用户名: 密码: 验证码:
聚合物涂层对等离子体处理有机纤维表面及复合材料界面性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能有机纤维,如对苯撑苯并二嗯唑(PBO)纤维、芳纶(如Twaron)纤维等,因其卓越的拉伸强度、模量、韧性和优异的耐高温、抗冲击等性能,受到了越来越多的关注。而高性能有机纤维增强热塑性树脂基复合材料则具有较高的断裂韧性、损伤容限、抗冲击性能以及良好的可加工性能。常应用于航空航天、国防军工等高技术领域。但是因为PBO纤维和Twaron纤维都具有表面光滑,缺少极性基团,表面化学惰性等特点,使得其很难与树脂基体产生优良的粘结,造成其增强含二氮杂萘结构聚醚砜酮(PPESK)树脂基复合材料的界面粘结强度很差,导致复合材料的力学性能不能充分发挥。因此,需要对芳纶和PBO纤维表面进行改性,以改变其表面化学性能和表面物理形貌,提高其表面浸润性能,最终有效地提高复合材料的界面粘结性能
     本文用射频感应耦合等离子体(ICP)对PBO和Twaron纤维进行表面处理,随即进行聚合物涂层处理,采用红外光谱(FTIR)、X-射线光电子能谱(XPS)、原子力显微镜(AFM)、扫描电子显微镜(SEM)及动态接触角测试(DCAA)等分析测试手段分析了经聚合物涂层处理前后纤维的表面化学性能、物理形貌以及表面浸润性的变化关系进行测试。采用层间剪切强度(ILSS)、吸湿率和SEM对复合材料的界面粘结强度、耐湿热性能和断面形貌进行分析,并探讨了改性后界面粘结强度改善的机制。
     论文以复合材料的ILSS为评价标准,通过正交试验法讨论了涂层液浓度及氧气等离子体放电参数对环氧树脂涂层改性PBO增强PPESK复合材料力学性能的影响。确定最佳工艺条件为:放电时间10min、放电功率为100W、放电气压为30Pa、涂层液浓度为3%。研究表明,涂层改性明显地改善了PBO纤维的表面性能、加大了表面粗糙度,提高了其表面自由能,有利于其与基体树脂的润湿。最终,复合材料的ILSS有了56.3%的提高,吸湿率降低了27.3%,材料的破坏模式也从界面脱粘转变为本体破坏。
     用氧气等离子体处理了PBO纤维表面,并用PEK-C和PES-C两种热塑性树脂对纤维进行涂层改性。XPS结果显示两种聚合物涂层处理后的PBO纤维表面氧元素含量升高,且引入了酯基、羰基或者砜基等活性基团。纤维的表面粗糙程度加大,表面自由能提高。PBO/PPESK复合材料的ILSS显著加大,其中PEK-C涂层处理后复合材料的ILSS增大了80.7%,复合材料的吸湿总量和吸湿速率都明显降低。热塑性树脂涂层可以与扩散的PPESK基体分子发生物理缠结作用产生了强大的粘结力,同时,涂层与纤维表面又有着强的化学作用,最终实现了复合材料界面性能的改善。
     本文使用氧气等离子体引发环氧树脂涂层对Twaron纤维的表面进行了改性,将经过相同等离子体处理条件下的纤维浸泡在不同浓度的涂层溶液中,发现1wt%的涂层溶液处理后的复合材料的ILSS值最高。涂层分子与纤维表面分子发生了化学键合,C-N基团含量降低、C=O等基团消失,同时出现了大量的C-O基团,这使得纤维表面的极性和反应活性增强,导致纤维的表面自由能提高。系统分析了不同放电时间和功率下,纤维的表观物理形貌和复合材料的界面粘结强度的变化。处理时间过长、放电功率过大都可能导致Twaron纤维表面刻蚀过重而导致复合材料界面粘结强度的下降。结果发现在放电功率为100W,放电时间为10min下,复合材料的ILSS值最高,且此时的吸湿率最低。
     论文系统研究了氩气等离子体引发环氧树脂涂层改性对Twaron纤维表面性能影响,及各种放电参数对材料界面性能的影响。大量C-O基团被引入到纤维的表面,改性后的纤维形貌更为复杂,一层树脂覆盖在纤维的表面。纤维的表面自由能由49.9mJ/m2提高到了61.8mJ/m2。不同放电时间和功率条件下,复合材料的ILSS不同,在100W、10min和30Pa下,ILSS达到66.2MPa,增幅达68.9%。经过等离子体处理后的纤维表面,在涂层改性过程中会有大量环氧树脂分子沉积在纤维表面,复合材料的制备过程中,PPESK分子扩散到环氧树脂层中,在模压高温下,环氧树脂发生固化,形成束缚层使得纤维不易在剪切力作用下发生滑移,因而有利于ILSS的提高。
High-performance organic fibers have got much more attentions, due to their excellent strength, modulus, toughness and outstanding resistance to high temperature and shock. The high-performance organic fiber reinforced thermoplastic composites were usually used in the areas of aerospace and modern national defense owing to the high fracture toughness, damage tolerance, impact resistance and good processability. However, the surfaces of Twaron fiber and poly (p-phenylene benzobisoxazole)(PBO) fiber are smooth, lack of polar groups and chemical inert. Thus, the interfacial adhesion is usually poor between the fiber and matrix, which restrict the mechanical properties of the composites. Therefore, surface modification of organic fiber is necessary, to improve the surface chemical properties and morphologies, to increase the surface free energy, and to enhance the interfacial adhesion of the composite.
