用户名: 密码: 验证码:
菲降解菌分离鉴定、降解基因克隆与表达及菲跨膜作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过选择性富集培养,从上海炼油厂附近污染土壤中分离到两株菲降解细菌,及一株可加速菲降解菌的菲降解速率的细菌,并对所分离菌株进行了生化鉴定以及系统发育研究,同时进行了降解特性、代谢途径、降解基因克隆及表达方面的研究,对菲的膜毒性机制进行了初步的探讨性研究。以期为建立有效的菲污染预警指标体系和PAHs污染的生物修复提供有益的参考。
     本研究所获主要结论如下:
     1、从石油污染土壤中筛选分离到两株菲降解菌株,分别命名为ZP1和ZP2菌株,同时分离到一株可加速菌株ZPl对菲降解速率的菌株,命名为ZP5菌株。通过革兰氏染色、细菌形态学观察、生理生化测试、抗生素抗性实验、碳源利用实验、全细胞脂肪酸分析、G+C mol%含量分析以及16S rDNA序列同源性分析,证明ZP1、ZP2和.ZP5菌株这三株菲降解细菌应分别属于鞘氨醇单胞菌属、假单胞菌属及tistrella属。其中菌株ZP1被鉴定为少动鞘氨醇单胞菌种(Sphingomonaspaucimobilis)的又一菌株,ZP2被鉴定为施氏假单胞菌种(Pseudomonas stutzeri),这是首次报道施氏假单胞菌种菌株具有菲降解活性。
     2、ZP1和ZP2两株菲降解菌都有很好的温度、pH及菲含量适应性。少量蛋白胨、酵母膏及葡萄糖的加入可不同程度的加速两株菌对菲的降解;氯化铵、硝酸铵和硫酸铵为氮源时对这两株菌的菲降解速率几乎没有影响;菲浓度范围从250 ppm到1000 ppm之间,ZP1和ZP2菌株都可良好生长并快速降解菲;表面活性剂Brij 30和Trition 100在低浓度时对ZP2菌降解菲的速率有促进作用,但对ZP1菌株的菲降解作用有明显的抑制作用,Tween 80在实验的三个浓度梯度中对ZP1和ZP2均表现出一定的加速菲降解速度效应。
     3、酶活实验证明,ZP1和ZP2菌株都有较高的1,2.邻苯二酚双加氧酶2,3-邻苯二酚双加氧酶活性,特别是2,3-邻苯二酚双加氧酶活性。在两个菌株的菲代谢过程中,都发现了邻苯二甲酸代谢途径中的关键代谢产物1-羟基-2-萘甲酸和2-羟基-1-萘甲酸及邻苯二甲酸,所以推测两个菌株都是经过邻苯二甲酸途径利用菲为碳源而实现对它的降解。
     4、根据己知序列设计引物在菌株ZPl中扩增得到芳香环经化双加氧酶铁硫蛋白α大亚基编码基因,命名为pha-ZP1,其在Genbank登陆号为EU082776,该基因全长1287bp,编码383个氨基酸。利用Cn3D4.1软件和Swiss Model Workspace网络工具(http://swissmodel.expasy.org)推导蛋白质三维结构,结果显示其具有Rieske型[2Fe-2S]中心和单核铁原子结合域这两个在酶的催化功能上具有重要作用的保守结构。并且其氨基酸序列与来自Sphingomonas yanoikuyae B1和Sphingomonasr sp.P2的铁硫蛋白α亚基同源性高达97%。
     5、根据已知序列设计引物分别在菌株ZP1和ZP2中扩增得到了各自的邻苯二酚双加氧酶基因,分别命名为phn—ZP1和phn-ZP2,它们在Genbank中的注册登陆号分别为:EU082777和EU082777。利用Cn3D4.1软件和Swiss Model Workspace网络工具(http://swissmodel.expasy.org)推导了基因所编码蛋白质的三维结构。通过与已知基因序列和编码氨基酸序列的比对,对两段基因进行了遗传亲缘分析。ZP1菌株C230基因phn—ZP1全长797bp,编码233个氨基酸,其二级结构主要为α螺旋和B链结构,phn—ZP2基因全长1047bp,编码331个氨基酸,其二级结构同样主要为α螺旋和β链结构。
     6、通过基因重组将菌株ZP2的邻苯二酚2,3-双加氧酶编码基因phn—ZP2在Rosetta进行了成功表达,初步检测结果显示,重组菌株的酶表达活性要明显高于出发菌株。
     7、卵磷脂脂质体作为模拟细胞膜被用来研究PAHs的跨膜特性和膜毒性。结果显示,此类亲脂性有机物在跨膜的过程中符合Nernst分配定律。从而可以计算出菲在卵磷脂脂质体和水之间的分配系数。研究了离子强度、温度、酸度等条件对分配作用的影响。此外,首次研究了菲在卵磷脂微囊与模拟细胞液之间的反分配作用。文中利用大肠杆菌及菲降解菌ZP1进一步研究了菲在不同细菌上的跨膜作用。实验表明相对于大肠杆菌,菲更容易进入降解菌的细胞膜内,而展开进一步的降解;在膜上的累积从而导致膜通透性的降低,是芳香环类有机物表现毒性的可能原因;亲脂性有机物菲通过分配作用富集到磷脂层,然后通过反分配作用从磷脂双分子层进入到细胞液,从而最终影响细胞的活性和功能。由以上实验得出跨膜屏障.结构效应(TBSE)理论,从而很好的解释了有机物跨膜过程的行为和膜毒性。
In this study, two phenanthrene-degrading bacterial and another bacterial with can improve the phenanthrene degradation speed when inoculated with phenanthrene degrading strains were isolated using traditional incubation method. Their identification was taken by studying its biochemical and genetic character. The factors influencing growth of phenanthrene-degrading bacteria and degradation of phenanthrene, the phenanthrene degradation pathway, the cloning and expression of phenanthrene degrading gene of two strains, the membrane toxicity mechanism of phenanthrene were also tested in this paper. The results was expected to supply useful reference for building up alert index systems in soil polluted by phenanthrene, for environmental quality evaluation and for bioremediation of PAHs pollution.
     Here are presented the main results of this study:
     1. Two phenanthrene-degrading bacteria strains ZP1 and ZP2 and another strain ZP5 which can improve ZP1's phenanthrene degradation speed were isolated from soil in oil refinery field in Shanghai. They were identified as belong to genus Sphingomonas, Pseudomonas and Tistrella, respectively based on Gram staining, morphology, oxydase reaction, biochemical tests, FAME analysis, G+C content and 16S rDNA gene sequence analysis. Strain ZP1 was identified as Sphingomonas paucimobilis, while strain ZP2 was identified as Pseudomonas stutzeri which is the first representative of Pseudomonas stutzeri sp., able to degrade phenanthrene very fast at high experimental concentration.
