用户名: 密码: 验证码:
铋氧基化合物纳米阵列的合成及其光电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在通过对铋氧基化合物晶体结构的分析,结合有益的形貌特征,设计合适的化学反应路线实现铋氧基化合物纳米阵列的可控合成,并考查所获得的铋氧基化合物纳米阵列的光电催化水分解的性能,结合多种化学修饰途径,对电极材料结构的物理模型与光电催化性能之间的形貌-性能相关性进行初步探讨。这对于实现功能纳米材料的人工设计合成及工业化应用具有十分重要的指导意义。本论文的主要内容包括以下几个方面:
     1.作者通过温和的无模板的水热方法,利用外延生长的原理,一步在ITO基底上制备了BiVO4纳米墙阵列,并且通过调整ITO基底的表面状态来实现疏密纳米墙阵列的可控制备。鉴于网状结构的BiVO4纳米墙阵列大量暴露具有高活性(010)晶面且具有单一取向,该阵列在可见光下表现了良好的光电催化性能。这一结果允分说明了设计合理的电极结构对于增强光电催化性能具有显著的作用。
     2.在前一工作的基础上,作者将异质外延和表面修饰相结合,合成了Co-Pi/BiVO4纳米墙阵列结构,得到了明显增强的吸收光子的利用效率。异质外延的单晶结构可以作为一个典型的范例,有助于加深对BiVO4这个物质中电荷的体相复合过程的理解,表面修饰的过程也有助于理解电荷表面复合情况。使用H202作为空穴牺牲剂,作者定量分析了界面电荷转移效率和体相电荷传导效率。这种设计和定量分析方式首次实现了利用异质外延和表面修饰的协同作用去增强光电催化性能及其效果的定量评价,从而为将来更好的设计和评估其他电极材料提供一定的参考价值。
     3.在第一章工作的基础上,作者发现纳米墙阵列可以作为一种有效的光电催化光电极的物理结构,但还存在着光吸收不足的情况。因此,基于基本的物理原则,我们以Bi2WO6为模型材料,首次将交替介电结构单元引入纳米墙骨架中。我们发现引入交替介电结构单元这一设想的实现明显增强了光子-电子转化效率。这种新型的纳米墙阵列结构的优势拓展了纳米墙阵列的应用范围,也促使我们利用类似的方式去设计更多可能具有高效的光电催化性能的光电极结构的物理模型。
     4.在前几章的工作基础上,作者清楚认识到,设计合理的电极结构对于提高电极对太阳能转换效率的重要性。因此,我们有必要寻找一种可控的,组分可调的普适性方法,针对材料的特点,更有目的性地设计电极结构。在本章工作中,我们通过BiVO4结构的针对性分析,利用胶体晶体模板法,制备了不同掺杂程度的三维有序的大孔-介孔Mo:BiVO4阵列结构,并观察了其增强的光电催化性能。这种结合化学修饰和针对性的结构调控相结合的方法为今后光电极的设计具有一定的引导和借鉴作用。
The goal of this dissertation is to explore the controllable fabrication of bismuth oxide based array structures with favorable morphologies by understanding the crystal structural characteristics of the target products and developing novel chemical reaction routes. On the basis of the unique morphology and various chemical modifications, application of these bismuth oxide based array structures has been further developed as active anode materials for photoelectrochemical water splitting, and the corresponding morphology-property relationships have been also investigated in this dissertation. The details are summarized briefly as follows:
     1. We successfully fabricated vertically aligned BiVO4nanowall array supported on ITO glass through a facile hydrothermal method. The growth of BiVO4nanowall began with heteroepitaxy and underwent a ripening process to form an extended network, resulting in c-orientation and exposing (010) facets. The integrated photoelectrodes showed superior photoelectrochemical performances under visibe light, indicating the importance of rationally designed physical models for photoelectrodes.
     2. We developed an available pathway to accomplish the fabrication of BiVO4nanowall arrays decorated with surface-attached catalysts (Co-Pi). Co-Pi/BiVO4nanowall arrays were introduced as active anode materials for photoelectrochemical water splitting. Quantitative assessment on independent effects of heteroepitaxy and surface modification for suppressing bulk and surface recombination further elucidate the mechanism of the superior absorbed photon-to-electron conversion efficiency. Applying the synergistic effects of growth adjustment and surface modification into other candidate photoelectrodes exhibits a promising avenue to realize ameliorated solar conversion efficiency.
     3. In order to ease the problems of light harvesting in nanowall arrays, we introduced alternate dielectric component into nanowall skeleton. Their photoelectrochemical performances were investigated as anode materials for solar water splitting. This rational design further expands the application of nanowall arrays in this research area.