     In this thesis, the PBO and Twaron fibers were treated by inductively coupled gas plasma (ICP) and immediately coated in the polymer solutions. The surface chemical properties, surface morphologies and the surface free energies of the fibers before and after coating were examined by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic contact angle analysis (DCAA). The interlaminar shear strength (ILSS), moisture absorption and SEM were selected to determine the interfacial adhesion strength, water absorption and the interlaminar shear fracture morphologies of the composites. The mechanisms of the enhancement of the interfacial adhesion by thermoset and thermoplastic coatings were discussed.
     Optimal treatment condition was obtained using the orthogonal design, which could be stated as:the concentration of the coating resin is3%, the plasma power is100W, the treatment time is10min and the discharge pressure is30Pa. Oxygen-plasma-induced coating could modify the surface properties of PBO fibers, roughen the fiber surface and increase the surface free energy. The ILSS was improved significantly, moisture absorption was lower than the untreated sample, and the fracture mode was changed from interface debonding to matrix fracture.
     To improve the interfacial adhesion of PBO/PPESK composite, thermoplastic resins were coated onto the fiber surface after oxygen plasma pretreatment. Phenolphthalein poly (ether ketone)(PEK-C) and phenolphthalein poly (ether sulfone)(PES-C) were selected to be the coating resins. The XPS results showed that after the two resins coated the concentration of oxygen was increased, and the O=C-O, C=O or O=S=O were introduced onto the fiber surface. The fiber surfaces were roughened and the surface wettabilities were improved. After coating, the primary failure mode of the composites was changed from interface debonding to matrix fracture. The enhancement of the interface may be attributed to the stronger molecular entanglement. The matrix molecules physically to entangle with or diffuse into the molecular network of polymer coatings applied on the fibers. Therefore, the interfacial adhesion was enhanced.
     Epoxy resin was selected to coat onto the surface of Twaron fibers induced by the oxygen plasma. The highest ILSS value was got when the concentration of epoxy resin was1wt%under the same plasma discharge condition. The concentration of C-N decreased, and the C=O group was disappeared; meanwhile the C-O group was appeared on the fiber surface with a concentration of22.4%. The polarity of the fiber surface was improved and the surface free energy was increased. Too long plasma treatment time and too high discharge power could damage the fiber body, which may lead to the damage of the interfacial adhesion of the fiber and matrix.
