用户名: 密码: 验证码:
硅基LED量子阱相关特性及芯片p面技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅衬底GaN基LED的研制成功,改写了以蓝宝石、碳化硅为衬底的GaN基LED的历史,是一条更具发展潜力的LED产业化技术路线,吸引了全球数十家研究单位和公司投入相关研究。在硅衬底上生长GaN材料与在蓝宝石、碳化硅衬底上生长相比,应力状态迥然不同,应力影响材料的极化,特别影响了作为有源层量子阱的生长特性和极化特性,进而影响LED的发光效率。同时,LED发展至今,在发光本质方面仍有不少重要的物理问题未搞清楚。另外,衬底不同决定了芯片端制造方面的差异化,硅材料与蓝宝石、碳化硅相比,物理、化学及加工特性方面有很大差别,通常用在蓝宝石基LED的芯片加工技术大部分不再适用于硅基LED,因此,发展一条先进的可产业化的硅基LED芯片制造技术同等重要。
     本文从量子阱相关特性及芯片技术两个方面着入研究,一方面改变量子阱的生长工艺、结构设计,通过光致发光(PL)、电致发光(EL)、荧光(FL)等手段分析量子阱的发光特性。另一方面改进芯片p面接触,优化p面钝化,探索出一条电镀金属基板的硅基TF芯片技术。基于以上两个方面,本文取得了以下重要的研究结果:
     1.通过研究具有单色单量子阱及单色多量子阱的硅基绿光LED的变温EL特性,发现与单色多量子阱相比,单色单量子阱LED具有更低的工作电压,小电流密度段(1~10A/cm2)具有更大的发光效率,在小电流应用方面具有更大的优势。
     2.通过研究具有单色及多色量子阱的硅基绿光LED在低温下的光谱行为,发现在低温小电流密度(~10-1A/cm2)时,多量子阱LED的发光主要来自靠近n-GaN的量子阱,在低温中电流密度时(1~10A/cm2),靠近p-GaN的量子阱的发光占主要地位,在大电流密度段(~102A/cm2)时,最后一个阱的发光趋于饱和,中间量子阱的发光开始逐渐占有明显的地位。
     3.建立了一个变温EL-IQE曲线与量子阱能带倾斜之间的定性关系,通过应力调制的量子阱能带倾斜模型,较好地解释了单色单量子阱和多量子阱LED在变温变电流时的众多EL特性。
     4.通过研究IQE和FWHM随电流密度的变化特性,发现低温下载流子可能优先在量子阱局域态中发生复合,并在低温100K下观察到了与此相关的发光情况。
     5.报道了硅基绿光LED的最高EL-IQE:工作状态下(52A/cm2),SQW-LED(@522nm)室温下的IQE为26.3%,同波长的MQW-LED为40.7%。
     6.研究了量子阱个数对硅基绿光LED光学特性的影响。结果表明,4J样品的发光效率最高,2J样品的发光效率最低。荧光显微图片并非越均匀对应的发光效率越高,2J样品具有最均匀分布的荧光显微镜图片,却具有最低的发光效率。
     7.采用垒掺杂的手段实现不同位置的阱发光,不同位置的垒掺硅对EL波长的影响较大。工作状态下,具有两个发光阱样品的发光效率最低,四个发光阱样品的发光效率最高。另外,垒掺杂能够使FL的均匀性明显变好,掺硅垒的位置离注入层越近,反压越低,ESD性能也越差。对比了注入层掺硅与注入层不掺硅的样品,实验现象一致反映,阱前掺硅量增加引起量子阱受到的压应力增加。
     8.通过在硅衬底LED薄膜p-GaN表面蒸发不同厚度的Ni覆盖层,将其在N2:O2=4:1的气氛中、450℃-750℃的温度范围内进行退火,在去掉薄膜表面Ni覆盖层之后制备Pt/p-GaN欧姆接触层。实验结果表明:退火温度和Ni覆盖层厚度均对硅衬底GaN基LED薄膜p型欧姆接触有重要影响,Ni覆盖退火能够显著降低p型层中Mg受主的激活温度。经牺牲Ni退火后,p型比接触电阻率随退火温度的升高呈先变小后变大的规律,随Ni覆盖层厚度的增加呈先变小后变大随后又变小的趋势;经过优化后,当Ni覆盖层厚度为1.5nm,退火温度为450℃,Pt与p-GaN比接触电阻率在不需要二次退火的情况下达到6.1×10-5Ω·cm2。
     9.利用硫酸双氧水选择性腐蚀经牺牲Ni退火后的LED薄膜表面。结果表明,经牺牲Ni550℃退火后,薄膜表面开始受到破坏,且随退火温度的升高,受破坏的程度增加。退火后的LED薄膜经沸腾硫酸双氧水腐蚀后,表面出现明显的腐蚀坑,我们认为这种腐蚀坑可能与材料内位错在表面的露头及由于重掺杂、量子阱内V型坑引起的p型材料的极性反转有关,且牺牲Ni退火促进了这种腐蚀坑的形成和长大。
     10.讨论了金属或者绝缘材料作为p面钝化材料的可行性。通常用作n型接触的Cr,在银合金条件下完全可以达到p面钝化效果。最后讨论了是否能够选择不导电的绝缘物作为p面钝化材料,结合硅基TF芯片工艺对其进行了可行性论证:若LED芯片工艺过程不存在大应力作用,采用氮化硅、氧化硅或PI等作为p面钝化材料是可行的。
     11.通过电镀的方法分别将Si衬底GaN LED薄膜转移至铜铬、铜镍基板上,并制备成不同电镀基板的LED芯片,芯片加工过程中,LED薄膜由张应力变为压应力,随后压应力不断得到释放,通过对比不同电镀金属基板LED芯片在力学、热学、光电等方面的性能可知,电镀铜镍基板LED芯片的散热性能更好、波长漂移特性更佳、力学特性以及伏安特性更加可靠。Si衬底GaN电镀金属基板LED芯片的研制成功,进一步降低了LED的制备成本。
     以上研究结果已在本单位863计划相关课题研究和相关产业化过程中得到应用,取得了较好的效果。
The successful development of GaN-based LED on silicon substrate overwrites the history of InGaN LEDs only grown on sapphire and Silicon carbon, which has the more potential for industry technical route and it had attracted many relevant researches coming from dozens of research units and companies in the world. Recently, several units have reported their new research results on LEDs on Si substrate, but there has been apart from the results of LEDs on sapphire and SiC substrates, which mainly reflects in the lumen efficiency and industrialization technologies. The stress of GaN grown on Si is different from the stress of grown on sapphire and SiC, leading to the discrepancy of polarization in the materials, especially affect the properties correlated with growth and polarity, which is crucial for the lumen efficiency of LED. Up to the present, some important physical issue about the light emitting essence has not been clear. In addition, different substrate materials induce the discrepancy of chip process. The physical and chemical characters among silicon, sapphire and SiC are widely different, this result in that the chip process of LEDs on sapphire is not adapt to LEDs on Silicon. Therefore, the development of an advanced chip manufacturing technology of LED on silicon is equally important.