     2. Both ZP1 and ZP2 has wide temperature, pH range for growth and degradation, and could tolerate high concentration of phenanthrene. The optimal growth conditions of strain ZP1 and ZP2 were determined to be at pH 7.0, 30℃and pH 8.0, 37℃, respectively. Addition of yeast extraction, peptone or glucose could promote the growth and phenanthrene degradation ability of both ZP1 and ZP2 to diferent degree. The phenanthrene degradation speed was nearly the same when (NH_4)_2SO_4, NH_4Cl, NH_4NO_3 were tested as different nitrogen resorce. Strain ZP1 can remove more than 90% of phenanthrene at any concentrations ranged from 250 to 1000ppm in 8 days while ZP2 can nearly consume them all in 6 days. Both Brij 30 and Trition 100 can inhibit the phenanthrene degradation speed of ZP2 at high concentration, but has no obvious effect on ZP1. Tween 80 can promote the degradation of phenanthrene by both ZP1 and ZP2.
     3. Both ZP1 and ZP2 show high salicylate hydroxylase, catechol 1,2-dioxygenase and catechol 2,3-dioxygenase activity especially catechol 2,3-dioxygenase. Two key products 1-Hydroxy-2-naphthoic acid and 2-Hydroxy-1-naphthoic acid were found in the phenanthrene degradation process, which could suggest the isolates degrade phenanthrene via phthalic acid pathway.
     4. The gene pha-ZP1 encoding a subunit of aromatic hydrocarbon dioxygenase was cloned from strain ZP1, it's accession number in Genbank is EU082776. The determination and sequence analysis of the gene indicated that the DNA fragment was 1287 bp in length, encoding 383 amino acids. Two conserved regions: the [2Fe-2S] Rieske center and the mononuclear iron binding domain were found at the expected positions by deducing the protein using Cn3D4.1 software and Swiss Model Workspace web instrument. The amino acid sequence of the protein showed the highest similarity with that of Sphingomonas yanoikuyae B1 and Sphingomonas sp. P2.
     5. The gene phn-ZP1 and phn-ZP2 encoding catechol 2,3-dioxygense was cloned from strain ZP1 and ZP2 respectively, their accession number in Genbank were EU082777 and EU082778. The determination and sequence analysis of the gene indicated that phn-ZP1 fragment was 797 bp in length, encoding 233 amino acids, phn-ZP2 fragment was 1047 bp in length, encoding 331 amino acids. The structure of these two enzymes deduced by using Cn3D4.1 software and Swiss Model Workspace web instrument suggested they were mostly composed by a helix and (3 strand.
     6. The gene phn-ZP2 of C230 of strain ZP2 was recombined and expressed in Rosetta successfully. The activity of recombined enzyme protein expressed by recombinant obtained was much more than that by the original ZP2 strain in primary detection.
     7. Lecithin liposome as the simulation membrane was used to investigate the interactions with PAHs such as phenanthrene. Results reveal that apolar compounds obeyed the Nerst partition law. The partition coefficient of phenanthrene was calculated and its' binding bonds in liposomes were clarified. Effects of electrolyte, temperature, acidity of solution were analyzed as well as effect of the molecular structure was discussed in detail. Besides, the inverse partition of apolar compounds from liposome to an analogue cytosol was first proposed. Transmembrane distribution difference of phenanthrene between Eschericha coli and phenanthrene-degrading strain Sphingomonas sp. ZP1 was investigated. The apolar compounds penetrated in membrane phospholipid bilayer by distribution effect and into cytosol by anti-distribution way. Results show that compare to E. coli, phenanthrene was easier to enter into cytoplasm of phenanthrene-degrading bacteria. The accumulation of phenanthrene in cell membrane cause the barrier effect, so it maybe the reason of toxicity of PAHs pollutants. The transmembrane barrier-structure effect (TBSE) was advanced and it will provide a very helpful experimental strategy for toxicity assessment of a lipophilic compound.
引文
[1]戴树桂.环境化学进展[M],北京:化学工业出版社,2005.
    [2]余刚,牛军峰,黄俊,等.持久性有机污染物-新的全球性环境问题[M].北京:科学出版社,2005.
    [3]余刚,黄俊.持久性有机污染物知识100问[M].北京:中国环境科学出版社,2005.
    [4]刘敏,许世远.长江口潮滩POPs环境生物地球化学过程与生态风险[M].北京:中国环境科学出版社,2005.
    [5]苏丽敏,袁星,赵建伟,等.持久性有机污染物(POPs)及其归趋研究[J].环境科学与技术,2003,26(5):61-63.
    [6]苏丽敏,袁星.持久性有机污染物(POPs)及其生态毒性的研究现状与展望[J].重庆环境科学,2003,25(9):62-73.
    [7]郑新,陈华林.底泥中OPAHs的处理技术进展[J].环境污染与防治,2002,24(6):350-355.
    [8]刘世亮,骆永明,曹志洪,丁克强,蒋先军.PAHs污染土壤的微生物与植物联合修复研究进展[J].土壤,2002,(5):2 57-265.
    [9]Wirth E F,Fulton M H,Chandler G T.Toxicity of sediment associated PAHs to the estuarine crustacearts,palaemonetes pugio and amphiascus tenuiremis[J].Bull Environ Contain Toxicol,1998,61:637-644.
    [10]Lutofo G R,Fleeger J W.Effects of sediment-associated phenan~rene on survival, development and reproduction of two species of meiobentic copeods[J].Mar Ecol Prog Ser,1997,151:91-102.
    [11]Rober W G,Dixon D G.Amelioration of the phom-induced toxicity of polycyclic aromatic hydrocarbons by a commercial humic acid[J].Ecotoxical And Environ Safety,1998,39:57-64.
    [12]Moore G E,Thomas R S,Monkman J L.The routine determination of polycyclic hydrocarbons in airbome pollutants[J].J Chromatogr A,1967,26:456-464
    [13]Clark E.Policyclic hydrocarbons[M].Academic Press,NewYork,1964,Vol.1,2.
    [14]Sander L C,Parris R M,Wise S A.Shape discrimination in liquid chromatography using charge—transfer phases[J].Anal Chem,1991,63:2589-2597
    [15]董瑞斌等.PAHs在环境中的行为[J].环境与开发,1999,14(4):11-13.