     Argon-plasma-induced epoxy resin coating onto the Twaron fiber surface in order to modify the fiber surface properties. C-O group was introduced onto the fiber and the morphologies of the fiber surface were much more complex after coating. A thin and inhomogeneous layer of coating resins had been deposited onto the fiber surface. The surface free energy was improved from49.9to61.8mJ/m2. The optimal treatment condition was that the plasma power was100W, the treatment time was10min and the discharge pressure was30Pa. The coating layer was nonuniform and most of the epoxy resins were still small molecules before compression molding. Hence, the PPESK molecules may dive into the epoxy coating layers during the solution impregnation. Therefore, the coating layer acted as a bridge between the fibers and the matrices. After compression modlding, the cured epoxy resin bounded the fibers to improve the ILSS.
引文
[1]吴人杰.复合材料[M].天津:天津大学出版社,2000.
    [2]益小苏,杜善义,张立同.复合材料手册[M].北京:化学工业出版社,2019.
    [3]黄发荣,周燕.先进树脂基复合材料[M].北京:化学工业出版社,2008.
    [4]王兴刚,于洋,李树茂,等.先进热塑性树脂基复合材料在航天航空上的应用[J].纤维复合材料,2011,44(2):44-47.
    [5]秦明.热塑性聚芳醚酮类树脂基复合材料的制备及连接技术研究[D].杭州:浙江大学,2004.
    [6]王静.芳纶纤维增强可溶性聚芳醚复合材料的制备技术、界面表征及性能研究[D].大连:大连理工大学,2009.
    [7]赵晓刚,冀克俭,邓卫华,等.高性能聚芳醚酮的发展及应用[J].工程塑料应用,2009,37(3):80-83.
    [8]Y L Huang, Robert J Young. Interfacial micromechanics in thermoplastic and thermosetting matrix carbon fibre composites[J]. Composites Part A,1996,27A:973-980.
    [9]T J Ahmed, D Stavrov, H E N Bersee, et al.Induction welding of thermoplastic comp osites-an overview [J]. Composites Part A,2006,37:1638-1651.
    [10]贾彩霞,空气DBD等离子体对芳纶纤维表面及其增强复合材料界面的改性研究[D].大连:大连理工大学,2012.
    [11]胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008.
    [12]陈平,陆春,于祺,等.连续纤维增强PPESK树脂基复合材料的界面性能[J].材料研究学报,2005,19(2):159-164.
    [13]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社,2003.
    [14]冯小明,张崇才.复合材料[M].重庆:重庆大学出版社,2007.
    [15]K E Perepelkin, N N Machalaba, V A Kvartskheliya. Properties of Armos Para-Aramid Fibres in Conditions of Use. Comparison with Other Para-Aramids[J]. Fibre Chemistry,2001, 33(2):105-114.
    [16]K E Perepelkin, I V Andreeva, E A Pakshver,et al. Thermal Characteristics of Para-Aramid Fibres[J]. Fibre Chemistry,2003,35(4):265-269.
    [17]袁海根,曾金芳,杨杰,等.芳纶表面改性研究进展[J].高科技纤维与应用,2005,30(2):26-33.
    [18]胡保全,牛晋川.先进复合材料[M].北京:国防工业出版社,2006.
    [19]J W S Hearle.高性能纤维[M].北京:中国纺织出版社,2004.
    [20]Wolfe J F, Loo B H, Arnold F E, et al. Synthesis and thermal.properties of para-aromatic polymers with 2,6-benzobisthiazole uniis in the main chain[J]. Macromolecules,1981,14(4): 915-920.
    [21]So Y-H. Rigid-rod polymers with enhanced lateral interactions[J]. Progress in Polymer Science,2000,25:137-157.