     From the research into relevant characteristics of the quantum well and chip technology, we change the growth process and structural design of quantum well, then by photoluminescence (PL), electroluminescence (EL), fluorescence (FL) and other means, we analysis the luminescence properties of quantum wells. Otherwise, we improve p-type contact of the chip and optimize the process of p-surface passivation, explore a thin film LED chip technology by electroplating a metal substrate to replace original silicon substrate. Based on the above aspects, we find the following important results:
     Through discussion of variable temperature EL features of a monochrome single quantum well and monochrome multi-quantum-well green LEDs on Si, we find that compared with the monochrome multi-quantum well, monochrome luminous efficiency. In addition, Si-doping of barrier can make FL picture uniform significantly. However, the closer of the position between the Si-doped barrier and the injection layer, the lower of the reverse voltage, the worse of ESD performance. Contrast samples of injection layer doped silicon or not, experimental results reflect consistently that the doped silicon before the well increases the compressive stress in well.
     Different thick. Ni layers were deposited on the GaN-based LED films grown on Si(111) substrate, then LED films are annealed at400℃~750℃in the Atmosphere of N2:O2=4:1. The Pt/p-GaN contact layer is prepared after removing the Ni-capping layer. It is found that, annealing temperature and thickness of Ni-capping layer each have an important influence on the p-type contacts of GaN-based LED films. The Ni film can significantly reduce the activation temperature of Mg acceptor of the p-type GaN. The characteristic of p-type contact of Ni-capping sample becomes better first then turns worse with the annealing temperature and it becomes better then turns worse and then better with Ni-capping thickness. After optimization, the specific contact resistivity of Pt/p-GaN in the case of no second annealing can be reach6.1×10-5Ω·cm2, when Ni-assisted layer thickness is1.5nm and its annealing temperature is450℃.
     The effects of Ni-assisted annealing on the surface morphologies of GaN-based LED films on Si substrate were studied. A wet etching method using acid-hydrogen peroxide was adopted to boil films surface after activation. We found that some nano-pits appeared on surfaces while original surface step structure was still clearly visible, which shows a defect-selective etching characteristic. Otherwise, we demonstrate the surface morphology can be affected by Ni-assisted annealing. We explain the forming reason of the pits maybe related to dislocation outcrops and polarity inversion of p-GaN which caused by heavily doped and V-pits in quantum wells. The formation and growth of corrosion pits after acid-hydrogen peroxide etched was promoted by Ni-capping annealing.
     Discussing the feasibility of metal or insulating material as the material of p-surface passivation. Cr is used as the n-type contact usually, of which the purpose of p-surface passivation can be achieved under the conditions of the silver alloy. Finally, combined with silicon-based TF-chip technology, if be able to choose a non-conductive insulating material as a p-surface passivation material, and its feasibility is if the LED chip process does not exist large stress, the use of silicon nitride, silicon oxide or PI as a p-surface passivation material is feasible.
     GaN LED films grown on Si (111) substrate were transfer onto copper, chromium, and copper, nickel metal substrates by electroplating separately. In chip processing, LED film is by tensile stress into compressive stress, then compressive stress continuously released. The study had found that CuNi substrate had the better heat dispersion property than CuCr substrate. The high resolution XRD show that the residual tensile stress exists in the LED film on CuCr substrate and the compressive stress exist in the LED film on CuNi substrate. CuNi LED had the stable electrical performance after aging192h under the condition of room temperature,900mA. The reliability of electroplated CuNi substrate LED had reached the demands of commercialization.
     Above results have been used in the research on related National High Technology Research and Development Program863of our institute and in related industrialization. Good effects have been achieved.
引文
[I]Holonyak N. COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As,.xPx) JUNCTIONS [J]. Applied Physics Letters,1962,1 (4):82.
    [2]Hall R. N., Fenner G. E., Kingsley J. D., et al. Coherent Light Emission From GaAs Junctions [J]. Physical Review Letters,1962,9 (9):366.
    [3]Nathan Marshall I., Dumke William P., Burns Gerald, et al. STIMULATED EMISSION OF RADIATION FROM GaAs p-n JUNCTIONS [J]. Applied Physics Letters,1962,1 (3):62-64.
    [4]Allen J. W., Moncaster M. E. and Starkiewicz J. Electroluminescent devices using carrier injection in gallium phosphide [J]. Solid-State Electronics,1963,6 (2):95-102.
    [5]Grimmeiss H. G. and Scholz H. Efficiency of recombination radiation in GaP [J]. Physics Letters, 1964,8 (4):233-235.
    [6]Maruska H. and Tietjen J. THE PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED SINGLE CRYSTAL LINE GaN [J]. Applied Physics Letters,1969,15(10):327.
    [7]Amano Hiroshi, Kito Masahiro, Hiramatsu Kazumasa, et al. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) [J]. Japanese Journal of Applied Physics,1989,28 (Part 2, No.12):L2112-L2114.
    [8]Nakamura Shuji, Mukai Takashi, Senoh Masayuki, et al. Thermal Annealing Effects on P-Type Mg-Doped GaN Films [J]. Japanese Journal of Applied Physics,1992,31 (Part 2, No.2B): L139-L142
    [9]Akasaki I. and Amano H. Perspective of the UV/blue light emitting devices based on GaN and related compounds [J]. OPTOELECTRON DEVICES TECHNOL.,1992,7 (1):49-56.
    [10]Nakamura Shuji, Senoh Masayuki and Mukai Takashi. P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes [J]. Japanese Journal of Applied Physics, 1993,32 (Part 2, No.1A/B):L8-L11.
    [11]Nakamura Shuji, Mukai Takashi and Senoh Masayuki. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Applied Physics Letters, 1994,64(13):1687.
    [12]Nakamura Shuji, Senoh Masayuki, Iwasa Naruhito, et al. Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes [J]. Japanese Journal of Applied Physics, 1995,34L1332-L1335.
    [13]Nakamura Shuji, Senoh Masayuki, Iwasa Naruhito, et al. High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures [J]. Japanese Journal of Applied Physics,1995,34 (Part 2, No.7A):L797-L799.
    [14]Krames Michael R., Shchekin Oleg B., Mueller-Mach Regina, et al. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting [J]. Journal of Display Technology, 2007,3(2):160-175.
    [15]Craford M.G. LEDs for solid state lighting and other emerging applications:status, trends, and challenges [J]. Proc. SPIE,2005,5941 594101.
    [16]Badgutdinov M., Korobov E., Luk'yanov F., et al. Luminescence spectra, efficiency, and color characteristics of white-light-emitting diodes based on p-n InGaN/GaN heterostructures with phosphor coatings [J]. Semiconductors,2006,40 (6):739-744.
    [17]Narendran N., Gu Y., Freyssinier-Nova J. P., et al. Extracting phosphor-scattered photons to improve white LED efficiency [J]. physica status solidi (a),2005,202 (6):R60-R62.
    [18]Narukawa Yukio, Narita Junya, Sakamoto Takahiko, et al. Ultra-High Efficiency White Light Emitting Diodes [J]. Japanese Journal of Applied Physics,2006,45 (41):L1084.
