlands Science and Technolog. Innovative Technologies in Bio-based Economy. The Netherlands, Wageningen,2008 April 8
    [9]Koronis G, Silva A and Fontul M. Green composites:A review of adequate materials for automotive applications. Compos. Part B:Eng.2013; 44:120
    [10]Matthews FL and Rawlings RD. Composites Materials:Engineering and Science. London:Chapman and Hall,1994
    [11]Liu FP, Wolcott MP, Gardner DJ and Rials TG Improving interfacial adhension between wood fibers and thermoplastics - study of examining chemically-modified wood and polystyrene. Compos. Interfaces 1995; 2:419
    [12]Van de Weyenberg I, Chi Truong T, Vangrimde B and Verpoest I. Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment.Compos. Part A:Appl. S.2006; 37:1368
    [13]Hu RH and Lim JK. Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J. Compos. Mater.2007; 41:1655
    [14]Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R and Herrera-Franco PJ. Chemical modification of henequen fibers with an organosilane coupling agent. Compos. Part B:Eng.1999; 30:321
    [15]Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Ben Salah A, Gandini. Modification of cellulosic fibres with functionalized silanes:development of surface properties. Int. J. Adhes. Adhes.2004; 24:43
    [16]Xu H, Wang LH, Teng CQ and Yu MH. Biodegradable Composites:Ramie Fibre Reinforced PLLA-PCL Composite Prepared by in Situ Polymerization Process. Polym. Bull.2008; 61:663
    [17]Yu T, Ren J, Li SM, Yuan H and Li Y. Effect of fiber surface-treatments on the properties of poly(lactic acid)/raime composites. Compos. Part A:Appl. S.2010; 41:499
    [18]Choi HY and Lee JS. Effects of surface treatment of ramie fibers in ramie/poly(lactic acid) composites. Fib. Polym.2012;13:217
    [19]Herrera-Franco PJ and Valadez-Gonzalez A. A study of the mechanical properites of short natural fiber reinforced composites. Compos. Part B Eng.2009; 36:597
    [20]Moyeenuddin AS, Pickering KL and Fernyhough. Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. Part A:Appl. S.2011; 42:310
    [21]Neumann AW. Chemie. Ingenieur. Technik.1970; 42:969
    [22]Monteiro SN, Duarte Lopes FP and Barbosa AP. Natural Lignocellulosic Fibers as Engineering Materials-An Overview. Metall. Mater. Transa. A.2011; 42A: 2963
    [23]Pothan LA, Bellman C, Kailas L and Thomas S. Influence of chemical treatments on the electrokinetic properties of cellulose fibres. J. Adhes. Sci. Technol.2002; 16:157
    [24]Abdelmouleh M, Boufi S, Bem Salah A, Belgacem MN and Gandini A. Interaction of silane coupling agents with cellulose. Langmuir 2002; 18:3203
    [25]Ass BAP, Belgacem MN and Frollini E. Mercerized linters cellulose: characterization and acetylation in N,N-dimethylacetamide/lithium chloride. Carbohyd. Polym.2006; 63:19
    [26]Singha AS and Rana AK. Effect of silane treatment on physicochemical properties of lignocellulosic C. indica fiber. J. Appl. Poly. Sci.2012; 124:2473
    [27]Tserki V, Zafeiropoulos NE, Simon F and Panayiotou C. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos. Part A:Appl. S.2005; 36:1110
    [28]Zhandarov S. and Mader E. Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pull-out tests. Part II:Critical energy release rate. J. Adhes. Sci. Technol. 2003; 17:967
    [29]Zhang CY and Qiu YP. Modified shear lag model for fibers and fillers with irregular cross-sectional shapes. J. Adhes. Sci. Technol.2003; 17:397
    [30]Arbelaiz A, Cantero Q Fernandez B, Mondragon I, Ganan P and Kenny JM. Flax fiber surface modifications:Effects on fiber physico mechanical and flax/polypropylene interface properties. Polym. Compos.2005; 26:324
    [31]Li Y and Mai YW. Interfacial characteristics of sisal fiber and polymeric matrices. J. Adhes.2006; 82:527
    [1]Kalia S, Kaith BS and Kaur I. Pretreatments of natural fiber and their application as reinforcing material in polymer composites- a review. Polym. Eng. Sci.2009; 49:1253
    [2]Monteiro SN, Lopes FPD, Barbosa AP, Bevitori AB, Da Silva ILA and Da Costa, LL. Natural lignocellulosic fibers as engineering materials-an overview. Metall. Mater. Trans. A.2011; 42(a):2963
    [3]Mantia La FP and Morreale M. Green composites:a brief review. Compos. Part A: Appl. S.2011; 42:579