    [16]Hofman E J.et al.Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters[J].Environ Sci Technol,1984,18:580-587.
    [17]余顺.全球海洋一大气环境中污染物的迁移及行为[J].海洋环境科学,1989,8(3):55-63.
    [18]McVeety B D,Hites R A.Atmospheric deposition of polycyclic aromatic hydrocarbons to water surface: a mass balance approach [J]. Atmos Environ, 1988, 22: 511-536.
    [19] Reilley K M, Baanks M K, Schwah A P. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere[J]. J Environ Qual, 1996, 25: 212-219.
    [20] Macay D, Shui W Y. Illustrated hand hook of physical chemical properties and environment fate of organic chemicals [A]. 1992, Lewis, Boca Raton.
    [21] Gardner B, Hewit C N, Jones K C. Deposition of polycyclic aromatic hydrocarbons to natural water surfaces in the United Kingdom. In precipitation scavenging and atmosphere-surface exchange[A], 1992, vol. 2, Hemisphere Publishing Corporation, Washington DC, 649-660.
    [22] Alebio-Juetic, Cvilaq T, Klasmic L. Heterogeneous polycyclic aromatic hydrocarbon degradation with ozone on silica gel carrier[J]. Environ Sci Technol, 1990, 24: 62-67.
    [23] Nikolaou K, Mascet P, Mouvier L. Sources and chemical reactivity of polynuclear aromatic hydrocarbons in environment-A critical review [J]. Sci Tot Environ, 1984, 32: 103-132.
    [24] Valerio F, Bottino P, Ugolini D. Chemical and photochemical degradation of polycyclic aromatic hydrocarbon in the atmosphere [J]. Sci Tot Environ, 1984, 40: 169-188.
    [25] Masclet P, Pistilopoulos P, Beyne S. Long range transport and gas/particle distribution of polycyclic aromatic hydrocarbons at a remote site in the Mediterranean Sea [J]. Atmos Environ, 1988, 22: 639-650.
    [26] Butler J D, Crossby P. Reactivity of polycyclic aromatic hydrocarbons adsorbed on soil particles [J]. Atmos Environ, 1991, 15: 91-94.
    [27] Park K S, Sims R C, Dupout R R, Doucette W J. Fates of PAHs in two soil types-. Influence of volatilization, abiotic loss and biological activity [J]. Environ Toxicol Chem, 1990, 9: 187-195.
    [28] Sims R C, Overcash M R. Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems[J]. Res Rev, 1983, 88: 1-67.
    [29] Bossat P, Bartha R. Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil[J]. Bull Environ Contain Toxicol, 1986, 37: 490-495.
    [30] Heitkamp M A. Cemiglia C E. Effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarin ecosystems [J]. Environ Toxicol Chem, 1987, 6: 535-546.
    [31] Wild S R, Jones K C. Biological and abictic losses of polynuclear aromatic hydrocarbons from soils freshly amended with sewage sludge [J]. Environ Toxicol Chem, 1993, 12: 5-12.
    [32] Simon M J, Osslund T D, Zylstra G J, et al. Sequences of genes encoding naphthalene in Pseudomonas putida strains G7 and NCIB 9816-4-Gene [J]. 1993, 127(1): 31-37.
    [33] Harrison R M, Pery R, Wellings R A. Polycyclic aromatic hydrocarbons in raw, potable and waste waters[J]. Wat Res, 1975, 9: 331-346.
    [34] Sanders G, Jones K C. Concentrations and deposition fluxes of polynuclear aromatic hydrocarbons and heavy metals in the dated sediments of a rural English lake[J]. Environ
    ??Toxicol Chem,1993,12:1567-1581.
    [35]Malins D C,Hodgins H O.Petroleum and marine fish:A review of uptake,deposition and effects[J].Environ Sci Technol,1981,11:1273-1280.
    [36]Eadie B L,Faust W,Gardner W S.Polycyclic aromatic hydrocarbons in sediments and associatedbenthos in Lake Erie[J].Chemosphere,1982,11:185—191.
    [37]Giger W,Blumer M.Polycyclic aromatic hydrocarbons in the environment:isolation and characterization by chromatography,visible ultraviolet and mass spectrometry[J].Anal Chem,1974,46:1663-1671.
    [38]Phillps D H.Fifty years of Benzo(a)pyrene[J].Nature,1983,303:472—486.
    [39]周明耀.环境有机污染与致癌物质[M].四川成都:四川大学出版社,1992年第一版,P62.
    [40]Bols N C,Brubacher J L,et al.Ecotoxicology and innate immunity in fish[J].DEV COMP IM,2001,25(8—9):853-871.
    [41]Viganb Luigi,Camoirano Anna,et al.Mutagenicity of sediments along the Po River and genotoxicity biomarkers in fish from polluted areas[J].Mut Res-GTE,2002,515(1-2):125-134.
    [42]Schoket,Bemadete,et al.Impact of metabolic genotypes on levels of biomarkers of genotoxic exposure[J].Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2001,482(1-2):57-69.
    [43]Autrup Hennan.Genetic polymorphisms in human xenobiotica metabolizing enzymes as susceptibility factors in toxic response[J].Mut Res—GTE,2000,464(1):65-73.
    [44]Pavanello Sofia,Clonfero Erminio.Biological indicators of genotoxic risk and metabolic polymorphisms[JJ.Mutation Research/Review sin Mut Res,2000,463(3):285-308.
    [45]Bird Anna,Pdllinger dva,et al.Lymphocyte phenotype an alysis and chromosome aberration frequency of workers occupationally exposed to styrene,benzene,polycyclic aromatic hydrocarbons or mixed solvents[J].Int Immunology Letters,2002,81(2):133-140.
    [46]张志红,杨文敏.汽油车尾气颗粒物中有机成分分析及对细胞免疫毒性研究[J].环境与健康杂志,‘2000,17(1):13-15.
    [47]Szczeklik A,Szczeklik J,et al.Humoral Immunosuppression in Men Exposed to Polycyclic Aromatic Hydrocarbons and Related Carcinogens in Polluted Environments[J].Environ Health Persp,1994,03:302—305
    [48]Alebic Juretic A,et al.Air pollution damage to cell membranes in lichens—Results of simple biological test applied in Rijeka Yugoslavia Yugoslavia[J].Water,Air and Soil Pollution,1989,47(25):25-33.