    [19]http://www.cree.com/press/pfessreleases.asp.
    [20]Yukio Narukawa, Masatsugu Ichikawa, Daisuke Sanga, et al. White light emitting diodes with super-high luminous efficacy [J]. Journal of Physics D:Applied Physics,2010,43 (35):354002.
    [21]Mo Chun Lan, Fang Wen Qing, Liu He Chu, et al. Growth and device characteristic of InGaN MQW LED on Si substrate [J]. High Technology Letters,2005,15 (5):58-61.
    [22]Jiang Fengyi., Wang Li., Mo Chunlan., et al, presented at the 8th International conference on Nitride Semiconductors (1CNS-8), ICC Jeju, Korea,2009 (unpublished).
    [23]Jiang Fengyi, Wang Li, Wang Xiaolan, et al. Silicon-based LEDs leap from lab to fab [J]. compoundsemiconductor,2010, (June):30-34.
    [24]Lin K. L., Chang E. Y, Hsiao Y. L., et al. Growth of GaN film on 150 mm Si (111) using multilayer AIN/AlGaN buffer by metal-organic vapor phase epitaxy method [J]. Applied Physics Letters,2007,91 (22):
    [25]Murakami T., United States Patent No.5,119,150 (1992).
    [26]Manasreh M.O., 111-nitride semiconductors:electrical, structural, and defects properties [M].Amsterdam, the Netherlands:Elsevier Science,2000.
    [27]Lin Kung-Liang, Chang Edward-Yi, Hsiao Yu-Lin, et al. Growth of GaN film on 150 mm Si (111) using multilayer AIN/AlGaN buffer by metal-organic vapor phase epitaxy method [J]. Applied Physics Letters,2007,91 (22):222111-3.
    [28]Schulze F., Dadgar A., Blasing J., et al. Metalorganic vapor phase epitaxy grown InGaN/GaN light-emitting diodes on Si(001) substrate [J]. Applied Physics Letters,2006,88 (12):121114-3.
    [29]Semond F., Antoine-Vincent N., Schnell N., et al. Growth by Molecular Beam Epitaxy and Optical Properties of a Ten-Period AlGaN/AIN Distributed Bragg Reflector on (111)Si [J]. physica status solidi (a),2001,183(1):163-167.
    [30]Ng H. M., Moustakas T. D. and Chu S. N. G. High reflectivity and broad bandwidth AIN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy [J]. Applied Physics Letters, 2000,76 (20):2818-2820.
    [31]Waldrip K. E., Han J., Figiel J. J., et al. Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors [J]. Applied Physics Letters,2001,78 (21):3205-3207.
    [32]Mastro M. A., Holm R. T., Bassim N. D., et al. High-reflectance Ⅲ-nitride distributed Bragg reflectors grown on Si substrates [J]. Applied Physics Letters,2005,87 (24):241103-3.
    [33]Xiong Chuan bing, Jiang Feng yi, Fang Wen qing, et al. Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate [J]. Science in China, Series E Technological Sciences,2006,49 (3):313-321.
    [34]Xiong Chuanbing, Jiang Fengyi, Fang Wenqing, et al. The characteristics of GaN-based blue LED on Si substrate [J]. Journal of Luminescence,2007,122-123 185-187.
    [35]Wang Guangxu, Xiong Chuanbing, Wang Yanming, et al. Study on Characteristic of Si-Based GaN-LED with Electroplated Metal Substrates [J]. Semiconductor Technology,2010,35 (z2): 43-45.
    [36]Krost Alois and Dadgar Armin. GaN-based optoelectronics on silicon substrates [J]. Materials Science and Engineering:B,2002,93 (1-3):77-84.
    [37]Dadgar Armin, Bl, auml, et al. Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 um in Thickness [J]. Japanese Journal of Applied Physics,2000,39 L1183.
    [38]Krost A. and Dadgar A. GaN-Based Devices on Si [J]. physica status solidi (a),2002,194 (2): 361-375.
    [39]Feltin E., Beaumont B., Laugt M., et al. Crack-Free Thick GaN Layers on Silicon (111) by Metalorganic Vapor Phase Epitaxy [J]. physica status solidi (a),2001,188 (2):531-535.
    [40]Jamil M., Grandusky J. R., Jindal V., et al. Development of strain reduced GaN on Si (111) by substrate engineering [J]. Applied Physics Letters,2005,87 (8):082103-3.
    [41]Zamir S., Meyler B. and Salzman J. Reduction of cracks in GaN films grown on Si-on-insulator by lateral confined epitaxy [J]. Journal of Crystal Growth,2002,243 (3-4):375-380.
    [42]Yang Z., Guarin F., Tao I. W., et al. Approach to obtain high quality GaN on Si and SiC-silicon-insulator compliant substrate by molecular-beam epitaxy [J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1995,13 (2):789-791.
    [43]Li T. K. and Hsu S.T., United States Patent No.7358160 (2008).
    [44]Chen X. and Uesugi T. Growth and characteristics of low dislocation density GaN grown on Si(111) from a single process [J]. Applied Physics Letters,2006,88 (3):031916-3.
    [45]Zamir S., Meyler B., Zolotoyabko E., et al. The effect of A1N buffer layer on GaN grown on (111)-oriented Si substrates by MOCVD [J]. Journal of Crystal Growth,2000,218 (2-4): 181-190.
    [46]Raghavan Srinivasan, Weng Xiaojun, Dickey Elizabeth, et al. Effect of A1N interlayers on growth stress in GaN layers deposited on (111) Si [J]. Applied Physics Letters,2005,87 (14): 142101-3.
    [47]Suda Jun, Miura Kouhei, Honaga Misako, et al. Effects of 6H-SiC surface reconstruction on lattice relaxation of A1N buffer layers in molecular-beam epitaxial growth of GaN [J]. Applied Physics Letters,2002,81 (27):5141-5143.
    [48]Chen P., Zhang R., Zhao Z. M., et al. Growth of high quality GaN layers with A1N buffer on Si(111) substrates [J]. Journal of Crystal Growth,2001,225 (2-4):150-154.
    [49]Jang Seong-Hwan, Lee Seung-Jae, Seo In-Seok, et al. Characteristics of GaN/Si(111) epitaxy grown using Al0.1Ga0.9N/AIN composite nucleation layers having different thicknesses of A1N [J]. Journal of Crystal Growth,2002,241 (3):289-296.
    [50]Jang Seong-Hwan and Lee Cheul-Ro. High-quality GaN/Si(111) epitaxial layers grown with various A10.3Ga0.7N/GaN superlattices as intermediate layer by MOCVD [J]. Journal of Crystal Growth,2003,253 (1-4):64-70.
    [51]Ishikawa Hiroyasu, Zhao Guang-Yuan, Nakada Naoyuki, et al. GaN on Si Substrate with AlGaN/AIN Intermediate Layer [J]. Japanese Journal of Applied Physics,1999,38 L492.
    [52]Wu Jiejun, Han Xiuxun, Li Jiemin, et al. Crack-free GaN/Si(111) epitaxial layers grown with inAlGaN alloy as compliant interlayer by metalorganic chemical vapor deposition [J]. Journal of Crystal Growth,2005,279 (3-4):335-340.