     4. We introduced a controllable colloidal crystal template method to realize the design of three-dimensional ordered macro-mesoporous Mo:BiV04for the first time. All the observed photoelectrochemical performances highlight the great significance of such an array as a promising photoelectrode model for application in solar conversion and the synergistic improvements of chemical modification and a purpose-designed photoelectrode structure.
引文
[I]A. Fujishima, K. Honda, Nature 1972,238,37.
    [2]W. H. Brattain, C. G. B. Garrett, Bell Syst. Tech. J.1995,34,129-176
    [3]H. Gerischer, J. Electrochem. Soc.1966,113,1174.
    [4]K. Kalyanasundaram, Solar Cells 1985,15,93.
    [5]A. J. Bard, J. Photochem.1979,10,59.
    [6]A. J. Bard, Science 1980,207,139.
    [7]A. J. Bard, J. Phys. Chem.1982,86,172.
    [8]B. O'Regan, M. Gratzel, Nature 1991,353,737
    [9]Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin, M. Gratzel, Nat Mater 2008,7,626.
    [10]M. Gratzel, Nature 2001,414,338.
    [11]J. Sun, D. K. Zhong, D. R. Gamelin, Energy Environ. Sci.2010,3,1252.
    [12]H. B. Gray, Nat Chem 2009,1,7.
    [13]N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A.,2006,103,15729.
    [14]Y. Lin, G. Yuan, S. Sheehan, S. Zhou, D. Wang, Energy Environ. Sci.2011,4,4862.
    [15]Y. Lin, G. Yuan, R. Liu, S. Zhou, S. W. Sheehan, D. Wang, Chem. Phys. Lett.2011,507,209.
    [16]M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev.2010,110,6446.
    [17]http://rredc.nrel.gov/solar/spectra/am 1.5/
    [18]A. Kubacka, M. Fernandez-Garcia, G. Colon, Chem. Rev.2011,112,1555.
    [19]X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011,331,746.
    [20]K. Sivula, F. Le Formal, M. Gratzel, Chem.Sus.Chem.2011,4,432.
    [21]K. L. Hardee and A. J. Bard, J. Electrochem. Soc.,1976,123,1024.
    [22]Y. Qiu, K. Yan, H. Deng, S. Yang, Nano Lett.2012,12,407.
    [23]A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, J. Z. Zhang, Adv. Funct. Mater.2009,19, 1849.
    [24]J. Su, X. Feng, J. D. Sloppy, L. Guo, C. A. Grimes, Nano Lett.2010,11,203.
    [25]R. Liu, Y. Lin, L.-Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. M. Hou, D. Wang, Angew. Chem. Int. Ed.2011,50,499.
    [26]X. Lu, D. Zheng, P. Zhang, C. Liang, P. Liu, Y. Tong, Chem. Commun.2010,46,7721.
    [27]A. Kudo, Y. Miseki, Chem.Soc.Rev.2009,38,253.
    [28]A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen,Nat Mater 2011,10,456.
    [29]T. Kako, Z. Zou, M. Katagiri, J. Ye, Chem. Mater.2006,19,198.
    [30]J. Tang, Z. Zou, J. Ye, J. Phys. Chem. C 2007,111,12779.
    [31]D. E. Cox, A. W. Sleight, Solid State Commun.1976,19,969.
    [32]Y. Yang, Z. Cao, Y. Jiang, L. Liu, Y. Sun, Mater. Sci. Eng., B 2006,132,311.
    [33]Y. Yang, Y. Sun, Y. Jiang, Mater. Chem. Phys.2006,96,234.
    [34]S. Li, L. Jing, W. Fu, L. Yang, B. Xin, H. Fu, Mater. Res. Bull.2007,42,203.
    [35]U. A. Joshi, J. S. Jang, P. H. Borse, J. S. Lee, Appl. Phys. Lett.2008,92,242106.
    [36]C. Le Paven-Thivet, A. Ishikawa, A. Ziani, L. Le Gendre, M. Yoshida, J. Kubota, F. Tessier. K. Domen, J. Phys. Chem. C 2009,113,6156.
    [37]K.Domen, J.N. Kondo, M.Hara, T.Takata, Bull. Chem. Soc.pn.2000,73,1307.
    [38]K. Domen, J. Yoshimura, T. Sekine, A. Tanaka, T. Onishi, Catal. Lett.1990,4,339.
    [39]T. Takata, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, Catal. Today 1998,44,17.
    [40]T. Takata, K. Domen, et al. Chem. Mater.1997,9,1063.
    [41]J. Gopalakrishnan, V. Bhat, Inorg. Chem.1987,26,4299.
    [42]S. Uma, A. R. Raju, J. Gopalakrishnan, J. Mater. Chem.1993,3,709.
    [43]J. Gopalakrishnan, Chem. Mater.1995,7,1265.
    [44]L. Zhang, C. Baumanis, L. Robben, T. Kandiel, D. Bahnemann,Small 2011,7,2714.