    [4]Angelini LG, Lazzeri A, Levita G, Fontanelli D and Bozzi C. Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials:agronomical aspects, morphology and mechanical properties. Ind. Crop. Prod.2000;11:145
    [5]Angelini LG and Tavarini S. Ramie (Boehmeria nivea (L.) Gaud.) as a potential new fibre crop of the Mediterranean region:Growth, crop yield and fibre quality in a long term field experiment in Central Italy. Ind. Crop. Prod.2013; 51:138
    [6]Bledzki AK and Gassan J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci.1999; 24:221
    [7]Lodha P and Netravali AN. Characterization of stearic acid modified soy protein isolate resin and ramie fiber reinforced 'green' composites. Compos. Sci. Technol. 2005; 65:1211
    [8]Xu H, Wang L, Teng C and Yu M. Biodegradable composites:fibre reinforced PLLA-PCL composite prepared by in situ polymerization process. Polym. Bull. 2008; 61:663
    [9]Kumar R and Zhang L. Aligned ramie fiber reinforced arylated soy protein composites with improved properties. Compos. Sci. Technol.2009; 69:550
    [10]Yu T, Ren J, Li S, Yuan H and Li Y. Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos. Part A:Appl. S.2010; 41,499
    [11]Choi H and Lee J. Effects of surface treatment of ramie fibers in a ramie/poly (lactic acid) composite. Fib. Polym.2012; 13:217
    [12]Chen Y, Sun L, Chiparus O, Negulescu I, Yachmenev V and Warnock M. Kenaf/ramie composite for automotive headliner. J. Polym. Environ.2005; 13: 107
    [13]Graupner N, Herrmann AS and Muessig J. Natural and man-made cellulose fibre-reinforced poly (lactic acid) (PLA) composites:An overview about mechanical characteristics and application areas. Compos. Part A:Appl. S.2009; 40:810
    [14]Jawaid M and Khalil HPS A. Cellulosic/synthetic fibre reinforced polymer hybrid composites:A review. Carbohyd. Polym.2011; 86:1
    [15]Yamanaka A, Abe S, Tsutsumi M, Kitagawa T, Fujishiro H, Ema K, Izumi Y and Nishijima S. Thermal conductivity of ramie fiber drawn in water in low temperature. J. Appl. Polym. Sci.2006; 100:2196
    [16]Prasad BM and Sain MM. Mechanical properties of thermally treated hemp fibers in inert atmosphere for potential composite reinforcement. Mater. Res. Innov. 2003; 7:231
    [17]Zhu L and Goda K. Strengthening and stiffening of ramie yarns by applying cyclic load treatment. J. Appl. Polym. Sci.2008; 109:889
    [18]Zhu L and Goda K. Improvement of tensile properties of ramie yarns by applying a winding machine with heat treatment. J. Appl. Polym. Sci.2010; 118:685
    [19]Chu CY and Yu WD. Textile Physics. Donghua University Publishing Inc.,2009 Shanghai, China pp.331
    [20]Zhang H, Shao H and Xu X. Effect of heat treatment on the structure and properties of lyocell fibers. J. Appl. Polym. Sci.2006; 101:1738
    [21]Hermans PH. Physics and Chemistry of Cellulose fiber.1949 Elsevier, Amsterdam
    [22]Bullock RE. Strength ratios of composite materials in flexure and in tension. J. Compos. Mater.1974; 8:200
    [23]Whitney JM and Knight M. The relationship between tensile and flexure strength in fiber-reinforced composites. Exp. Mech.1980; 20:211
    [24]Wang YJ. Mechanical properties of stitched multiaxial fabric reinforced composites for manual layup process. Appl. Compos. Mater.2002; 9:397
    [1]Ragoubi M, Bienaime D, Molina S, George B and Merlin A. Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites. Ind. Crops. Prod.2010; 31:344
    [2]Zhou NT, Yu B, Sun J, Yao L and Qiu YP. Influence of chemical treatments on the interfacial properties of ramie fiber reinforced poly (lactic acid) (PLA) composites. J. Biobased Mater. Bioenergy.2012; 6:564
    [3]Liu LJ, Lao CY, Zhang N, Chen HQ, Deng Q Zhu C and Peng DX. The effect of new continuous harvest technology of ramie (Boehmeria nivea L. Gaud.) on fiber yield and quality. Ind. Crops. Prod.2013; 44:677
    [4]Martin N, Mouret N, Davies P and Baley C. Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind. Crops. Prod.2013; 49:755
    [5]Li Y, Moyo S, Ding Z, Shan Z and Qiu Y. Helium plasma treatment of ethanol-pretreated ramie fabrics for improving the mechanical properties of ramie/polypropylene composites. Ind. Crops. Prod.2013; In press DOI: 10.1016/j.indcrop.2013.09.028.