    [22]Bourbigot S, Flambard X. Heat resistance and flammability of high performance fibres:A review[J]. Fire and Materials,2002,26:155-168.
    [23]Holmes G. A, Rice K, Snyder C R. Review Ballistic fibers:A review of the thermal, ultraviolet and hydrolytic stability of the benzoxazole ring structure[J]. Journal of Ma terial Science,2006,41:4105-4116.
    [24]Katia T M, Silvia V R, Juan I P, et al. Surface characterization of PBO fibers[J]. M acromolecules,2003,36:8662-8672.
    [25]金宁人,黄银华,王学杰.超级纤维PBO的性能应用及研究进展[J].浙江工业大学学报,2003,31(1):82-87.
    [26]张敏.间氨基苯酚制备及产物分离工艺的研究[D].天津:天津理工大学,2008.
    [27]雷晖,冯东东,袁明祥,等.液晶高分子PBO单体和聚合物的合成[J].功能高分子学报,2003,16:120-126.
    [28]Kitagawa T.Murase H,Yabuki K.Morphological Study on Poly-p-phenylenebenzobisoxazole (PBO) Fiber[J]. Journal of Polymer Science:Part B:Polymer Physics,1998,36:39-48.
    [29]Kitagawa T, Yabuki K. A Relationship between the Stress Distribution and the Peak Profile Broadening of Meridional X-Ray Diffraction from Poly-p-phenylenebenzobisoxazole (PBO) Fiber[J]. Journal of Polymer Science:Part B:Polymer Physics,2000,38:2937-2942.
    [30]Kitagawa T, Ishitobi M, Yabuki K. An Analysis of Deformation Process on Poly-p-phenylenebenzobisoxazole Fiber and a Structural Study of the New High-Modulus Type PBO HM+Fiber[J]. Journal of Polymer Science:Part B:Polymer Physics,2000,38: 1605-1611.
    [31]Kitagawa T, Yabuki K. An Investigation into the Relationship Between Internal Stress Distribution and a Change of Poly-p-phenylenebenzobisoxazole (PBO) Fiber Structure[J]. Journal of Polymer Science:Part B:Polymer Physics,2000,38:2901-2911.
    [32]Kitagawa T, Tashiro K, Yabuki K. Stress Distribution in Poly-p-phenylenebenzobisoxazole (PBO) Fiber Estimated from Vibrational Spectroscopic Measurement under Tension. II. Analysis of Inhomogeneous Stress Distribution in PBO Fiber[J]. Journal of Polymer Science: Part B:Polymer Physics,2002,40:1281-1287.
    [33]Kitagawa T, Yabuki K, Young R J. An investigation into the relationship between processing, structure, and properties for high-modulus PBO fibers. II. Hysteresis of stress-induced Raman band shifts and peak broadening, and skin-core structure[J]. Journal of Macromolecular Science Part 8:Phvsics,2002,41(1):61-76.
    [34]Kitagawa T, Yabuki K, Youngb R J. An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres. Part 1. Raman band shifts and broadening in tension and compression[J]. Polymer,2001,42(5):2101-2112.
    [35]西鹏,高晶,李文刚,等.高技术纤维[M].北京:化学工业出版社,2004.
    [36]黑木忠雄,矢吹和之.PBO纤维“ザイロソ”的基本物性和应用[J].高科技纤维与应用,1998,23(5):36-39.
    [37]Bourbigot S, Flambarda X, Poutchb F. Study of the thermal degradation of high performance fibres-application to polybenzazole and p-aramid fibres[J]. Polymer Degradation and Stability,2001,74:283-290.
    [38]Bourbigot S, Flambard X, Duquesne S. Thermal degradation of poly(p-phenylenebenzobisoxazole) and poly(p-phenylenediamine terephthalamide) fibres [J]. Polymer International,2001,50:157-164.