    [49]刘玲.人肺组织PAHsd的代谢与肺癌相关性研究[J].北京医科大学学报,1987,3:251
    [50]傅娟龄.PAHs氯衍生物鼠伤寒沙门氏菌的直接致突变性[J].环境与健康杂志,1989,4:11-12.
    [51]Wilson S C,Jones K C.Bioremediation of soil contaminated with polycyclic aromatic hydrocarbons (PAHs): a review [J]. Environ Pollution, 1993, 81: 229-249.
    [52] Harayama S. Polycyclic aromatic hydrocarbon bioremediation design[J]. Curr Opin Biotech, 1997, 8: 268-273.
    [53] HaimouZ, AristeidisK, Anna I K, et al. Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils [J]. Appl Microbiol Biotechnol, 2004, 65: 124431.
    [54] Kim J D, Shim S H, Lee C G. Degradation of phenanthrene by bacterial strains isolated from soil in oil refinery fields in Korea [J]. JMicrobio Biotech, 2005, 15(2), 337-345.
    [55] Kim Y H, Freeman J P, Moody JD, et al. Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1 [J]. Appl Microbiol Biotechnol, 2005, 67: 275-285.
    [56] Kiyohara H, Nagao K., Yana K. Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates [J]. Appl Environ Microbiol, 1982, 43: 454-457.
    [57] Kiyohara H, Nagao K, Kouno K, et al. Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2[J]. Appl Environ Microbiol, 1982, 43(2): 458-461.
    [58] Bastiaes L, Springael D, Wattiau P, et al. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers[J]. Appl Environ Microbiol, 2000, 66: 1834-1843.
    [59] Loyd-Jone G, Laurie A D, et al. Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils [J]. FEMS Microbiol Ecol, 1999, 29: 69-79.
    [60] Juhasz A L, Stanley G A, Britz M L. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophikia strain VUN1003[J]. Lett Appl Microbiol, 2000, 30, 396-401.
    [61] Daane L L, Harjono I, Barns S M, Launen L A, Palleroni N J, Haggblom M M . PAH-degradation by Paenibacillus spp . and description of Paenibacillus naphthalenovorans sp. nov. , a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants[J]. IntJSyEv, 2002, 52: 131-139.
    [62] Samanta S K, Singh O V, Jain R K. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation [J]. Trends Biotechnol, 2002, 20: 243-248.
    [63] Van Hamme J D, Singh A, Ward O P, et al. Recent advances in petroleum microbiology [J]. Microbiol Mol Biol Rev, 2003, 67(4): 503-549.
    [64] Boldrin B, Tiehm A, Fritzsche C. Degradation of phenanthrene, fluorine, fluoranthene, and pyrene by a Mycobacterium sp[J]. Appl Environ Microbiol, 1993, 59: 1927-1930.
    [65] DagherF, Deziel E, LiretteP, Paquette G. , Bisaillon J G, Villemur R. Comparative study of five polycyclic aromatic hydrocarbon degrading bacerial starins isolated from contaminated soil[J]. Can J Microbiol, 1996, 43: 368-377.
    [66] Kastner M, Breuerjammali M, Mahro B. Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil site able to mineralized polycyclic aromatic
    ??hydrocarbons(PAH)[J].Appl Environ Microbiol,1994,41:267-273.
    [67]Lloyd-Jones G,Hunter D W.Characterization of fluoranthene-and pyrene-degrading mycobacterium-like strains by RAPD and SSU sequencing[J].FEMS Microbiol Lett,1997,153:51-56.
    [68]Krivobok S,Miriouchkine E,Seigle—Murandi F,Benoit-Guyod J L.Biodegradation of anthracene by soil fungi[J].Chemosphere,1998,37(3):523-530.
    [69]Rittmann B E,McCarty P L.Environmental biotechnology:principles and applications [M].2001.New York:McGraw-Hill companies Inc.
    [70]Leadbeter E R,Foster J W.Oxidation products formed from gaseous alkane by the bacterium Pseudomonas metharica[J].Arch Biochem Biophys,1959,82:491-492.
    [71]韩力平,王建龙,施汉昌,等.生物强化技术在难降解有机物处理中的应用[J].环境科学,1999,20:100-102.
    [72]Jerome F J,Chilmshi S,Raul C.Composting of polycyclic aromatic hydrocarbons in simulated municipal solid waste[J].Water Environ Res,1998,70:356—361.
    [73]Saseverino J,Applegda B M,King J M.Plasmoid-mediated mineralization of naphthalene,phenanthrene,and anthracene[J].Appl Environ Micobiol,1992,58:568-576.
    [74]聂麦茜,张志杰,赵桂芳,刘可.共基质对优势菌降解PAHs的作用研究[J].环境科学研究,2001,14(5):30-32.
    [75]McGillivray A R,Ahiaris M P.Relative role of eukaryotic and prokaryotic microorganisms in phenanthrene transformation in coastal sediments[J].Appl Environ Microbiol,1994,60:1154-1159.
    [76]Conte P,Zenra A,Pilidis G,Piccolo A.Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances.Environmental Pollution[J].2001,112:127-131.
    [77]Sikkema J,de Bont J A M,Poolman B.Mechanisms of membrane toxicity of hydrocarbons [J].Microbiol Rev,1995,59:201-222.
    [78]Volkering F,Breure A M,et al.Influrence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons[J].Appl Envrion Microbiol,1995,61:1699-1705.
    [79]Schippers C,GeBner K,Miiller T,et al.Microbial degradation of phenanthrene by addition of a sophorolipld mixture[J].J Biotech,2000,83(3):189-198.
    [80]Perry C R,Ashby M J,Elsmere S A.Penems as research tools to investigate the activity of E.coli leader peptidase[J].Biochem Soc T.1995,23:548—553
    [81]Kotterman M J J,Vis E H,Field JA.Successive mineralization and detoxification of benzo(a)pyrene by the white rot fungus Bjerkandera sp.Strain BOS55 and indigenous microflora[J].Appl Environ Microbiol,1998,64,2853—2858.
    [82]Grosser R J,Friedrich M,Ward D M,et al.Effect of model sorptive on phenanthrene biodegradation:different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates[J].Appl Environ Microbiol,2000,66(7):2695—2702.
    [83]Yael L,Peter F S,Walter J F.Bioavailability of phenanthrene SOrbed to mineral-associated humic acid[J].Wat Res,1999,33(7):1719-1729.
    [84]Stingley R L,Khan A A,Cerniglia C E,et al.Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1[J].Biochem Bioph Res Co,2004,322:133-146.