    [53]Komiyama Jun, Abe Yoshihisa, Suzuki Shunichi, et al. Suppression of crack generation in GaN epitaxy on Si using cubic SiC as intermediate layers [J]. Applied Physics Letters,2006,88 (9): 091901-3.
    [54]Strittmatter A., Bimberg D., Krost A., et al. Structural investigation of GaN layers grown on Si(111) substrates using a nitridated AlAs buffer layer [J]. Journal of Crystal Growth,2000,221 (1-4):293-296.
    [55]Wakahara Akihiro, Oishi Hiroshi, Okada Hiroshi, et al. Organometallic vapor phase epitaxy of GaN on Si(111) with a y-A12O3(111) epitaxial intermediate layer [J]. Journal of Crystal Growth, 2002,236 (1-3):21-25.
    [56]Liu Hongxue, Ye Zhizhen, Zhang Haoxiang, et al. Wurtzite GaN epitaxial growth on Si(111) using silicon nitride as an initial layer [J]. Materials Research Bulletin,2000,35 (11): 1837-1842.
    [57]Kim KC, Kang SW, Kryliouk O., et al, presented at the Mater. Res. Soc.Symp. Proa,2003 (unpublished).
    [58]Armitage R., Yang Qing, Feick H., et al. Lattice-matched HfN buffer layers for epitaxy of GaN on Si [J]. Applied Physics Letters,2002,81 (8):1450-1452.
    [59]He J. Q., Jia C. L., Vaithyanathan V., et al. Interfacial reaction in the growth of epitaxial SrTiO[sub 3] thin films on (001) Si substrates [J]. Journal of Applied Physics,2005,97 (10): 104921-6.
    [60]Nishimura S., Matsumoto Satoru and Terashima Kazutaka. Growth of GaN on Si substrates-roles of BP thin layer [J]. Optical Materials,2002,19(1):223-228.
    [61]Maa J.S., Li T., Tweet D.J., et al, United States Patent No.2008/0315255 AI (2008).
    [62]Takemoto Kikurou, Murakami Hisashi, Iwamoto Tomoyuki, et al. Growth of GaN Directly on Si(111) Substrate by Controlling Atomic Configuration of Si Surface by Metalorganic Vapor Phase Epitaxy [J]. Japanese Journal of Applied Physics,2006,45 L478-L481.
    [63]Yang J. W., Lunev A., Simin G., et al. Selective area deposited blue GaN-InGaN multiple-quantum well light emitting diodes over silicon substrates [J]. Applied Physics Letters, 2000,76 (3):273-275.
    [64]Dadgar A., Strittmatter A., Biasing J., et al. Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon [J]. physica status solidi (c),2003,0 (6):1583-1606.
    [65]Nikishin S. A., Faleev N. N., Antipov V. G., et al. High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia [J]. Applied Physics Letters,1999,75 (14): 2073-2075.
    [66]Li Tingkai, Mastro Michael and Dadgar Armin, Ⅲ-Ⅴ Compound Semiconductors:Integration with Silicon-Based Microelectronics CRC-Press,2010, p.105.
    [67]Yoshida Seikoh, Li Jiang, Takehara Hironari, et al. Formation of thin GaN layer on Si (111) for fabrication of high-temperature metal field effect transistors (MESFETs) [J]. Journal of Crystal Growth,2003,253 (1-4):85-88.
    [68]Mo Chun Lan, Fang Wen Qing, Pu Yong, et al. Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD [J]. Journal of Crystal Growth,2005,285 (3):312-317.
    [69]Li Tingkai, Mastro Michael and Dadgar Armin, Ⅲ-Ⅴ Compound Semiconductors:Integration with Silicon-Based Microelectronics CRC-Press,2010, p.107.
    [70]Marchand H., Zhao L., Zhang N., et al. Metalorganic chemical vapor deposition of GaN on Si(111):Stress control and application to field-effect transistors [J]. Journal of Applied Physics, 2001,89 (12):7846-7851.
    [71]Kawaguchi Yasutoshi, Honda Yoshio, Matsushima Hidetada, et al. Selective Area Growth of GaN on Si Substrate Using SiO$_{\textbf 2}$ Mask by Metalorganic Vapor Phase Epitaxy [J]. Japanese Journal of Applied Physics,1998,37 L966-L969.
    [72]Dadgar A., Alam A., Riemann T., et al. Crack-Free InGaN/GaN Light Emitters on Si(111) [J]. physica status solidi (a),2001,188(1):155-158.
    [73]Li Tingkai, Mastro Michael and Dadgar Armin, Ⅲ-Ⅴ Compound Semiconductors: Integration with Silicon-Based Microelectronics CRC-Press,2010, p.88.
    [74]Dadgar A., Poschenrieder M., Biasing J., et al. Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature A1N interlayers and in situ Si[sub x]N[sub y] masking [J]. Applied Physics Letters,2002,80 (20):3670-3672.
    [75]Zhang Baijun, Egawa Takashi, Ishikawa Hiroyasu, et al. Thin-film InGaN multiple-quantum-well light-emitting diodes transferred from Si (111) substrate onto copper carrier by selective lift-off [J]. Applied Physics Letters,2005,86 (7):071113-3.
    [76]Zhang B. J., Egawa T., Ishikawa H., et al. InGaN Multiple-Quantum-Well Light Emitting Diodes on Si(111) Substrates [J]. physica status solidi (a),2001,188 (1):151-154.
    [77]Zhang Baijun, Egawa Takashi, Ishikawa Hiroyasu, et al. High-Bright InGaN Multiple-Quantum-Well Blue Light-Emitting Diodes on Si (111) Using AIN/GaN Multilayers with a Thin AIN/AlGaN Buffer Layer [J]. Japanese Journal of Applied Physics,2003,42 L226-L228.
    [78]Egawa Takashi, Moku Tetsuji, Ishikawa Hiroyasu, et al. Improved Characteristics of Blue and Green InGaN-Based Light-Emitting Diodes on Si [J]. Japanese Journal of Applied Physics,2002, 41 (Part 2, No.6B):L663-L664.
    [79]Damilano Benjamin, Natali Franck, Brault Julien, et al. Blue (Ga,In)N/GaN Light Emitting Diodes on Si(110) Substrate [J]. Applied Physics Express,2008,1121101.
    [80]Tran Chuong A., Osinski A., Karlicek Jr R. F., et al. Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy [J]. Applied Physics Letters,1999,75 (11):1494-1496.
    [81]Reiher F., Dadgar A., Biasing J., et al. inGaN/GaN light-emitting diodes on Si(110) substrates grown by metal-organic vapour phase epitaxy [J]. Journal of Physics D:Applied Physics,2009, 42 (5):055107.
    [82]Kipshidze G., Kuryatkov V., Borisov B., et al. AlGalnN-based ultraviolet light-emitting diodes grown on Si(111) [J]. Applied Physics Letters,2002,80 (20):3682-3684.
    [83]Li J., Lin J. Y. and Jiang H. X. Growth of Ⅲ-nitride photonic structures on large area silicon substrates [J]. Applied Physics Letters,2006,88 (17):171909-3.