    [39]Kuroki T, Tanaka Y, Hokudoh T, et al. Heat Resistance Properties of Poly(p-phenylen e-2,6-benzobisoxazole) Fiber[J]. Journal of Applied Polymer Science,1997,65:1031-1 036.
    [40]Holmes G A, Rice K, Snyder C R. Ballistic fibers:A review of the thermal, ultraviolet and hydrolytic stability of the benzoxazole ring structure[J]. Journal of Materials Science,2006, 41:4105-4116.
    [41]Bourbigot S, Flambard X. Heat Resistance and Flammability of High Performance Fibres:A Review[J]. Fire and materials,2002,26:155-168.
    [42]Walsh P J, Hu X, Cunniff P, et al. Environmental Effects on Poly-p-phenylenebenzobisoxazole Fibers. I. Mechanisms of Degradation[J]. Journal of Applied Polymer Science,2006,102:3517-3525.
    [43]王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺[M].北京:科学出版社,2004.
    [44]杨福生,赵延斌,吴靖.国外热塑性树脂基复合材料现状及发展趋势[J].吉林化工学院学报,2001,18(3):74-78.
    [45]蹇锡高,陈平,廖功雄等.含二氮杂荼酮结构新型聚芳醚系列高性能聚合物的合成与性能[J].高分子学报,2003(4):470-475.
    [46]X G Jian, Y Dai, L Zheng, et al. Application of poly(phthalazinone ether sulfone ketone)s to gas membrane separation[J]. Journal of Applied Polymer Science,1999,71(14):2385-2390.
    [47]阎庆玲,杂萘联苯型聚芳醚耐高温绝缘漆和涂料的研究[D].大连:大连理工大学,2006.
    [48]Lin L, Huang Y D, Zhang Z Q, et al. Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites[J]. Applied Surface Science,2008,254: 2594-2599.
    [49]Lin T K, Wu S J, Lai J G, et al. The effect of chemical treatment on reinforcement/matrix interaction in Kevlar-fiber/bismaleimide composites[J]. Composites Science and Technology, 2000,60:1873-1878.
    [50]Liu D D, Hu J, Zhao Y M, et al. Surface modification of PBO fibers by argon plasma and argon plasma combined with coupling agents[J]. Journal of Applied Polymer Science,2006, 102(2):1428-1435.
    [51]Tarantili P A, Anderopoulos A G. Mechanical properties of epoxies reinforced with chloride-treated aramid fibers[J]. Journal of Applied Polymer Science,1997,65:267-276.
    [52]张英东,王宜,胡健,等.PBO纤维表面改性技术研究进展[J].合成纤维工业,2004,27:37-39.
    [53]Kobashi K, Chen Z Y, Lomeda J, et al. Copolymer of single-walled carbon nanotubes and poly(p-phenylene benzobisoxazole)[J]. Chemistry of Materials,2007,19(2):291-300.
    [54]俞波.对位芳纶的生产和应用技术进展(Ⅲ)[J].合成技术及应用,2005,20(4):7.
    [55]Wu G M, Shyng Y T. Surface modification and interfacial adhesion of rigid rod PBO fibre by methanesulfonic acid treatment[J]. Composites Part A,2004,35:1291-1300.
    [56]Wu G M, C H Hung, J H You, et al. Surface Modification of Reinforcement Fibers for Composites by Acid Treatments[J]. Journal of Polymer Research,2004,11:31-36.
    [57]Wu G M, Shyng Y T. Effects of Basic Chemical Surface Treatment on PBO and PBO Fiber Reinforced Epoxy Composites[J]. Journal of Polymer Research,2005,12:93-102.
    [58]Luo K, Jin J, Yang S, et al. Improvement of surface wetting properties of poly(p-phenylene benzoxazole) by incorporation of ionic groups[J]. Materials Science and engineering B,2006, 132:59-63.