    [85]马沛,钟建江.微生物降解PAHs(PAHs)的研究进展[J].生物加工过程,2003,1(1):42-46.
    [86]Habe H,Omori T.Rhizoremediation of dioxin—like compounds by a recombinant Rhizobium tropici strain expressing carbazole l,9a-dioxygenase constitutively[J].Biosci Biotechnol Biochem,2003,67(2):225-243.
    [87]Baboshin M A,Baskunov B P,et al.The microbial transformation of phenanthrene and anthracene[J].Microbiology,2005,74(3):303-309.
    [88]Baboshin M A,Baskunov B P,Finkelstein Z I,et al.The microbial transformation of phenanthrene and anthracene[J].Microbiology,2005,74(3):303—309.
    [89]Zhang X M,Yong L Y.Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia[J].Appl Microbiol Biotechnol,1997,63(12):4759-4764.
    [90]Satio A,1wabuchi T,Harayama S.Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp.KP7[J].Chemosphere,1999,38(6):1331-1337.
    [91]Goyal K&Zylstra G J.Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosterone GZ39[J].Appl Environ Microbiol,1996,62(1):230—236.
    [92]夏颖.PAHs菲对微生物生态毒理研究、菲降解菌的分离鉴定及降解基因克隆与表达[M]:[博士学位论文].杭州:浙江大学,2003.
    [93]Meyer S,Moser R,NeefA,et al.Differential detection of key enzymes of poly aromatic hydrocarbon—degrading bacteria using PCR and gene probes[J].Microbiology,1999,145:1731-1741.
    [94]Moser R,Stahl U.Insights into the genetic diversity of initial dioxygenases from PAHs degrading bacteria[J].Appl Microbiol Biotech,2001,55(5):609-618.
    [95]Harayama S,Kok M,Neidle E L.Functional and evolutionary relationships among diverse oxygenases[J].Annu Rev Microbial,1992,46:565—601.
    [96]Pinyakong O,Habe H,Yoshidaa T,et al.Identification of three novel salicylate—hydroxylases involved in the phenanthrene degradation.of Sphingobium sp.strain P2[J].Biochem Biophy Res Commun,2003,301:350—357.
    [97]Pinyakong O,Habe H,Omori T.The unique aromatic catabolic genes in Sphingomonas degrading polycyclic aromatic hydrocarbons(PAHs)[J].J Gen Appl Microbiol,2003,49(1):1-19.
    [98]Kiyohara H,Torigoe S,Kaida N,et al.Cloning and characterization of a chromosomal
    ??gene cluster,pah,that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82[J].J Bacteriol,1994,76(8):2439-2443.
    [99]Park W,Jeon CO,Madsen E L.Interaction of NahR a LysR-type transcriptional regulator,with the alpha subunit of RNA polymerase in the naphthalene degrading bacterium,Pseudomonas putidaNCIB 9816-4[J].FEMS Microbiol Lett,2002,213(2):159-165.
    [100]Park W,Padmanabhan P,Madsen E L.nahR,encoding a LysR—type transcriptional regulator,is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA[J].Microbiology,2002,148(8):2319-2329.
    [101]Huang J Z,Schell M A.Invivo interactions of the NahR transcriptional activator with its target sequences.Inducer-mediated changes resulting in transcription activation[J].J Biol Chem,1991,266(17):10830-10838.
    [102]Saito A,1wabuchi T,Harayama S.A novel phenanthrene dioxygenase from Nocardioides sp.Strain KP7:expression in Escherichia coli[J].J Bacteriol,2000,182(8):2134—2141.
    [103]Laurie A D,Lloyd-Jones G.Conserved and hybrid meta—cleavage operons from PAH degrading Burkholeria sp.RP007[J].Biochem Biophy Res Comm,1999,262:308—314.
    [104]Robin L,Stingley,et al.Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1[J].2004,150:3749-3761.
    [105]Pavanello S,Clonfero E.Biological indicators of genotoxic risk and metabolic polymorphisms[J].Mutat Res-Rev Mutat,2000,463:285-308
    [106]史雅娟,吕永龙,仁鸿昌,等.持久性有机污染物研究的国际发展动态[J].世界科技研究与发展,2003,25(2):73-78.
    [107]汤鸿霄.环境纳米污染物与微界面水质过程[J].环境科学学报,2003,20:146-155.
    [108]Wang X P,Shah X Q,Zhang S Z,et al.A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions[J].Chemosphere,2004,55:811-822.
    [109]Brunner S,Homung E,Santl H,et al.Henry’S law constants for polychlorinated biphenyls:experimental determination and structure-property relationships[J].Environ.Sci Technol,1990,24:1751-1754.
    [110]Cui S,Wang X,Liu S,and Wang L.Predicting toxicity of benzene derivatives by molecular hologram derived quantitative structure-activity relationships(QSARS) [J].SAR.QSAR Environ Res,2003,14:223-231.
    [111]周景明,秦占芬,丛琳,等.多氯联苯内分泌干扰作用及机理研究进展[J].科学通报,2004,49:34-39.
    [112]陈华林,陈英旭,王子健,等.中国南方河流和湖泊沉积物对菲的吸附特性[J].环境科学,2003,24:120-124.
    [113]Mai B X,Fu J M,Sheng G Y,et al.Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta,China[J].Environ Pollut,2002,117:457-474.
    [114]1wasaki T,Miyazaki W,Takeshita A,et al.Polychlorinated bipbenyls suppress thyroid hormone-induced transactivation[J].Biochem Biophys Res Commun,2002,299:384-388.
    [115]邹建卫,张兵,胡桂香,等.基于分子表面静电势参数研究PAHs化合物的定量结构-性质关系[J].化学学报,2004,62:241—246.
    [116]Bourvellec L,Guyot C,et al.Non—covalent interaction between procyanidins and apple cell wall material Part Ⅰ.Eflfect of some environmental parameters Biochim.Biophys[J].Act-General Subjects,2004,1672:192—202.
    [117]Li Y,Wu Y Q,and Chen J L.Simple and sensitive assay for nucleic acids by use of the resonance light-scattering technique with copper phthalocyanine tetrasulfonic acid in the presence of cetyltrimethylammonium bromide[J].Anal Bioanal Chem,2003,377(4):675-680.
    [118]刘绍璞,范莉,胡小莉,某些氨羧络合型染料与蛋白质相互作用的共振瑞利散射研究[J].化学学报,2004,62:1635-1640.