    [45]X. Zhao, Y. Wu, W. Yao, Y. Zhu, Thin Solid Films 2007,515,4753.
    [46]J. M. Saul, C. H. K. Wang, C. P. Ng, S. H. Pun, Adv. Mater.2008,20,19.
    [47]L. Zhou, W. Wang, et al. J. Mol. Catal. A:Chem.2007,268,195.
    [48]Y. Man, R. Zong, Y. Zhu, Acta Physico-Chimica Sinica 2007,23,1671.
    [49]M. Long, W. Cai, H. Kisch, Chem. Phys. Lett.2008,461,102.
    [50]L. Zhou, M.Yu, J.Yang, Y.Wang, C.Yu, J. Phys. Chem. C 2010,114,18812.
    [51]L. Zhang, Y. Man, Y. Zhu, ACS Catal.2011,1,841.
    [52]J. Jiang, K. Zhao, X. Xiao, L. Zhang, J. Am. Chem. Soc.2012,134,4473.
    [53]X. Lin, T. Huang, F. Huang, W. Wang, J. Shi, J. Phys. Chem.B 2006,110,24629.
    [54]X. Lin, Z. Shan, K. Li, W. Wang, J. Yang, F. Huang, Solid State Science 2007.9,944.
    [55]Z. Shan, W. Wang, X. Lin, H. Ding, F. Huang, J. Solid State Chem.2008,181,1361.
    [56]H. An, Y. Du, T. Wang, C. Wang, W. Hao, J. Zhang, Rare Met.2008,27,243.
    [57]Y. Wang, K. Deng, L. Zhang, J. Phys. Chem. C 2011,115,14300.
    [58]M. Iwamoto, T. Abe, Y. Tachibana, J. Mol. Catal.2000,155,143.
    [59]M. Zhou, S. Zhang, Y. Sun, C. Wu, M. Wang, Y. Xie, Chem. Asian J.2010,5,2515.
    [60]E. Zintl, L. Varino, DRP Patent 422 947,1925
    [61]K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe, H. Arakawa, Chem. Comm.2003,2908.
    [62]J. Ghamri, H. Baussart, M. I. Bras, J.-M. Leroy, J. Leroy, J. Phys. Chem. Solids 1989,50, 1237.
    [63]A. Kudo, K. Omori, H, Kato, J. Am. Chem. Soc.1999,121,11459.
    [64]Y. Liang, T. Tsubota, L. P. A. Mooij, R. van de Krol, J. Phys. Chem. C 2011,115,17594.
    [65]H. Kadowaki, N. Saito, H. Nishiyama, H. Kobayashi, Y. Shimodaira, Y. Inoue, J. Phys. Chem C 2006,111,439.
    [66]N. Arai, N. Saito, H. Nishiyama, Y. Shimodaira, H. Kobayashi, Y. Inoue, K. Sato, J. Phys. Chem. C 2008,112,5000.
    [67]M. A. Subramanian, G. Aravamudan, G. V. Subba Rao, Prog.Solid State Chem.1983,15,55.
    [68]J. Tang, Z. Zou, J. Yin, J. Ye, Chem. Phys. Lett.2003,382,175.
    [69]J. Tang, Z. Zou, M. Katagiri, T. Kako, J. Ye, Catal. Today 2004,93-95,885.
    [70]J. Tang, Z. Zou, J. Ye, Angew. Chem., Int. Ed.2004,43,4463.
    [71]J. Tang. Z. Zou, J. Ye, Chem. Mater.2004,16,1644.
    [72]R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martinez-Garcia, A. Segura, Europhys. Lett.2008, 83,37002.
    [73]J. E. Yourey, B. M. Bartlett, J. Mater. Chem.2011,21,7651.
    [74]I. Puspitasari, T. P. Gujar, K.-D. Jung, O.-S. Joo, J. Mater. Process. Technol.2008,201,775.
    [75]A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, A. D. Hunter, Chem. Mater.2010,22,5084.
    [76]J.-J. Wu, W.-T. Jiang, W.-P. Liao, Chem. Commun.2010,46,5885.
    [77]G. Ma, T. Minegishi, D. Yokoyama, J. Kubota, K. Domen, Chem. Phys.Lett.2011,501,619.
    [78]K. Hagedorn, S. Collins, S. Maldonado, J.Electrochem. Soc.2010,157, D588.
    [79]V. Chakrapani, J. Thangala, M. K. Sunkara, Int. J. Hydrogen Energy 2009,34,9050.
    [80]X. Feng, T. J. LaTempa, J.I. Basham, G. K. Mor, O. K. Varghese, C. A. Grimes, Nano Lett. 2010,10,948.
    [81]S. Banerjee, S. K. Mohapatra, M. Misra, Chem. Commun.2009,7137.