    [59]Zhang T, Hu D, Jin J, et al. Improvement of surface wettability and interfacial adhesion ability of poly(p-phenylene benzobisoxazole) (PBO) fiber by incorporation of 2,5-dihydroxyterephthalic acid (DHTA)[J]. European Polymer Journal,2009,45:302-307.
    [60]刘新东,丘哲明,王斌,等.PBO纤维表面分析与表面偶联剂处理[J].固体火箭技术,2002,25(2):70-73.
    [61]岳震南,黄英,王岩,等.纤维表面处理对PBO/环氧界面性能的影响[J].宇航材料工艺,2010(6):45-48.
    [62]王斌,金志浩,丘哲明,等.电晕处理对高性能PBO纤维的表面性能及其界面粘接性能的影响[J].复合材料学报,2003,20(4):101-105.
    [63]So C L, Young R J. Interfacial failure in poly(p-phenylene benzobisoxazole) (PBO)/epoxy single fibre pull-out specimens[J]. Composites:Part A,2001,32:445-455.
    [64]赵华侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [65]胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008.
    [66]Li R Z. Ye L, Mai Y-W. Application of plasma technologies in fibre-reinforced polymer composites:a review of recent developments [J]. Composites:Part A,1997,28A:73-86.
    [67]Cioffi M O H, Voorwald H J C, Hein L R O, et al. Effect of cold plasma treatment on mechanical properties of PET/PMMA composites[J]. Composites:Part A,2005,36:615-623.
    [68]Papakonstantinou D, Amanatides E, Mataras D, et al. Improved Surface Energy Analysis for Plasma Treated PET Films[J]. Plasma Process and Polymers,2007,4:S1057-S1062.
    [69]Hegemann D, Brunner H, Oehr C. Plasma treatment of polymers for surface and adhesion improvement[J]. Nuclear Instruments and Methods in Physics Research B,2003,208: 281-286.
    [70]Bhusari D, Hayden H, Tanikella R, et al. Plasma Treatment and Surface Analysis of Polyimide Films for Electroless Copper Buildup Process[J]. Journal of The Electrochemical Society,2005,152(10):F162-F170.
    [71]赵青,刘述章,童洪辉.等离子体技术及应用[M].北京:国防工业出版社,2009.
    [72]葛袁静,张广秋,陈强.等离子体科学技术及其在工业中的应用[M].北京:中国轻工业出版社,2011.
    [73]许根慧,姜恩永,盛京.等离子体技术与应用[M].北京:化学工业出版社,2006.
    [74]d'Agostino R, Favia P, Oehr C, et al. Low-Temperature Plasma Processing of Materials:Past, Present, and Future[JJ. Plasma Processes and Polymers,2005,2:7-15.
    [75]陈杰瑢,刘春叶,胡淼,等.低温等离子体技术在高分子材料工程领域中的应用[J].国外塑料,2005,23(11):68-72.
    [76]ckova A R, Kolska Z, Hnatowicz V, et al. Comparison of glow argon plasma-induced surface changes of thermoplastic polymers[J]. Nuclear Instruments and Methods in Physical Research Section B,2011,269:83-88.
    [77]Slepicka P, Vasina A, Kolska Z, et al. Argon plasma irradiation of polypropylene[J]. Nuclear Instruments and Methods in Physics Research B,2010,268:2111-2114.
    [78]Svorcik V, Kotal V, Slepicka P, et al. Modification of surface properties of polyethylene by Ar plasma discharge[J]. Nuclear Instruments and Methods in Physics Research B,2006,244: 365-372.
    [79]Chen W, Chen J R, Li R. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma[J]. Applied Surface Science,2008,254:2882-2888.
    [80]Park J-M, Kim D-S, Kim S-R. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability[J]. Journal of Colloid and Interface Science,2003,264:431-445.
    [81]Wu G M. Oxygen plasma treatment of high performance fibers for composites[J]. Materials Chemistry and Physics,2004,85:81-87.