    [119]Nakashima K,Yuda K,Ozaki Y,et aj.Two—dimensional fluorescence correlation spectroscopy Ⅱ:spectral analysis of derivatives of anthracene and pyrene in micellar solutions[J].Spectrochim Acta A,2004,60:1783—1791.
    [120]杨传孝,李原芳,黄承志.丽春红G用于人血清样品中总蛋白的共振光散射测定[J].分析化学,2003,31:148-152.
    [121]Donato M M,Jurado A S,Aadeira M C,et al.Membrane lipid composition of Bacillus stearothermophilus as affected by lipophilic environmental pollutants:An approach to membrane toxicity assessment[J].Arch Environ Contain Toxicol,2000,39:145—153.
    [122]James N H,Jimmie D P,et al.Determination of Uptake Kinetics(Sampling Rates)by Lipid—Containing Semipermeable Membrane Devices(SPMDs) for Polycyclic Aromatic Hydrocarbons(PAHsl in Water[J].Environ Sci Teclmol,1999,33:3918—3923.
    [123]Elferink M G L,de Wi J G,Demel R,et al.Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Suffolobus acidocaldarius[J].J Biol Chem,1992,267:1375-1381.
    [124]Scatchard G,Scheinerg I H,and Armstrong S H J.Physical chemistry of protein solutions.Ⅳ.The combination of human sertlm albumin with chloride ion[J].J Am Chem Soc,1950,72:535-540.
    [125]Pesavento M,and Profumo A.Chromatographic behavior of trace-metal ions on a strong base anion-exchange resin functionalized by azo ligands[J].Talanta,1994,41:1689-1697.
    [126]范秀容,李广武,沈萍,等.微生物学实验(第二版)[M].北京:高等教育出版社,1989.
    [127]卢炎,叶萍,王靖等.铜绿假单胞菌全细胞脂肪酸气相色谱分析及应用[J].中华医院感染学杂志,1997,7:7-10.
    [128]程光胜,朱厚础,周方.分析微生物学专辑[M].北京:科学出版社.1988.
    [129]Stackebrandt E,Liesack W.Nucleic acids and classification.In M.Goodfellow and A.G.O.Donnell(eds.),Handbook of New Bacterial Systematics[A].Academic
    ??Press,1993,London,U.K.
    [130]Nohynek L J,Nurmiaho-Lassila E L,Suhonen E L,et al.Description of chlorophenol-degrading Pseudomonas sp.strains KFIT,KF3,and NKFI as a New species the genus of Sphingomonas Sphingomonas subarctica sp.nov[J].Int J Syst Bacteriol,1996,46(4):1042—1055.
    [131]Yabuuchi E,Yano I,Oyaizu H,et al.Proposal of Sphingomonas paucimobilis gen.nov.and comb.nov.Sphingomonas parapaucimobilis sp.nov.,Sphingomonas yanoikuyae sp.nov Sphingomonas adhaesiva sp.nov.,Sphingomonas capsulate comb.nov and two genospecies of the genus Sphingomonas [J].Microbiol Immunol,1990,34(2):99-119.
    [132]Shi B H,Arunpairojana V,et al.Tistrella mobilis gen.nov.,sp.nov.,a novel polyhydroxyalkanoate—producing bacterium belonging to α-Proteobacteria[J].J Gen Appl Microbiol,2002,48(6):335-343.
    [133]王振雄,徐毅,周培瑾.嗜盐碱古生菌新种的系统分类学研究[J].微生物学报,2000,40(2):115—120.
    [134]孙征,周宇光,东秀珠.一个甲烷杆菌新种的描述和系统分类学研究[J].微生物学报,2001,41(3):265-269.
    [135]Takeuchi M,Hamana K,Hiraishi A.Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium,Novosphingobium and Sphingopyxis,on the basis of phylogenetic and chemotaxonomic analyses[J].Int J Syst Evol Microbiol,2001,51(4):1405-1417.
    [136]Romine M F,Fredrickson J K,Li S M.Induction of aromatic catabolic activity in Sphingomonas aromaticivorans strain F 199[J].J Ind Microbiol Biotechnol,1999,23 (4-5):303-313.
    [137]Masai E,et al.Characterization of Sphingomonas paucimobilis SYK一6 genes involved in degradat ion of lignin-related compounds[J].Industr Microbiol Biotechnol,1999,23:380-392.
    [138]Masai E,Katayanla Y,Nishikawa S,et al.Characterization of Sphingomonas paucimobilis SYK-6 genes involved in degradation of lignin-related compounds[J].J Ind Microbiol Biotechnol,1999,23(4-5):364-373.
    [139]Rodrigo J S,Jacques Eder C S,Fatima M B,et al.Anthracene biodegradation by Pseudomonas sp.Isolated from a petrochemical sludge landfarming site[J].Int Biodeter &Biodegr 2005,56:143—150.
    [140]Uyttebroek M,Vermeir S,et al.Characterization of cultures enriched from acidic polycyclic arbmatic hydrocarbon-contaminated soil for growth on pyrene at low pH [J].Appl Environ Microbiol,2007,73(10):3159—3164.
    [141]Rossello-Mora R A,Lalucat J,Garcia-Valdes E.Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains[J].Appl Environ Microbiol.1994,60:966—972.
    [142]史德青,赵金生,杨金荣,侯影飞,孔瑛.施氏假单胞菌对二苯并噻吩的降解[J].中国环境科学,2004,6:730-733.
    [143]巩宗强,李培军,郭书海,井欣,王新,张海荣.PAHs污染土壤的生物泥浆法修复[J].环境科学,2001,22(5):112-116.
    [144]李培军,巩宗强,井欣,许华夏,张春桂,马学军,何耀武.生物反应器法处理PAHs污染土壤的研究[J].应用生态学报,2002,13(3):327-330.
    [145]van Herwijnen,van de Sande,et al.Influence of phenanthrene and fluoranthene on the degradation of fluorene and glucose by Sphingomonas sp.strain LB126 in chemostat cultures[J].FEMS Microbiol Eco,2003,46:105-111.
    [146]van Herwijnen,Wattiau P,Bastiaens L,et al.Elucidation of the metabolic pathway of fluorine and cometabolic pathway of phenanthrene,fluoranthene,anthracene and dibenzothiophene by Sphingomonas sp.LB 126[J].Research in Microbiol,2003,154:199-206.
    [147]Onruthai P,Himshi H,Nutapun S,et al.Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp.strain P2[J].FEMS Microbiol Lett,2000,191:115-121.