    [6]Masud SH, Lawrence TD and Manjusri M. A study on biocomposites from recycled newspaper fiber and poly (lactic acid). Ind. Eng. Chem. Res.2005; 44: 5593
    [7]Graupner N, Herrmann AS and Muessig J. Natural and man-made cellulose fibre-reinforced poly (lactic acid) (PLA) composite:an overview about mechanical characteristics and application areas. Compos. Part A:Appl. Sci.2009; 40:810
    [8]Khondker OA, Ishiaku US, Nakai A and Hamada H. A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos. Part A:Appl. Sci.2009; 37:2274
    [9]Cow BN, Dadkhah MS and Morris WL. On the tensile failure of 3D woven composites. Compos. Part A:Appl. Sci.1996; 27:447
    [10]Mohamed MH, Bogdanovich AE, Dickinson LC, Singletary JN and Lienhart RB. A new generation of 3D woven fabric preforms and composites. SAMPE J.2001; 37:8
    [11]Grogan J, Tekalur SA, Shukla A, Bogdanovich AE and Coffelt R.2007. Ballistic resistance of 2D and 3D woven sandwich composites. J. Sandwich. Struct. Mater. 2007; 9:283
    [12]Kuo WS and Fang J. Processing and characterization of 3D woven and braided thermoplastic composites. Compos. Sci. Technol.2000; 60:643
    [13]Lomov SV, Bogdanovich AE, Ivanov DS, Mungalow D, Karahan M and Verpoest I. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1:Materials, methods and principal results. Compos. Part A:Appl. Sci.2009; 40:1134
    [14]Qiu YP, Xu W, Wang YJ, Zikry MA and Mohamed MH. Fabrication and characterization of three-dimensional cellular-matrix composites reinforced with woven carbon fabric. Compos. Sci. Technol.2001; 61:2425
    [15]Wakemana MD, Zingraffa L, Bourbana PE, Mansona J-AE and Blanchard P. 2006. Stamp forming of carbon fibre/PA12 composites-A comparison of a reactive impregnation process and a commingled yarn system. Compos. Sci. Technol.2006; 66:19
    [16]Mader E, Rausch J and Schmidt N. Commingled yarns-Processing aspects and tailored surfaces of polypropylene/glass composites. Compos. Part A:Appl. Sci. 2008; 39:612
    [17]Huang G and Liu LY. Research on properties of thermoplastic composites reinforced by flax fabrics. Mater. Design.2008; 29:1075
    [18]Zhang L and Miao MH. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos. Sci. Technol.2010; 70: 130
    [19]Kanana TG, Wu MC and Cheng KB. Effect of different knitted structure on the mechanical properties and damage behavior of flax/PLA (Poly Lactic acid) double covered uncommingled yarn composites. Compos. Part B:Eng.2000; 43: 2836
    [20]Jiang JH and Chen NL.2012. Preforms and composites manufactured by novel flax/polypropylene cowrap spinning method. J. Compos. Mater.2012; 16:2097
    [21]Khondker OA, Ishiaku US, Nakai A and Hamada H. A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos. Part A:Appl. Sci.2006; 37:2274
    [22]Zou Y, Huda S and Yang YQ. Lightweight composites from long wheat straw and polypropylene web. Bioresource Technol.2010; 101:2026
    [23]Huda S and Yang YQ. A novel approach of manufacturing light-weight composites with polypropylene web and mechancially split cornhusk. Ind. Crop. Prod.2009; 30:17
    [24]Zou Y, Xu HL and Yang YQ. Lightweight polypropylene composites reinforced by long switch grass stems. J. Polym. Environ.2009; 18:464
    [25]Chen DK, Li J, Ren J. Study on sound absorption property of ramie fiber reinforced poly (L-lactic acid) composites:Morphology and properties. Compos. Part A:Appl. Sci.2010; 41:1012
    [26]Gu P.1994. Analysis of 3-D Woven Preforms and Their Composite Properties. Ph.D. Dissertation, North Carolina State University.