    [82]K. Maeda, M. Higashi, B. Siritanaratkul, R. Abe, K. Domen, J. Am. Chem. Soc.2011,133, 12334.
    [83]D. Yamasita, T. Takata, M. Hara, J. N. Kondo, K. Domen, Solid State Ionics 2004,172,591.
    [84]M. Liu, K. Domen, et al Chem.Commun.2004,2192.
    [85]A. Ishikawa, Y. Yamada, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Chem. Mater.2003,15,4442.
    [86]A. Ishikawa, T. Takata, T. Matsumura, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Phys. Chem. B 2004,108,2637.
    [87]K. Ogisu, A. Ishikawa, K. Teramura, K. Toda, M. Hara and K. Domen, Chem. Lett.,2007,36. 854.
    [88]F. Amano, A. Yamakata, K. Nogami, M. Osawa, B. Ohtani, J. Am. Chem. Soc.2008,130, 17650.
    [89]Y. Lee, K. Nukumizu, T.Watanabe, T. Takata, M. Hara, M.Yoshimura, K.Domen, Chem. Lett. 2006,35,352.
    [90]K. Maeda, N. Saito, Y. Inoue, K. Domen, Chem. Mater.2007,19,4092.
    [91]Y. Lee, T. Watanabe, T. Takata, M. Hara, M. Yoshimura, K. Domen, J. Phys. Chem. B 2006. 110,17563.
    [92]J. S. Jang, S. H. Choi, N. Shin, C. Yu, J. S. Lee, J. Solid State Chem.2007,180,1110.
    [93]Y. Li, J. Du, S. Peng, D. Xie, G. Lu, S. Li, Int. J. Hydrogen Energy 2008,33,2007.
    [94]M. Muruganandham, Y. Kusumoto, C. Okamoto, A. Muruganandham, M. Abdulla-AI Mamun, B. Ahmmad, J. Phys. Chem.C 2009,113,19506.
    [95]T. Tatsuma, S.-i. Tachibana, T. Miwa, D. A. Tryk, A. Fujishima, J. Phys. Chem. B 1999,103, 8033.
    [96]Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, D. Wang, J. Am. Chem. Soc 2012,134,5508.
    [97]Y. Cho, W. Choi, C.-H. Lee, T. Hyeon, H.-I. Lee, Environ. Sci. Technol.2001,35,966.
    [98]W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, Z. Zou, Energy Environ. Sci.2011,4,4046.
    [99]J.A. Seabold, K.-S. Choi,J. Am. Chem. Soc 2012,134,2186.
    [100]Y. Lee, T.Watanabe, T. Takata, M. Hara, M.Yoshimura, K. Domen, Bull. Chem. Soc. Jpn. 2007,80,423
    [101]C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A.1. Y. Tok, H. J. Fan, Small 2012,8,37.
    [102]M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, J. Phys. Chem. B 2006,110,20211.
    [103]J. Su, L. Guo, N. Bao, C. A. Grimes, Nano Lett.2011,11,1928.
    [104]C. X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D. A. Wheeler, J. Z. Zhang, B. R. Antoun, S. S. Mao, Energy Environ. Sci.2011.4,3889
    [105]Y. Lin, S. Zhou, S. W. Sheehan, D. Wang, J. Am. Chem. Soc 2011,133,2398.
    [106]F. Le Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Gratzel, K. Sivula, Chem. Sci.2011. 2,737.
    [107]T. K. Townsend, E. M. Sabio, N. D. Browning, F. E. Osterloh, Energy Environ.Sci.2011. 4,4270.
    [108]K.-S. Choi, J. Phys. Chem. L 2010,1,2244.
    [109]G. Xi, J. Ye, Chem. Commun.2010,46,1893.
    [110]S. Shen, L. Zhao, L. Guo, Mater. Res. Bull.2009,44,100.
    [111]L. Li, Y. Yu, F. Meng, Y. Tan, R. J. Hamers, S. Jin, Nano Lett.2012,12,724.
    [112]J. M. Foley, M. J. Price, J.1. Feldblyum, S. Maldonado, Energy Environ. Sci.2012, 5,5203.
    [113]Y. Wang, P. M. Ajayan, et al. ACS Nano 2008,2,1492.
    [114]A. Stein, N. R. Denny, et al Chem. Mater.2007,20,649.
    [115]X. Chen, J. Ye, S. Ouyang, T. Kako, Z. Li, Z. Zou, ACS Nano 2011,5,4310.
    [116]H. Gao, C. Liu, H. E. Jeong, P. Yang, ACS Nano 2011,6,234.
    [117]H. Jun, B. Im, J. Y. Kim, Y.-O. Im, J.-W. Jang, E. S. Kim, J. Y. Kim, H. J. Kang, S. J. Hong, J. S. Lee, Energy Environ. Sci.2012, 5,6375.