    [148]Goyal A K,Zylstra G J.Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39[J].Appl Environ Microbiol,1996,62:230-236
    [149]Tian L,Zhong J J.Kinetics and key enzymes activities of phenanthrene degradation by Pseudomonas mendocina [J].Process Biochem,2000,37:1431-1437.
    [150]Broderick J B.Catecholdi oxygenases[J].Essays Biochem,1999,34:173-189.
    [151]Balashova N V,Stolz A,Knackmuss H J,et al.Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene—degrading bacterial strain Pseudomonas putida BS202一PI[J].Biodegradat,2001,12:179—188.
    [152]Bartels F,Backhaus S,Moore E R B,et al.Occurrence and expression of glutathione—Stransferase—encoding bphK genes in Burkholderia sp.strain LB400 and other biphenyl-utilizing bacteria[J].Microbiology,1999,145:2821-2834
    [153]Sambrook J,Frilsch E F,Manialis T.Molecular Cloning:A Laboratory Manual[M].New York:CSH Press,1989.
    [154]Liu Y S,Zhang J,Zhang Z Z.Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp.strain ZL5[J].Biodegrad,2004,15:205-212.
    [155]Keum Y S,Seo J S,Hu Y,Li Q X.Degradation pathways of phenanthrene by Sinorhizobium sp.C4.Environ Biotechnol,2006,71:935—941.
    [156]Pinyakong O,Habe H,Yoshidaa T,et al.Identificatoin of novel metabolites in the degradation of phenanthrene by Sphingomonas sp.strain P2.FEMS Microbiol Lett,2000,191:115-121.
    [157]Kim E,Zylstra G J.Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1, J Bacteriol, 1995, 177(11): 3095-3103.
    [158] Krivobok S, Kuony S, Meyer C, et al. Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases [J]. J Bacteriol, 2003, 185: 3828-3841
    [159] Rehmann K, Noll H P, et al. Pyrene degradation by Mycobacterium sp. strain KR2[J]. Chemosphere, 1998, 36: 2977-2992.
    [160] Kim E, Zylstra G J. Functional analysis of genes involved in bipheyhl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae Bl [J]. J Ind Microbiol Biotechnol, 1999, 23: 294-302.
    [161] Story S P, Parker S H, et al. Convergent and divergent points in catabolic pathways involved in utilization of fluoranthrene, naphthalene, anthracene and phenanthrene by Sphingomonas paucimobilis var EPA505[J]. J Ind Microbiol Biotechnol, 2001, 26: 369-382.
    [162] YuKi K, Kazutoshi S, et al. Molecular Characterization and Substrate Preference of a Ploycyclic Aromatic Hydrocarbon Dioxygenase from Cycloclasticus sp. Strain A5 [J]. Appl Enviorn Microbiol, 2003, 69: 6688-6697.
    [163] Bezalel L, Hadar Y, Fu P P, Freeman J P, Cemiglia C E. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus[J]. Appl Environ Microbiol, 1996, 62(7): 2547-2553.
    [164] Takizawa N, Kaida N, et al. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82 [J]. J Bacteriol, 1994, 176: 2444-2449.
    [165] Nakai C, Horiike K, Kuramitsu S, Kagamiyama H, and Nozaki M. Three isozymes of catechol 1, 2-dioxygenase (pyrocatechase), alpha alpha, alpha beta, and beta beta, from Pseudomonasa rvilla C-1 [J]. J Biol Chem, 1990, 265(2): 660-665.
    [166] Pessione E, Giufrida M Q, et al. The catechol 1, 2-dioxygenase system of Acinetobacter radioresistens: isoenzymes, inductors and gene localization [J]. Biol Chem, 2001, 382(8): 1253-1261.
    [167] Shin H J, Kim S J, Kim Y C. Sequence analysis of the phnD gene encoding 2-hydroxymuconic Semialdehyde hydrolase in Pseudomonas sp. strain DJ77[J]. Biochem Biophys Res Commun, 1997, (232): 288-291.
    [168] Kita A, Kita S, et al. Crystallization and preliminary X-ray diffraction studies of expressed Pseudomonas putida catechol 2, 3-dioxygenase [J]. J Biochem (Tokoyo), 1997, 122(1): 201-204.
    [169] Kabisch M, and Fortnagel P. Nucleotide sequence of metapyrocatechase I (catechol 2, 3-oxygenase I) gene mpcI from Alcaligenes eutrophus JMP222[J]. Nucleic Acids Res, 1990, 18(11): 3405-3406.
    [170]Nojiri H,Habe H,Omori T.Bacterial degradation of aromatic compounds via angular dioxygenation[J].J Gen Appl Microbiol,2001,47(6):279-305.
    [171]Mesarch M B,Nakatsu C H,Nies L.Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR[J].Appl Environ Microbiol,2000,66(2):678—683.
    [172]Harayama S,Rekik M,Wasserfallen A,and Bairoch A.Evolutionary relationships between catabolic pathways for aromatics:conservation of gene order and nucleoti de sequences of cateehol oxidation genes of pWWO andNAH7plasmids[J].Mal Gen Genet,1987,210(2):241-247.
    [173]Arai H,Akahira S,Ohishi T,Maeda M,and Kudo T.Adaptation of Comamonas testosterone TA441 to utilize phenol:organization and regulation of the genes involved in phenol degradation[J].Microbiology,1998,144(Pt10):2895—2903.
    [174]Yrjala K,Suomalainen S,and Suhonen E L.Characterization and reclassification of an aromatic—and chloroaromatic-degrading Pseudomonas sp.,strain HV3,as Sphingomonas sp.HV3[J].Int J Syst Bacteriol,1998,48(3):1057-1062.
    [175]Cavalea L,Confalonieri A,Larcher S,and Andreoni V.Evolution of a degradative bacterial consortium during the enrichment of naphtha solvent[J].J Appl Microbiol,2000,88(6):1009-1018.
    [176]Chakrabarty A M.Genetic basis of the biodegradation of salicylate in Pseudomonas[J].J Bacteriol,1972,112(2):815—823.
    [177]王银善,庞学军,赵永芳.解酚假单胞菌邻苯二酚-2,3-双加氧酶的纯化和某些特性[J].生物物理与生物化学进展,1983,5:44-48.
    [178]Kojima Y,Itada N,and Hayaishi O.Metapyrocatechase:a new catechol—cleaving enzyme[J].J Biol Chem,1961,236:2223—2228.
    [179]Sikkema J,Bont J A M,Poolman B.Interactions of Cyclic Hydrocarbons with Biological Membranes[J].J Biol Chem,1994,269:8022-8028.