    [84]Fehse K., Dadgar A., Krtschil A., et al. Impact of thermal annealing on the characteristics of InGaN/GaN LEDs on Si(111) [J]. Journal of Crystal Growth,2004,272 (1-4):251-256.
    [85]Phillips A. and Zhu D. UK cracks GaN-on-silicon LEDs [J]. Compound Semiconductor,2009, March (09):19.
    [86] http://compoundsemiconductor.net/csc/features-details/37881/UK-cracks-GaN-on-silicon-LED. html 2009.
    [87]Guha Supratik and Bojarczuk Nestor A. Ultraviolet and violet GaN light emitting diodes on silicon [J]. Applied Physics Letters,1998,72 (4):415-417.
    [88]Fenwick William E., Melton Andrew, Xu Tianming, et al. Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si (111) using a thin A12O3 interlayer [J]. Applied Physics Letters,2009,94 (22):222105-3.
    [89]Poschenrieder M, Fehse K., Schulz F., et al. MOCVD-Grown InGaN/GaN MQW LEDs on Si(111) [J]. physica status solidi (c),2003,0(1):267-271.
    [90]Dadgar A., Poschenrieder M., Biasing J., et al. MOVPE growth of GaN on Si(1 1 1) substrates [J]. Journal of Crystal Growth,2003,248 (0):556-562.
    [91]Kipshidze G., Kuryatkov V., Borisov B., et al. Deep Ultraviolet AlGalnN-Based Light-Emitting Diodes on Si(111) and Sapphire [J]. physica status solidi (a),2002,192 (2):286-291.
    [92]Yablonskii G. P., Lutsenko E. V., Pavlovskii V. N., et al. Luminescence and Stimulated Emission from GaN on Silicon Substrates Heterostructures [J]. physica status solidi (a),2002,192 (1): 54-59.
    [93]Brown J. D., Borges Ric, Piner Edwin, et al. AlGaN/GaN HFETs fabricated on 100-mm GaN on silicon (111) substrates [J]. Solid-State Electronics,2002,46 (10):1535-1539.
    [94]Cheng Kai, Leys M., Degroote S., et al. Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers [J]. Journal of Electronic Materials,2006,35 (4):592-598.
    [95]Zhu D, McAleesea C, McLaughlina KK, et al, presented at the Light-Emitting Diodes:Materials, Devices, and Applications for Solid State Lighting Ⅻ,2009 (unpublished).
    [96]Dadgar A, Hums C, Diez A, et al. Growth of blue GaN LED structures on 150-mm Si (111) [J]. Journal of Crystal Growth,2006,297 (2):279-282.
    [97]Li Tingkai, Mastro Michael and Dadgar Armin, Ⅲ-Ⅴ Compound Semiconductors:Integration with Silicon-Based Microelectronics CRC-Press,2010, pp.448-449.
    [98]Lee JaeWon, Tak Youngjo, Kim Jun-Youn, et al. Growth of high-quality InGaN/GaN LED structures on (111) Si substrates with internal quantum efficiency exceeding 50%[J]. Journal of Crystal Growth,2011,315 (1):263-266.
    [99]Jun-Youn Kim, Yongjo Tak, Jae Won Lee, et al, presented at the CLEO:2011-Laser Applications to Photonic Applications, Baltimore, Maryland,2011 (unpublished).
    [100]http://www.compoundsemiconductor.net/cse/news-details.php?cat=news&id= 197332062011.
    [101]Liu J., Feng F., Zhou Y., et al. Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate [J]. Applied Physics Letters,2011,99 (11): 111112.
    [102]Kelly M. K., Ambacher O., Dahlheimer B., et al. Optical patterning of GaN films [J]. Applied Physics Letters,1996,69(12):1749-1751.
    [103]Wong W. S., Schloss L. F., Sudhir G.S., et al. Pulsed Excimer Laser Processing of AIN/GaN Thin Films [J]. MRS Online Proceedings Library,1996,449 null-null.
    [104]Kelly M. K., Ambacher O., Dimitrov R., et al. Optical Process for Liftoff of Group Ⅲ-Nitride Films [J]. physica status solidi (a),1997,159 (1):R3-R4.
    [105]Wong W. S., Sands T. and Cheung N. W. Damage-free separation of GaN thin films from sapphire substrates [J]. Applied Physics Letters,1998,72 (5):599-601.
    [106]Wong W. S., Sands T., Cheung N. W., et al. Fabrication of thin-film inGaN light-emitting diode membranes by laser lift-off [J]. Applied Physics Letters,1999,75 (10):1360-1362.
    [107]Wong W. S., Sands T., Cheung N. W., et al. InxGa,.XN light emitting diodes on Si substrates fabricated by Pd--In metal bonding and laser lift-off [J]. Applied Physics Letters,2000,77 (18): 2822-2824.
    [108]Wong William S., Kneissl Michael, Mei Ping, et al. Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates [J]. Applied Physics Letters,2001,78 (9):1198-1200.
    [109]Chu Chen-Fu, Lai Fang-1., Chu Jung-Tang, et al. Study of GaN light-emitting diodes fabricated by laser lift-off technique [J]. Journal of Applied Physics,2004,95 (8):3916-3922.
    [110]Chen W. H., Kang X. N., Hu X. D., et al. Study of the structural damage in the (0001) GaN epilayer processed by laser lift-off techniques [J]. Applied Physics Letters,2007,91 (12): 121114-3.
    [111]Jang Jin-Wook, Hayes Scott, Lin Jong-Kai, et al. Interfacial reaction of eutectic AuSi solder with Si (100) and Si (111) surfaces [J]. Journal of Applied Physics,2004,95 (11):6077-6081.
    [112]Ueda Tetsuzo, Ishida Masahiro, Tamura Satoshi, et al. Vertical InGaN-based blue light emitting diode with plated metal base fabricated using laser lift-off technique [J]. physica status solidi (c), 2003,0(7):2219-2222.
    [113]Horng R. H., Lee C. E., Hsu S. C., et al. High-power GaN light-emitting diodes with patterned copper Substrates by electroplating [J]. physica status solidi (a),2004,201 (12):2786-2790.
    [114]Doan T, Chu C., Chen C., et al. Vertical GaN based light emitting diodes on metal alloy substrate for solid state lighting application [J]. Proc. of SP1E,2006,6134 61340G.
    [115]Cheng Chao-Chen, Chu Chen-Fu, Liu Wen-Huan, et al. Highly efficient GaN vertical light emitting diode on metal alloy substrate from near UV to green color for solid state lighting application [J]. Proc. SPIE,2006,6337633703-6.
    [116]Cheng Chao-Chen, Chu Chen-Fu, Liu Wen-Huan, et al. Reliability of GaN-based vertical light-emitting diodes on metal alloy substrate for solid state lighting application [J]. Proc. SPIE, 2006,6337 633705-5.
    [117]Doan T., Tran C., Chu C., et al. Vertical GaN based light emitting diodes on metal alloy substrate boosts high power LED performance [J]. Proc. SPIE,2007,6669 666903-8.