    [82]Wu G M, Shyng Y T, Kung S F, et al. Oxygen plasma processing and improved interfacial adhesion in PBO fiber reinforced epoxy composites[J]. Vacuum,2009,83:S271-S274.
    [83]Wu G M, Chang C H. Modifications of rigid rod poly(1,4-phenylene-cis-benzobisoxazole) fibers by gas plasma treatments[J]. Vacuum,2007,81:1159-1163.
    [84]Chen P, Zhang C S, Zhang X Y, et al. Effects of oxygen plasma treatment power on surface properties of poly(p-phenylene benzobisoxazole) fibers[J]. Applied Surface Science,2008, 255:3153-3158.
    [85]Zhang C S, Chen P, Sun B L, et al. Surface analysis of oxygen plasma treated poly(p-phenylene benzobisoxazole) fibers[J]. Applied Surface Science,2008,254: 5776-5780.
    [86]Zhang C S, Chen P, Sun B L, et al. Influence of Oxygen Plasma Treatment on Interfacial Properties of Poly(p-phenylene benzobisoxazole) Fiber-reinforced poly (phthalazinone ether sulfone ketone) Composite [J]. Journal of Applied Polymer Science,2009,113:71-77.
    [87]张承双.氧气等离子体改性对PBO纤维表面及PBO/PPESK复合材料界面的影响[D].大连:大连理工大学,2009.
    [88]Tamargo-Martinez K, Martinez-Alonso A, Montes-Moran M A, et al. Effect of oxygen plasma treatment of PPTA and PBO fibers on the interfacial properties of single fiber/epoxy composites studied by Raman spectroscopy[J]. Composites Science and Technology,2011, 71(6):784-790.
    [89]Lorenzo-Villafranca E, Tamargo-Martinez K, Molina-Aldareguia J M, et al. Influence of Plasma Surface Treatments on Kink Band Formation in PBO Fibers During Compression[J]. Journal of Applied Polymer Science,2012,123:2052-2063.
    [90]Ma Y M, Castino F. Fracture toughness of Kevlar-epoxy composites with controlled interfacial bonding[J]. Journal of Material Science,1984,19:1638-1655.
    [91]Sugihara H, Jones F R. Promoting the Adhesion of High-Performance Polymer Fibers Using Functional Plasma Polymer Coatings[J]. Polymer Composites,2009,30:318-327.
    [92]李瑞华,曹海琳,黄玉东,等.PBO纤维表面等离子体接枝改性研究[J].材料科学与工艺,2003,11(4):396-398.
    [93]陈平,廖明义.高分子合成材料学[M].北京:化学工业出版社,2010.
    [94]陈祥宝.高性能树脂基体[M].北京:化学工业出版社,1998.
    [95]朱文苑,曾金芳,王斌.有机涂层在纤维增强聚合物基复合材料中的应用[J].热固性树脂,2008,23(4):55-60.
    [96]J H Zhong, L Qing, L Y Zheng, et al. Orthogonal experimental study on high frequency cascade thermoacoustic engine[J]. Energy Conversion and Management,2008,49: 1211-1217.
    [97]陈宇飞,郭艳宏,戴亚杰.聚合物基复合材料[M].北京:化学工业出版社,2010.
    [98]P Chen, C S Zhang, X Y Zhang, et al. Effects of oxygen plasma treatment power on surface properties of poly(p-phenylene benzobisoxazole) fibers. [J]. Applied Surface Science,2008, 255:3153-3158.
    [99]D Liu, P Chen, J J Mu, et al. Improvement and mechanism of interfacial adhesion in PBO fiber/bismaleimide composite by oxygen plasma treatment[J]. Applied Surface Science,2011, 257:6935-6940.
    [100]范金娟,程小全,陶春虎.聚合物基复合材料构件失效分析基础[M].北京:国防工业出版社,2011.
    [101]陈平,陈辉.先进聚合物基复合材料界面及纤维表面改性[M].北京:科学出版社,2010.