    [1]Z.Y. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, A. Javey, Nat. Mater.2009,8,648.
    [2]A. Linsebigler, C. Rusu, J. T. Yates, J. Am. Chem. Soc.1996,118,5284.
    [3]D. C. Sayle, S. A. Maicaneanu, G. W. Watson, J. Am. Chem. Soc.2002,124,11429.
    [4]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Nature 2008,453,638.
    [5]J. P. Liu, X. T. Huang, Y. Y. Li, K. M. Sulieman, X. He, F. L. Sun, J. Mater. Chem.2006,16, 4427.
    [6]B. Varghese, M. V. Reddy, Y. W. Zhu, C. S. Lit, T. C. Hoong, G. V. S. Rao, B. V. R. Chowdari, A. T. S. Wee, C. T. Lim, C.-H. Sow, Chem. Mater.2008,20,3360.
    [7]D. Liu, B. B. Garcia, Q. F. Zhang, Q. Guo, Y. H. Zhang, S. Sepehri, G. Z.Cao, Adv. Funct. Mater 2009,19,1015.
    [8]A. Fujishima and K. Honda, Nature 1972,238,37.
    [9]O. Khaselev, and J. A. Turner, Science 1998,280,425.
    [10]C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, J. Am. Chem. Soc.2001,123, 10639.
    [11]S. Khan. M. Al-Shahry, W. B. Jr. Inglet, Science 2002,297,2243.
    [12]F. E. Osterloh, Chem. Mater.2007,20,35.
    [13]K. Maeda, K. Domen, J. Phys. Chem. C 2007,111,7851.
    [14]R. v. d. Krol, Y. Liang, J. Schoonman J. Mater. Chem.2008,18,2311.
    [15]P. Dennis, Jr. Butcher, A. G. Andrew, Chem. Mater.2010,22,2555.
    [16]A. R. Lim, S. H. Choh, M. S. Jang, J. Phys.:Condens. Matter 1995,7,7309.
    [17]J. D. Bierlein, A. W. Sleight, Solid State Commun.1975,16,69.
    [18]S. Tokunaga, H. Kato, A. Kudo, Chem. Mater.2001,13,4624.
    [19]J. Ghamri, H. Baussart, M. Bras, J. Leroy, J. Phys. Chem. Solids 1989,50,1237.
    [20]A. Kudo and H. Kato, J. Am. Chem. Soc.1999,121,11459.
    [21]K. Sayama, A. Nomura, Z. G. Zou, R. Abe, Y. Abeb, H. Arakawa, Chem. Commun.2003, 2908.
    [22]L, Zhang, D. R. Chen and X. L. Jiao, J. Phys. Chem. B 2006,110,2668.
    [23]Y. H. Wu, B. J. Yang, Nano Lett.2002,2,355.
    [24]B. J. Yang, Y. H. Wu, B. Y. Zong, Z. X. Shen Nano Lett.2002,2,751.
    [25]F. K. Lotgering, J. Inorg. Nucl. Chem.1959,9,113.
    [26]Y. Zhao, Y. Xie, X. Zhu, S. Yan, S. X. Wang, Chem. Eur. J.2008,14,1601.
    [27]Y. F. Sun, Y. Xie, C. Z. Wu, R. Long, Crystal Growth & Design 2010,10,602.
    [28]D. N. Ke, T. Y. Peng, L. Ma, P. Cai, K. Dai, Inor. Chem.2009,48,4685.
    [29]A. C. J. Palmstrum Rev. Mater. Sci.1995,25,389.
    [30]M. Kamei, Y. Shigesato, S. Takaki, Thin Solid Film 1995,259,38.
    [31]T, Kambayashi, H. Ohta, H. Hoshi, M. Hirano, H. Hosono, H. Takezoe, K. Ishikawa, Crystal Growth & Design 2005,5,143.
    [32]X. H. Liu, M. T. Mayer, D. W. Wang, Angew. Chem. Int. Ed.2010,49,3165.
    [33]L. W. Zhang, Y. J. Wang, H. Y. Cheng, W. Q. Yao, Y. F. Zhu, Adv. Mater.2008,20,1286.
    [34]P. L. Taberna, S. Mitra, P. Poizot, P. Simon and J.M. Tarscon, Nat. Mater.2006,5,567.
    [35]C. K. Chan, Y. Cui, et al. Nat. Nanotech.2008,3,31.
    [1]A. Fujishima, K. Honda, Nature 1972,238,37.
    [2]M. Gratzel, Nature 2001,414,338.
    [3]A. J. Bard, M. A. Fox, Acc.Chem. Res.1995,28,141.
    [4]A. Kudo, Y. Miseki, Chem. Soc. Rev.2009,38,253.
    [5]A. I. Hochbaum, P. Yang, Chem. Rev.2009,110,527.
    [6]N. S. Lewis, Inor. Chem.2005,44,6900.