    [118]Wang Shui-Jinn, Uang Kai-Ming, Chen Shiue-Lung, et al. Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes [J]. Applied Physics Letters,2005,87 (1):011111-3.
    [119]方圆,郭霞,王婷,et al.激光剥离技术实现GaN薄膜从蓝宝石衬底移至Cu衬底[J].激光与红外,2007,37(1):62-65.
    [120]Han C. N., Chou T. L., Huang C. F., et al, presented at the Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems,2008. EuroSimE 2008. International Conference on,2008 (unpublished).
    [121]Kim Sunjung, Jang Jun-Ho, Lee Jeong-Soo, et al. Stress behavior of electrodeposited copper films as mechanical supporters for light emitting diodes [J]. Electrochimica Acta,2007,52 (16): 5258-5265.
    [122]Wang Yanming, Xiong Chuanbing, Wang Guangxu, et al. Study on Aging Characterization of 1 W Epitaxy on Si Substrate Blue LED Based on Different Substrates [J]. Acta optica Sinica,2010, 30(6):1749-6.
    [123]Xiong Yi-Jing, Zhang Meng, Xiong Chuan-Bing, et al. Investigation of strain of GaN light-emitting diode films transferred to metal substrate from Si (111) [J]. Faguang Xuebao/Chinese Journal of Luminescence,2010,31531-537.
    [124]TAO Xi-xia, Wang Li, LIU Yan-song, et al. p层厚度对Si基GaN垂直结构LED出光的影响[J]. Chinese Journal of Luminescence/Faguaungxuebao,2011,32 (10):1069-5.
    [125]Tao X. X., Wang L., Liu Y. S., et al. Effects of reflector-induced interferences on light extraction of InGaN/GaN vertical light emitting diodes [J]. Journal of Luminescence,2011,131 (9): 1836-1839.
    [126]Laubsch A., Sabathil M., Baur J., et al. High-Power and High-Efficiency InGaN-Based Light Emitters [J]. IEEE Transactions on Electron Devices,2010,57 (1):79-87.
    [127]Kim Min-Ho, Schubert Martin F., Dai Qi, et al. Origin of efficiency droop in GaN-based light-emitting diodes [J]. Applied Physics Letters,2007,91 (18):183507-3.
    [128]Schubert Martin F., Chhajed Sameer, Kim Jong Kyu, et al. Effect of dislocation density on efficiency droop in GalnN/GaN light-emitting diodes [J]. Applied Physics Letters,2007,91 (23): 231114-3.
    [129]Xu Jiuru, Schubert Martin F., Noemaun Ahmed N., et al. Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GalnN/GaInN multi-quantum-well light-emitting diodes [J]. Applied Physics Letters,2009,94 (1):011113-3.
    [130]Shen Y. C., Mueller G. O., Watanabe S., et al. Auger recombination in inGaN measured by photoluminescence [J]. Applied Physics Letters,2007,91 (14):141101-3.
    [131]Xie Jinqiao, Ni Xianfeng, Fan Qian, et al. On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers [J]. Applied Physics Letters,2008,93 (12):121107-3.
    [132]Yi Yang, Xian An Cao and Chunhui Yan. Investigation of the Nonthermal Mechanism of Efficiency Rolloff in InGaN Light-Emitting Diodes [J]. IEEE Transactions on Electron Devices, 2008,55(7):1771-1775.
    [133]Cao X. A., Yang Y. and Guo H. On the origin of efficiency roll-off in InGaN-based light-emitting diodes [J]. Journal of Applied Physics,2008,104 (9):093108-4.
    [134]Rozhansky I. V. and Zakheim D. A. Analysis of dependence of electroluminescence efficiency of AlInGaN LED heterostructures on pumping [J]. physica status solidi (c),2006,3 (6): 2160-2164.
    [135]Han Sang-Heon, Lee Dong-Yul, Lee Sang-Jun, et al. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes [J]. Applied Physics Letters,2009,94 (23):231123-3.
    [136]Hader J., Moloney J. V., Pasenow B., et al. On the importance of radiative and Auger losses in GaN-based quantum wells [J]. Applied Physics Letters,2008,92 (26):261103-3.
    [137]Pasenow B., Koch S. W., Hader J., et al. Auger losses in GaN-based quantum wells: Microscopic theory [J]. physica status solidi (c),2009,6 (S2):S864-S868.
    [138]Laubsch Ansgar, Sabathil Matthias, Bergbauer Werner, et al. On the origin of IQE-droop in InGaN LEDs [J]. physica status solidi (c),2009,6 (S2):S913-S916.
    [139]Ryu HY, Kim HS and Shim JI. Rate equation analysis of efficiency droop in InGaN light-emitting diodes [J]. Applied Physics Letters,2009,95 (8):081114-3.
    [140]David Aurelien and Grundmann Michael J. Droop in InGaN light-emitting diodes:A differential carrier lifetime analysis [J]. Applied Physics Letters,2010,96 (10):103504-3.
    [141]Son Jun Ho and Lee Jong-Lam. Strain engineering for the solution of efficiency droop in InGaN/GaN light-emitting diodes [J]. Optics Express,2010,18 (6):5466-5471.
    [142]Song H., Kim J. S., Kim E. K., et al. Zero-internal fields in nonpolar InGaN/GaN multi-quantum wells grown by the multi-buffer layer technique [J]. Nanotechnology,2010,21 (13):134026.
    [143]Sang-Heon Han and et al. Improvement of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal wells [J]. Journal of Physics D:Applied Physics, 2010,43 (35):354004.
    [144]Lin Ray-Ming, Lin Yung-Hsiang, Chiang Chung-Hao, et al. Inserting a low-temperature n-GaN underlying layer to separate nonradiative recombination centers improves the luminescence efficiency of blue InGaN/GaN LEDs [J]. Microelectronics Reliability,2010,50 (5):679-682.
    [145]Chang S. P., Wang C. H., Chiu C. H., et al. Characteristics of efficiency droop in GaN-based light emitting diodes with an insertion layer between the multiple quantum wells and n-GaN layer [J]. Applied Physics Letters,2010,97 (25):251114-3.
    [146]Shi Jong Leem and et al. Optimization of InGaN/GaN multiple quantum well layers by a two-step varied-barrier-growth temperature method [J]. Semiconductor Science and Technology, 2008,23(12):125039.
    [147]Yen-Kuang Kuo, Miao-Chan Tsai, Sheng-Horng Yen, et al. Enhancement of Light Power for Blue InGaN LEDs by Using Low-Indium-Content InGaN Barriers [J]. IEEE Journal of Selected Topics in Quantum Electronics,2009,15 (4):1115-1121.
    [148]Fu Yi-Keng, Jiang Ren-Hao, Lu Yu-Hsuan, et al. The effect of trimethylgallium flows in the AlInGaN barrier on optoelectronic characteristics of near ultraviolet light-emitting diodes grown by atmospheric pressure metalorganic vapor phase epitaxy [J]. Applied Physics Letters,2011,98 (12):121115-3.