    [180]Sikkema J,Weber F J,Heipieper H J,and de Bont J A M.Cellular toxicity of lipophilic compounds:mechanisms,implications,and adaptations[J].Biocatalysis,1994,10:113—122.
    [181]Maron S H,Lando J B.Fundamentals of Physical Chemistry,Macmillan,New York.1974.
    [182]Meylan W M,Howard P H,Boethling R S.Improved method for estimating water solubility from octanol water partition coefficient.[J].Environ Toxicol Chem,1996,15:100-106.
    [183]赵维蓉,张胜义,章玉川,等.表面活性剂化学[M].合肥:安徽大学出版社,1996.
    [184]Tiwasaki,Miyazaki W,Takeshita A.et al.Polychlorinated bipbenyls suppress thyroid hormone.induced transactivation [J].Biochem Biophys Res Commun,2002,299:384—388.
    [185]Wei H G.,Li Y G,et al.Studies on a new method for counting live bacterial cell number [J].Chin J Microbiol,2002,29:89—93.
    [186]陈海霞,耿美玉,管华诗.细胞膜糖蛋白及其寡糖链分析方法的研究进展[J].中国生
    ??物工程杂志,2003,3:20-24.
    [187]Stapleton R D,Savage D C,Sayler G S,et al.Biodegradation of aromatic hydrocarbons in all extremely acidic environment[J].Appl Environ Microbiol,1998,64:4180-4184
    [188]Maule A G,Jorgensen E H,Vijayan M M,et al.Aroclor 1254 exposure reduces disease resistance and innate immune responses in fasted Arctic chalT[J].Environ.Toxic Chem,2005,24:117-124.
    [189]Benefold E,Andersen A,Rasmussen T,et al.Effect of Highly Bioaccumulated Polychlorinated Biphenyl Congeners on Estrogen and Androgen Receptor Activity [J].Toxicology,2001,158:141—153.
    [190]Antunes-Madeira M C,and Madeira V M C.Partition of DDT in synthetic and native membranes[J].Biochim Biophys Acta[J].1986,861:159—164.
    [191]Barreiro R,and PraR J R.Toxic effects of chemicals on microorganisms[J].Water Environ Res,1992,64:632-641.
    [192]Bloom M,Evans E,and Mouritsen O G.Physical properties of the fluid lipid-bilayer component&cell membranes:a perspective[J].Q Rev Biophys,1991,24:293-397.
    [193]Cardoso H,and Leao C.Mechanisms underlying the low and high enthalpy death induced by short-chain monocarboxylic acids and ethanol in Saccharomyces cerevisiae[J].Appl Microbiol Biotechnol,1992,38:388-392.
    [194]Hedlund B P,Geiselbrecht A D,Staley J T.Marinobacter strain NCE3 12 has a Pseudomonas like naphthalene dioxygenase.FEMS Microbiol Lett,2001,201:47-51.
    [195]TiirolaM A,Wang H,Paulin L,et al.Evidence for natural horiaontal transfer of the pcpB gene in the evolution of polychlorophenol-degrading sphingomonads[JJ.Appl Environ microbial,2001,68(9):4495-4501.
    [196]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999.
    [197]Cruden D L,Wolfranl J H,Rogers R D,and Gibson D T.Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase(organic-aqueous) medium[J].Appl Environ Microbiol,1992,58:2723-2729.
    [198]Gao H W,Hu Z J,and Zhao J F.Investigation of biomacromolecular assembly:replacement occurring on proteins[J].Chem Phys Lett,2003,376:251-258.
    [199]Gao H W,Zhao J F,Yang Q Z,et al.Non-covalent Interaction of 2′,4′,5′,7′-Tetrabromo-4,5,6,7-Tetrachlorofluorescein with Proteins and Its Application[J].Proteomics,2006,6(19):5140—5151.
    [200]Laurie A D,Lloyd—Jones G.The phn genes of Burkholderia sp.strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism[J].J Bacterial,1999,181(2):531-540.
    [201]崔玉霞,金洪钧,微生物降解PAHs有机污染物分子遗传学研究进展[J].环境污染治理技术与设备,2001,2(6):16—23.
    [202]Prak D J,Pritchard P H.Degradation of polycyclic aromatic hydrocarbons dissolved in Tween 80 surfactant solutions by Sphingomonas paucimobilis EPA 505 [J]. Can J Microbial, 2002 , 8(2): 151-158.
    [203] Ockenden W A, Sweetman A J, et al. Toward an understanding of the global atmospheric distribution of persistent organic pollutants: The use of semipermeable membrane devices as time-integrated passive samplers [J]. Environ Sci Technol, 1998, 32: 2795-2803.
    [204] Raimo G, Lombardo B, Masullo M, et al. Elongation factor Ts from the Antarctic eubacterium Pseudoalteromonas haloplanktis TAC 125: Biochemical characterization and cloning of the encoding gene [J]. Biochemistry, 2004, 43: 14759-14766.
    [205] Tiirola M A, Wang H, Paulin L, et al. Evidence for natural horiaontal transfer of the pep B gene in the evolution of polychlorophenol-degrading sphingomonads[J]. Appl Environ Microbial, 2001, 68(9): 4495-4501.
    [206] Luxo C, Jurado A S, Madeira V M C. Lipid composition changes induced by tamoxifen in a bacterial model system [J]. Biochem Bioph Acta, 1998, 1369: 71-84.
    [207] Mukhopadhyay P, Vogel H J, Tieleman D P. Distribution of pentachlorophenol in phospholipids bilayers: A molecular dynamics study[J]. Biophys J, 2004, 86: 337-345.
    [208] Sanchez M, Garbi C, et al. Klebsiella planticola strain DSZ mineralizes simazine: physiological adaptations involved in the process[J]. Appl Microbiol Biotechnol, 2005, 66: 589-596.
    [209] Martins J D, Monteiro J P, et al. Use of the microorganism Bacillus stearothermophilus as a model to evaluate toxicity of the lipophilic environmental pollutant endosulfan[J]. Toxicol in Vitro. 2003, 17: 595-601.
    [210] Li L, Ren J R, Gao H W, et al. Binding of Sudan II and IV to lecithin liposomes and E. coli membranes: insights into the toxicity of hydrophobic azo dyes[J]. BMC- Struc Biol 2007, 7: 16.
    [211] Donato M M, Antunes-Madeira M C, et al. Partition of DDT and DDE into membranes and extracted lipids of Bacillus stearothermophilus[i]. Bull Environ Contam Toxicol. 1997, 59: 696-701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700