    [7]M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis. Chem. Rev.2010,110,6446.
    [8]C. Y. Cummings, F. Marken, L. M. Peter, K. G. Upul Wijayantha, A. A. Tahir, J. Am. Chem. Soc.2011,134,1228.
    [9]G. Yuan, H. Zhao, X. Liu, Z. S. Hasanali, Y. Zou, A. Levine, D. Wang, Angew. Chem. Int. Ed. 2009,48,9680.
    [10]B. Liu, K. Nakata, X. Zhao, T. Ochiai, T. Murakami, A. Fujishima, J Phys. Chem. C 2011. 115,16037.
    [11]H. Gao, C. Liu, H. E. Jeong, P. Yang,ACS Nano 2011,6,234.
    [12]A. G. Joly, J. R. Williams, S. A. Chambers, G. Xiong, W. P. Hess, D. M. Laman, J.App. Phys. 2006,99,053521.
    [13]M. W. Kanan, D. G. Nocera, Science 2008,321,1072.
    [14]D. K. Zhong, M. Cornuz, K. Sivula, M. Gratzel, D. R. Gamelin, Energy Environ. Sci.2011,4, 1759.
    [15]D. K, Zhong, J. Sun, H. Inumaru, D. R. Gamelin, J. Am. Chem. Soc.2009,131,6086.
    [16]D. K. Zhong, D. R. Gamelin, J. Am. Chem. Soc.2010,132,4202.
    [17]K. J. McDonald, K.-S. Choi, Chem. Mater.2011,23,1686.
    [18]M. Barroso, A. J. Cowan, S. R. Pendlebury, M. Gratzel, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc.2011,133,14868.
    [19]E. M. P. Steinmiller, K.-S. Choi, Proc. Natl. Acad. Sci. U. S. A.2009,106,20633.
    [20]J. A. Seabold, K.-S. Choi, Chem. Mater.2011,23,1105.
    [21]J. J. H. Pijpers, M. T. Winkler, Y. Surendranath, T. Buonassisi, D. G. Nocera, Proc. Natl. Acad. Sci. U. S.A.2011.108,10056
    [22]E. R. Young, R. Costi, S. Paydavosi, D. G. Nocera, V. Bulovic, Energy Environ. Sci.2011,4. 2058.
    [23]D. K. Zhong, S. Choi, D. R. Gamelin, J. Am. Chem. Soc.2011,133,18370.
    [24]S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner, A. M. Herring, Energy Environ. Sci.2011,4,5028.
    [25]M. Zhou, S. Zhang, Y. Sun, C. Wu, M. Wang, Y. Xie, Chem. Asian J.2010,5,2515.
    [26]C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, N. R. Armstrong, Langmuir 2001,18,450.
    [27]C. Carter, M. Brumbach, C. Donley, R. D. Hreha, S. R. Marder, B. Domercq, S. Yoo, B. Kippelen, N. R. Armstrong, J. Phys. Chem. B 2006,110,25191.
    [28]N. R. Armstrong, C. Carter, C. Donley, A. Simmonds, P. Lee, M. Brumbach, B. Kippelen, B. Domercq, S. Yoo, Thin Solid Films 2003,445,342.
    [29]M. W. Kanan, Y. Surendranath, D. G. Nocera, Chem. Soc. Rev.2009,38,109.
    [30]Y. Surendranath, M. Dinca, D. G. Nocera, J. Am. Chem. Soc.2009,131,2615.
    [31]T. H. Jeon, W. Choi, H. Park, Phys. Chem. Chem. Phys.2011,13,21392.
    [32]J. M. Foley, M. J. Price, J. I. Feldblyum, S. Maldonado, Energy Environ. Sci.2012,5,5203.
    [33]K. Sivula, F, Le Formal, M. Gratzel, Chem. Sus. Chem 2011,4,432.
    [34]A. Kudo, Y. Miseki, Chem. Soc. Rev.2009,38,253.
    [35]H. Ye, J. Lee, J. S. Jang, A. J. Bard, J. Phys. Chem. C 2010,114,13322.
    [36]H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc.2007,129, 8406.
    [37]S. D. Tilley, M. Cornuz, K. Sivula, M. Gratzel, Angew. Chem.2010,122,6549.
    [38]L. Li, Y. Yu, F. Meng, Y. Tan, R. J. Hamers, S. Jin, Nano Lett.2012,12,724.
    [39]P. Salvador, J. App. Phys.1984,55,2977.
    [40]L. M. Peter, Chem. Rev.1990,90,753.
    [41]B. M. Klahr, A. B. F. Martinson, T. W. Hamann, Langmuir 2010,27,461.
    [42]K. Hagedorn, C. Forgacs, S. Collins, S. Maldonado, J. Phys. Chem. C 2010,114,12010.