    [149]Aumer M. E., LeBoeuf S. F., Moody B. F., et al. Strain-induced piezoelectric field effects on light emission energy and intensity from AlInGaN/InGaN quantum wells [J]. Applied Physics Letters,2001,79 (23):3803-3805.
    [150]Chakraborty Arpan, Moe Craig G., Wu Yuan, et al. Electrical and structural characterization of Mg-doped p-type Alfsub 0.69]Ga[sub 0.31]N films on SiC substrate-MMR [J]. Journal of Applied Physics,2007,101 (5):053717-6.
    [151]Ya-Ju Lee and et al. Improvement of quantum efficiency in green light-emitting diodes with pre-TMIn flow treatment [J]. Journal of Physics D:Applied Physics,2011,44 (22):224015.
    [152]Kyono Takashi, Yoshizumi Yusuke, Enya Yohei, et al. Optical Polarization Characteristics of InGaN Quantum Wells for Green Laser Diodes on Semi-Polar{20\bar21} GaN Substrates [J]. Applied Physics Express,2010,3 (1):011003.
    [153]Song Hooyoung, Kim Jin Soak, Kim Eun Kyu, et al. Field dependence of barrier heights and luminescence properties in polar and nonpolar InGaN/GaN single quantum wells [J]. Applied Physics Letters,2009,95 (18):182109-3.
    [154]Detchprohm Theeradetch, Zhu Mingwei, Li Yufeng, et al. Wavelength-stable cyan and green light emitting diodes on nonpolar m-plane GaN bulk substrates [J]. Applied Physics Letters, 2010,96 (5):051101-3.
    [155]Lundin W. V., Nikolaev A. E., Sakharov A. V., et al. Single quantum well deep-green LEDs with buried InGaN/GaN short-period superlattice [J]. Journal of Crystal Growth,2011,315 (1): 267-271.
    [156]Laubsch Ansgar, Bergbauer Werner, Sabathil Matthias, et al. Luminescence properties of thick InGaN quantum-wells [J]. physica status solidi (c),2009,6 (S2):S885-S888.
    [157]Wang Chien Chun, Jenq Feng Lin, Liu Chien Chih, et al. Selective high resistivity region formation by a Ni catalyst on GaN light-emitting diodes [J]. Semiconductor Science and Technology,2008,23 (2):025012-4.
    [158]Lin R. M., Li Jen Chih, Chou Yi Lun, et al. Improving the Luminescence of InGaN-GaN Blue LEDs Through Selective Ring-Region Activation of the Mg-Doped GaN Layer [J]. IEEE Photonics Technology Letters,2007,19(12):928-930.
    [159]Lee Chia Ming, Chuo Chang Cheng, Liu Yu Chuan, et al. InGaN-GaN MQW LEDs with current blocking layer formed by selective activation [J]. IEEE ELECTRON DEVICE LETTERS,2004,25 (6):384-386.
    [160]Qiu Hong, Liu Jun-Lin, Wang Li, et al. Effects of SiON passivation layer on reliability of GaN based green LED on silicon substrate [J]. Faguang Xuebao/Chinese Journal of Luminescence, 2011,32603-607.
    [161]Yamamoto Shuichiro, Zhao Yuji, Pan Chih-Chien, et al. High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (2021) GaN Substrates [J]. Applied Physics Express,2010,3122102.
    [162]Schubert E. F., Light-Emitting Diodes [M].New York: Cambridge University Press,2006.
    [163]Delia Sala Fabio, Di Carlo Aldo, Lugli Paolo, et al. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures [J]. Applied Physics Letters,1999,74 (14):2002-2004.
    [164]Funato Mitsuru, Ueda Masaya, Kawakami Yoichi, et al. Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar{11-22} GaN Bulk Substrates [J]. Japanese Journal of Applied Physics,2006,45 (26):L659-L662.
    [165]Cho Yong-Hoon, Gainer G. H., Fischer A. J., et al. "S-shaped" temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells [J]. Applied Physics Letters, 1998,73(10):1370-1372.
    [166]Mao A., Cho J., Dai Q., et al. Characteristics of dotlike green satellite emission in GalnN light emitting diodes [J]. Applied Physics Letters,2011,98 (2):023503.
    [167]Nakamura S. InGaN-based violet laser diodes [J]. Semiconductor Science and Technology, 1999,14(6):R27.
    [168]Cho Yong-Hoon, Schmidt T. J., Bidnyk S., et al. Linear and nonlinear optical properties of In_{x}Ga_{1-x}N/GaN heterostructures [J]. Physical Review B,2000,61 (11):7571.
    [169]Qi Y. D., Liang H., Wang D., et al. Comparison of blue and green InGaN/GaN multiple-quantum-well light-emitting diodes grown by metalorganic vapor phase epitaxy [J]. Applied Physics Letters,2005,86 (10):101903-3.
    [170]Wetzel C., Salagaj T., Detchprohm T., et al. GalnN/GaN growth optimization for high-power green light-emitting diodes [J]. Applied Physics Letters,2004,85 (6):866-868.
    [171]Kuokstis E., Yang J. W., Simin G., et al. Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells [J]. Applied Physics Letters,2002,80 (6): 977-979.
    [172]Wang T., Nakagawa D., Wang J., et al. Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells [J]. Applied Physics Letters,1998,73 (24): 3571-3573.
    [173]Smith M., Lin J. Y., Jiang H. X., et al. Exciton-phonon interaction in InGaN/GaN and GaN/AlGaN multiple quantum wells [J]. Applied Physics Letters,1997,70 (21):2882-2884.
    [174]Hao M., Zhang J., Zhang X. H., et al. Photoluminescence studies on InGaN/GaN multiple quantum wells with different degree of localization [J]. Applied Physics Letters,2002,81 (27): 5129-5131.
    [175]Thomson J. D., Pope I. A., Smowton P. M., et al. The influence of acceptor anneal temperature on the performance of InGaN/GaN quantum well light-emitting diodes [J]. Journal of Applied Physics,2006,99 (2):4507-7.
    [176]Seel Steven C., Thompson Carl V., Hearne Sean J., et al. Tensile stress evolution during deposition of Volmer-Weber thin films [J]. Journal of Applied Physics,2000,88 (12): 7079-7088.
    [177]Long Hao, Fang Hao, Qi Sheng-Li, et al. Invariable optical properties of phosphor-free white light-emitting diode under electrical stress [J]. Chinese Physics B,2010,19 (10):107307.
    [178]Feng Fei-Fei, Liu Jun-Lin, Qiu Chong, et al. N-ploar n-type Ohmic Contact of GaN-based LED on Si substrate [J]. Acta Physica Sinica,2010,59 (8):5706-4.
    [179]Senthil Kumar Muthusamy, Park Jae Young, Lee Yong Seok, et al. Improved Internal Quantum Efficiency of Green Emitting InGaN/GaN Multiple Quantum Wells by In Preflow for InGaN Well Growth [J]. Japanese Journal of Applied Physics,2008,47 (02):839.
    [180]Chen Yi Xin, Shen Guang Di, Han Jin Ru, et al. Study of light efficiency and lifetime of LED with different surface structures [J]. Acta Physica Sinica,2010,59 (1):0545-0549.