    [27]Madsen B and Lilholt H. Physical and mechanical properties of unidirectional plant fibre composites-an evaluation of the influence of void content. Compos. Sci.Technol.2003;63:1265
    [28]Oksman K, Mathew AP, Langstrom R, Nystrom B and Joseph K. The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos. Sci. Technol.2009; 69:1847
    [29]Beaumont, P.W.R., Reiwald, P.G., Zweben, C.,1974. Methods for improving the impact resistance of composite materials. ASTM Special Tech Public.568,134-158
    [30]Pegoretti A, Cristelli I and Migliaresi C. Experimental optimization of the impact energy absorption of epoxy-carbon laminates through controlled delamination. Compos. Sci. Technol.2008; 68:2653
    [31]Zhou NT, Yao L, Liang YZ, Yu B, Ye MQ, Shan ZD and Qiu YP. Improvement of mechanical properties of ramie/poly (lactic acid) (PLA) laminate d composites using a cyclic load pre-treatment method. Ind. Crop. Prod.2013; 45: 94
    [32]Wang YJ. Mechanical properties of stitched multiaxial fabric reinforced composites for manual layup process. Appl. Compos. Mater.2002; 9:81
    [33]Jiang S, Xu YY, Zhang HP, White CB and Yan X. Seven-hole hollow polyester fibers as reinforcement in sound absorption chlorinated polyethylene composite. Appl. Acoust.2012; 73:243
    [34]Fellah ZEA, Fellah M and Depollier C. Transient acoustic wave propagation in porous media in modeling and measurement methods for acoustic waves and for acoustic wicrodevices, Ed. by Beghi, M.G, InTech,2013; 127
    [35]Maa DY. Helmholtz resonator. Tech. Acoust.2002; 21:1
    [1]Chou TW and Ko FK. Textile Structural Composites, Composite Material Series Volume 3. New York:Elsevier Science Publisher B.V.1989
    [2]Mouritz AP, Bannister MK, PJ Falzon and Leong KH. Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A:Appl. Sci. 1999; 30:1445
    [3]Amato ED. Finite element modeling of textile composites. Comp. Struct.2001; 54:467.
    [4]Tan P, Tong L and Steven GP. Modeling approaches for 3D orthogonal woven composite. J. Reinf. Plast. Comp.1998; 17:545
    [5]Cox BN, Dadkhah MS, Morris WL and Flintoff JG. Failure mechanisms of 3D woven composites in tension, compression, and bending. Acta Metall.1994; 42: 3967
    [6]Lv LH and Gu BH. Transverse impact damage and energy absorption of three-dimensional orthogonal hybrid woven composite:Experimental and FEM simulation. J. Comp. Mater.2008; 42:1763
    [7]Sun BZ, Liu YK and Gu BH. A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite. Compos. Part B: Eng.2009; 40:552
    [8]Jin LM, Sun BZ and Gu BH. Finite element simulation of three-dimensional angle-interlock woven fabric undergoing ballistic impact. J. Text. I.2010; 102: 982.
    [9]Jia XW, Xia ZH and Gu BH. Micro/meso-scale damage analysis of three-dimensional orthogonal woven composites based on sub-repeating unit cells. J. Strain Anal. Eng.2012; 47:313
    [10]Mohmmed R, Zhang F, Sun BZ and Gu BH. Finite element analyses of low-velocity impact damage of foam sandwiched composites with different ply angles face sheets. Mater. Design 2012; 47:189
    [11]Yang G, Sun BZ and Gu BH. Large-scale finite element analysis of a 3D angle-interlock woven composite undergoing low-cyclic three-point bending fatigue. J. Text. Inst.2014; 105:275
    [12]孙晓强,魏高峰,刘国永.三维编织复合材料几何建模及弹性常数预测.山东轻工业学院学院报.2011;25:41
    [13]孙颖,李嘉禄,亢一澜.二步法三维编织复合材料弹性性能的有限元法预报.复合材料学报.2005;22:108
    [14]李典森,卢子兴,卢文书.三维四向编织复合材料弹性性能的有限元预报. 北京航空航天大学学报.2006;32:828
    [15]梁军.三维编织复合材料力学性能的细观研究.哈尔滨工业大学,1996
    [16]陈利.三维编织复合材料的细观结果及其弹性性能分析.天津纺织工学院,1998
    [17]Zhang CY. Characterization and modeling of 3D woven composite. North Carolina State University,2003
    [18]Bledzki AK and Gassan J. Composites reinforced with cellulose based fibers. Prog. Polym. Sci.1999; 24:221
    [19]La Mantia FP and Morreale M. Green composites:a brief review. Compos. Part A: Suppl.S.2011:42:579
    [20]Pan N. Development of a constitutive theory for short fiber yarns:mechanics of staple yarn without slippage effect. Text. Res. J.1992; 62:749
    [21]Wang WX, Luo DM and Takao Y. New solution method for homogenization analysis and its application to the prediction of macroscopic elastic constants of materials with periodic microstructures. Comp. Struct.2006; 84:991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700