    [43]M. L. Rosenbluth, C. M. Lieber, N. S. Lewis, App. Phys. Lett.1984,45,423.
    [44]N. S. Lewis, J..Electro. Soc.1984,131,2496.
    [45]L. H. Jimison, M. F. Toney, I. McCulloch, M. Heeney, A. Salleo, Adv. Mater.2009,21,1568.
    [46]Y. H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. L 2010,1,2607.
    [47]Y.-S.Hu, A. Kleiman-Shwarsctein, G. D. Stucky, E. W. McFarland, Chem. Commun.2009, 2652.
    [48]E. Gao, W. Wang, M. Shang, J. Xu, Phys. Chem. Chem. Phys.2011,13,2887.
    [49]Y. Lin, S. Zhou, X. Liu, S. Sheehan, D. Wang, J. Am. Chem. Soc.2009,131,2772.
    [50]Y. Lin, S. Zhou, S. W. Sheehan, D. Wang, J. Am. Chem. Soc.2011,133,2398.
    [51]R. Liu, Y. Lin, L.-Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. M. Hou, D. Wang, Angew. Chem. Int. Ed.2011, 50,499.
    [52]M. A. White, A. L. Weaver, R. m. Beaulac, D. R. Gamelin.ACS Nano 2011,5,4158.
    [53]W. J. Jo, J.-W. Jang, K.-j. Kong, H. J. Kang, J. Y. Kim, H. Jun, K. P. S. Parmar, J. S. Lee. Angew. Chem. Int. Ed.2012,51,3147.
    [54]K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, P. V. Braun, Adv. Mater.2010,22,1084.
    [55]M. Zhou, J. Bao, M. Tao, R. Zhu, Y. Zeng, Z. Wei, Y. Xie, Chem. Commun.2012,48,3439.
    [56]C. X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D. A. Wheeler, J. Z. Zhang, B. R. Antoun, S. S. Mao, Energy Environ. Sci.2011,4,3889.
    [1]Z. Fan, H. Razavi, J.-w. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, A. Javey, Nat. Mater.2009, 8,648.
    [2]A. Fujishima, K. Honda, Nature 1972,238,37.
    [3]J. A. Turner, Science 1999,285,687.
    [4]M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev.2010,110,6446.
    [5]X. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev.2010,110,6503.
    [6]S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002,297,2243.
    [7]A. Kudo, Y. Miseki, Chem.Soc.Rev.2009,38,253.
    [8]C. X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D. A. Wheeler, J. Z. Zhang, B. R. Antoun, S. S. Mao. Energy Environ. Sci.2011,4,3889.
    [9]J. Sun, D. K. Zhong, D. R. Gamelin, Energy Environ. Sci.2010,3,1252.
    [10]C. Aprile, A. Corma, H. Garcia, Phys. Chem. Chem. Phys.2008,10,769.
    II1] X. Chen, J. Ye, S. Ouyang, T. Kako, Z. Li, Z. Zou. ACSNano 2011,5,4310.
    [12]K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, P. V. Braun, Adv. Mater. 2010,22,1084.
    [13]L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, G. A. Ozin, Adv. Mater.2009,21, 1641.
    [14]S. C. Yang, D. J. Yang, J. Kim, J. M. Hong, H. G. Kim,I. D. Kim, H. Lee, Adv. Mater.2008, 20,1059.
    [15]M. Zhou, S. Zhang, Y. Sun, C. Wu, M. Wang, Y. Xie, Chem. Asian J.2010,5,2515.
    [16]J. Su, X. Feng, J. D. Sloppy, L. Guo, C. A. Grimes, Nano Lett.2010,11,203.
    [17]A. Kudo, S.Hijii, Chem. Lett.1999,1103
    [18]L. Zhang, W. Wang, L. Zhou, H. Xu, Small 2007,3,1618.
    [19]F. Amano, K.Nogami, B. Ohtani, J. Phys. Chem. C 2009,113,1536.
    [20]J. Tang, Z. Zou, J. Ye, Cat. Lett.2004,92,53.
    [21]C. Zhang, Y. Zhu, Chem. Mater.2005,17,3537.
    [22]N. Kim, R.-N. Vannier, C. P. Grey, Chem. Mater.2005,17,1952.
    [23]Z. A. Peng, X. Peng, J. Am. Chem. Soc.2002,124,3343.
    [24]S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, Y. T. Qian, Adv. Funct. Mater.2003,13. 639.
    [25]Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard. R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller,J. A. Turner, H. N. Dinh J. Mater. Res.2010,25,3
    [26]Q. C. Xu, D. V. Wellia, Y. H. Ng, R. Amal, T. T. Y. Tan,J. Phys. Chem. C 2011,115,7419.
    [27]Q.C. Xu, Y. H. Ng, Y. Zhang, J. S. C. Loo, R. Amal, T. T. Y. Tan, Chem. Commun.2011. 47,8641.