    [181]Sheu J. K., Chi G. C. and Jou M. J. Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15Ga0.85N/GaN superlattice [J]. IEEE ELECTRON DEVICE LETTERS,2001,22 (4):160-162.
    [182]Wang Liang-Ji, Zhang Shu-Ming, Zhu Ji-Hong, et al. Effect of surface treatment of GaN based light emitting diode wafers on the leakage current of light emitting diode devices [J]. Chinese Physics B,2010,19(1):017307.
    [183]Huang Jun-Yi, Fan Guang-Han, Zheng Shu-Wen, et al. Improvement of the light output and contact resistance of InGaN-based light-emitting diodes based on tantalum-doped indium tin oxide as p-type electrodes [J]. Chinese Physics B,2010,19 (4):047205.
    [184]Kuo Cheng Huang, Chang Shoou Jinn, Su Yan Kuin, et al. Low Temperature Activation of Mg-Doped GaN in O2 Ambient [J]. Japanese Journal of Applied Physics,2002,41 (Part 2, No. 2A):L112-L114.
    [185]Waki 1., Fujioka H., Oshima M., et al. Low-temperature activation of Mg-doped GaN using Ni films [J]. Applied Physics Letters,2001,78 (19):2899-2901.
    [186]Chien-Chih Liu, Yuag-Hsin Chen, Mau-Phon Houng, et al. Improved light-output power of GaN LEDs by selective region activation [J]. Photonics Technology Letters, IEEE,2004,16 (6): 1444-1446.
    [187]Waki I., Fujioka H., Oshima M., et al. Low-temperature activation of Mg-doped GaN with thin Co and Pt films [J]. Applied Surface Science,2002,190 (1-4):339-342.
    [188]Jang Ja Soon, Park Seong Ju and Seong Tae Yeon. Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment [J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1999,17 (6):2667-2670.
    [189]Huh Chul, Kim Hyun Soo, Kim Sang Woo, et al. InGaN/GaN multiple quantum well light-emitting diodes with highly transparent Pt thin film contact on p-GaN [J]. Journal of Applied Physics,2000,87 (9):4464-4466.
    [190]Arai T., Sueyoshi H., Koide Yasuo, et al. Development of Pt-based ohmic contact materials for p-type GaN [J]. Journal of Applied Physics,2001,89 (5):2826-2831.
    [191]Jang J.S., Park S.J. and Seong T.Y. Effects of Surface Treatment on the Electrical Properties of Ohmic Contacts to (In)GaN for High Performance Optical Devices [J]. physica status solidi (a), 2002,194 (2):576-582.
    [192]Koide Yasuo, Ishikawa H., Kobayashi S., et al. Dependence of electrical properties on work functions of metals contacting to p-type GaN [J]. Applied Surface Science,1997,117-118 373-379.
    [193]Waki I., Fujioka H., Oshima M., et al. Mechanism for low temperature activation of Mg-doped GaN with Ni catalysts [J]. Journal of Applied Physics,2001,90 (12):6500-6504.
    [194]Tanner R. E., Goldfarb 1., Castell M. R., et al. The evolution of Ni nanoislands on the rutile TiO2(110) surface with coverage, heating and oxygen treatment [J]. Surface Science,2001,486 (3):167-184.
    [195]Utlu G., Artunc N., Budak S., et al. Structural and electrical characterization of the nickel silicide films formed at 850℃ by rapid thermal annealing of the Ni/Si(100) films [J]. Applied Surface Science,2010,256 (16):5069-5075.
    [196]Ducher R., Kainuma R. and Ishida K. Phase equilibria in the Ni-rich portion of the Ni-Ga binary system [J]. Intermetallics,2007,15 (2):148-153.
    [197]Guerin R. and Guivarc'h A. Metallurgical study of Ni/GaAs contacts. I. Experimental determination of the solid portion of the Ni-Ga-As ternary-phase diagram [J]. Journal of Applied Physics,1989,66 (5):2122-2128.
    [198]Venugopalan H. S., Mohney S. E., Luther B. P., et al. Interfacial reactions between nickel thin films and GaN [J]. Journal of Applied Physics,1997,82 (2):650-654.
    [199]Nakamura Shuji, Iwasa Naruhito, Senoh Masayuki, et al. Hole Compensation Mechanism of P-Type GaN Films [J]. Japanese Journal of Applied Physics,1992,31 (Part 1, No.5A): 1258-1266.
    [200]Huang Kun and Han Ru Qi, Fundamentals of semiconductor physics [M].Beijing:Science press, 1979, pp.207-216.
    [201]Wu Ding Fen; and Yan Ben Da;, The principlex testing and process of metal-semiconductor interface's ohmic contacts [M].Shanghai:Shanghai Jiaotong University Press,1989, p.50.
    [202]Shintani Akira and Minagawa Shigekazu. Etching of GaN Using Phosphoric Acid [J]. Journal of the Electrochemical Society,1976,123 (5):706-713.
    [203]Visconti P., Jones K. M., Reshchikov M. A., et al. Dislocation density in GaN determined by photoelectrochemical and hot-wet etching [J]. Applied Physics Letters,2000,77 (22): 3532-3534.
    [204]Liliental-Weber Z., Chen Y., Ruvimov S., et al. Formation Mechanism of Nanotubes in GaN [J]. Physical Review Letters,1997,79 (15):2835.
    [205]Cherns D., Henley S. J. and Ponce F. A. Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence [J]. Applied Physics Letters,2001,78 (18):2691-2693.
    [206]Vennegues P., Leroux M., Dalmasso S., et al. Atomic structure of pyramidal defects in Mg-doped GaN [J]. Physical Review B,2003,68 (23):235214.
    [207]Pezzagna S., Vennegues P., Grandjean N., et al. Polarity inversion of GaN(0001) by a high Mg doping [J]. Journal of Crystal Growth,2004,269 (2-4):249-256.
    [208]Mogilatenko A., Neumann W., Richter E., et al. TEM study of c-plane GaN layers grown on γ-LiAlO2(100) [J]. physica status solidi (c),2008,5 (12):3712-3715.
    [209]Chu Chen-Fu, Cheng Chao-Chen, Liu Wen-Huan, et al. High brightness GaN vertical light emitting diodes on metal alloyed substrate for general lighting application [J]. physica status solidi (c),2007,4(1):17-20.
    [210]Chu Jiunn-Yi, Chu Chen-Fu, Cheng Chao-Chen, et al, San Jose, CA, USA,2008 (unpublished).
    [211]肖宗湖.具有垂直结构和电镀金属基板的Si衬底GaN丛LED研究[J].南昌大学博士学位论文,2011,
    [212]汪延明.Si衬底GaN基电镀金属基板LED性能研究[J].南昌大学硕士学位论文,2010,
    [213]陶喜霞.硅衬底蓝光LED P层厚度优化及其应力研究[J].南昌大学硕士学位论文,2011,
    [214]Pavesi M, Manfredi M., Rossi F., et al. Temperature dependence of the electrical activity of localized defects in InGaN-based light emitting diodes [J]. Applied Physics Letters,2006,89 (4): 041917-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700