    [102]冼杏娟,李端义.复合材料破坏分析及微观图谱[M].北京:科学出版社,1993.
    [103]杨序纲.复合材料界面[M].北京:化学工业出版社,2010.
    [104]刘世宏.X射线光电子能谱分析[M].1988,科学出版社:北京.
    [105]K Q Luo, J H Jin, S L Yang, et al. Improvement of surface wetting properties of poly(p-phenylene benzoxazole) by incorporation of ionic groups[J]. Materials Science & Engineering B,2006,132:59-63.
    [106]C S Zhang, P Chen, D Liu, et al. Aging behavior of PBO fibers and PBO-fiber-reinforced PPESK composite after oxygen plasma treatment[J]. Journal of Applied Polymer Science, 2009,41:187-192.
    [107]Q Wang, P Chen, C X Jia, et al. Improvement of PBO fiber surface and PBO/PPESK composite interface properties with air DBD plasma treatment [J]. Surface and Interface Analysis,2012,44(5):548-553.
    [108]D Liu, P Chen, M X Chen, et al. Improved interfacial adhesion in PBO fiber/bismaleimide composite with oxygen plasma plus aging and humid resistance properties[J]. Materials Science and Engineering A,2012,532:78-83.
    [109]张万喜,徐俊,于亚莉,等.用XPS振起伴峰估算含酚酞侧基聚芳醚砜的辐射凝胶化剂量[J].化学通报,1991,3:40-41.
    [110]Wang C, Chen J-R. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation[J]. Applied Surface Science,2007,253:4599-4606.
    [111]Wong K K, Tao X M, Yuen C W M, et al. Low temperature plasma treatment of line[J]. Textile Research Journal,1999,69:846-855.
    [112]Park J-M, Kim D-S, Kong J-W, et al. Interfacial Adhesion and Microfailure Modes of Electrodeposited Carbon Fiber/Epoxy-PEI Composites by Microdroplet and Surface Wettability Tests[J]. Journal of Colloid and Interface Science,2002,249:62-77.
    [113]D A Dillard, A V Pocius. The mechanics of adhesion[M]. Amsterdam:Elsevier,2002.
    [114]吴其哗,张萍,杨文君,等.高分子物理学[M].北京:高等教育出版社,2011.
    [115]范欣愉.航空结构复合材料耐湿热老化研究[D].北京:北京航空航天大学,2002.
    [116]Collings T A, Copler S M. On the accelerated aging of CFRP[J]. Composites, 1983,14(3):180-188.
    [117]J Wang, P Chen, H Li, et al. Surface characteristic of poly(p-phenylene terephthalamide) fibers with oxygen plasma treatment[J]. Surface and Interface Analysis,2008,40: 1299-1303.
    [118]J Wang, P Chen, Wei Liu, et al. Surface Modification of Armos Fibers with Oxygen Plasma Treatment for Improving Interfacial Adhesion with Poly(phthalazinone ether sulfone ketone) Resin[J]. Journal of Applied Polymer Science,2011,121(5):2804-2811.
    [119]C X Jia, P Chen, W Liu, et al. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure[J]. Applied Surface Science,2011,257(9): 4165-4170.
    [120]Robert N Wenzel. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry,1936,28(8):988-914.
    [121]J Wang, P Chen, H Li, et al. Surface modification of Twaron aramid fibres by oxygen plasma treatment for improving interfacial adhesion with PPESK resin.[J]. Surface and Interface Analysis,2008,40:1299-1303.
    [122]C X Jia, P Chen, B Li, et al. Effects of Twaron Fiber Surface Treatment by Air DBD Plasma on the Interfacial Adhesion in Fiber Reinforced Composites.[J]. Surface & Coatings Technology,2010,204:3668-3675.
    [123]毛明.射频感应耦合等离子体源的动力学模拟及实验诊断[M].大连:大连理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700