    [28]Y. H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. L 2010,1,2607.
    [29]D. Tafalla, P. Salvador, R. M. Benito, J. Electrochem. Soc.1990,137,1810.
    [30]N. S. Lewis, Inor. Chem.2005,44,6900.
    [31]E. Kirowa-Eisner, M. Schwarz, M. Rosenblum, E. Gileadi, J. Electroanal. Chem.1995,381, 29.
    [32]M. Gratzel, Nature 2001,414,338.
    [33]B. James R, Solar Energy 1996,57,37.
    [34]H. Gao, C. Liu, H. E. Jeong, P. Yang, ACS Nano 2011,6,234.
    [35]Y. Lin, S. Zhou, X. Liu, S. Sheehan, D. Wang, J, Am. Chem. Soc.2009,131,2772.
    [36]J. Sun, D. K. Zhong, D. R. Gamelin, Energy Environ. Sci.2010,3,1252.
    [1]A. Fujishima, K. Honda, Nature 1972,238,37.
    [2]J. A. Turner, Science 1999,285,687.
    [3]M. Gratzel, Nature 2001,414,338.
    [4]S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002,297,2243.
    [5]K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 2003,300,1269.
    [6]M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev.2010,110,6446.
    [7]R. Liu, Y. Lin, L.-Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. M. Hou, D. Wang, Angew. Chem. Int. Ed.2011,50,499.
    [8]M. Zhou, S. Zhang, Y. Sun, C. Wu, M. Wang, Y. Xie, Chem. Asian J.2010,5,2515.
    [9]A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc.1999,121,11459.
    [10]Z. Zhao, Z. Li, Z. Zou, Phys. Chem. Chem. Phys.2011,13,4746.
    [11]A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim, S.-H. Wei, Chem. Mater.2009,21,547.
    Y. Xie, Y. Sun, B. Qu, Q. Liu, S. Gao, Z. Yan, W. Yan, B. C. Pan, S. Wei, Nanoscale 2012.
    10.1039/C2NR30371J
    [12]W. J. Jo, J.-W. Jang, K.-j. Kong, H. J. Kang, J. Y. Kim, H. Jun, K. P. S. Parmar, J. S. Lee, Angew. Chem. Int. Ed.2012,51,3147.
    [13]H. Ye, H. S. Park, A. J. Bard, J. Phys. Chem. C 2011,115,12464.
    [14]S. P. Berglund, A. J. E. Rettie, S. Hoang, C. B. Mullins, Phys. Chem. Chem. Phys.2012,14, 7065.
    [15]S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner, A. M. Herring, Energy Environ. Sci.2011,4,5028.
    [16]Y. Liang, T. Tsubota, L. P. A. Mooij, R. van de Krol, J. Phys. Chem. C 2011,115,17594.
    [17]J. A. Seabold, K.-S. Choi, J. Am. Chem. Soc.2012,134,2186.
    [18]D. K. Zhong, S. Choi, D. R. Gamelin, J. Am. Chem. Soc.2011,133,18370.
    [19]J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B 2001,105,11194.
    [20]J. P. Gonzalez-Vazquez, V. Morales-Florez, J. A. Anta, J. Phys. Chem.L 2012,3,386.
    [21]J. S. Sakamoto, B. Dunn, J. Mater. Chem.2002,12,2859.
    [22]J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, ACS Nano 2010,5, 590.
    [23]L. Liu, S. K. Karuturi, L. T. Su, A. I. Y. Tok, Energy Environ. Sci.2011,4,209.
    [24]A. Kubacka, M. Fernandez-Garcia, G. Colon, Chem. Rev.2011,112,1555.
    [25]Y. Li, W. Cai, B. Cao, G. Duan, C. Li, F. Sun, H. Zeng, J. Mater. Chem.2006,16,609.
    [26]F. Sun, W. Cai, Y. Li, B. Cao, Y. Lei, L. Zhang, Adv. Funct. Mater.2004,14,283.
    [27]W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, Z. Zou, Energy Environ. Sci.2011,4,4046.
    [28]Long, Cai, H. Kisch,J. Phys. Chem. C 2007,112,548.
    [29]S. J. Hong, S. Lee, J. S. Jang, J. S. Lee, Energy Environ. Sci.2011,4,1781.
    [30]L.-W. Zhang, Y.-J. Wang, H.-Y. Cheng, W.-Q. Yao, Y.-F. Zhu,Adv. Mater.2009,21,1286.
    [31]S. C. Yang, D. J. Yang, J. Kim, J. M. Hong, H. G. Kim, I. D. Kim, H. Lee, Adv. Mater.2008, 20,1059.
    [32]C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A.1. Y. Tok, H. J. Fan, Small 2012, 8,37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700