用户名: 密码: 验证码:
金属(Mg、Al)微/纳米材料的制备及在一次电池中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能化学电源中,一次电池因具有高的能量密度、设计的灵活多样性及价格低廉等优势而备受关注。这类电池的阳极材料大都采用Li、Mg、Al、Zn等活泼金属,而阳极材料的性能提升将在很大程度上优化电池的综合性能,因此研究这些阳极关键材料具有极其重要的现实意义。金属Mg和Al材料作为阳极材料在电池中具有如下优点:(1)高的理论能量密度;(2)高的理论电压;(3)低成本;(4)环境友好、无污染;(5)安全可靠。但在实际电池体系中这些材料存在利用率低和实际放电能量密度低等不足,这些因素都影响其商品化的进程,其反映出来的科学问题主要可分为三部分:活性物质的活性低、阳极表面在电极反应过程中会形成钝化膜、电解液的不匹配问题导致阳极的腐蚀速率快。利用纳米材料的高反应活性、高比表面积以及独特的材料结构,可有效提高阳极材料的电化学性能。因此,电极材料微纳化和筛选适宜的电解液是提高一次电池性能的重要途径。
     本论文开展了镁和铝微/纳米电极材料的制备、表征及其作为典型一次电池阳极材料的应用基础研究。主要内容如下:
     (1)通过改变物理气相沉积法中的关键实验条件,制备了镁微米球及微米球/纳米球共混形貌,并测试了其在Mg/MnO2电池中的电化学性能。沉积产物的尺寸大小和形貌可通过调节加热温度、加热时间、载气流速、沉积温度等实验条件加以控制。采用扫描电子显微镜、粉末衍射、透射电镜及高分辨透射电镜、比表面积测试等技术对材料的微观组成及结构进行了分析。测试结果表明:镁材料的比表面积为0.61-1.92 m2 g-1,将这些制备出的镁材料和商业高纯镁分别进行了线性扫描、交流阻抗和放电性能测试。经过筛选不同的电解液防腐剂种类和浓度,发现Mg(NO3)2 (2.6 mol L-1)和NaNO2(2.6 mol L-1)的混合溶液因具有较慢的腐蚀速率和较小的电极极化,而适宜应用于高活性的镁电极。物理气相沉积法制备的镁材料可提高电极性能,尤其是镁微米球(直径1.5-3.0μm)和纳米球(直径50-150 nm)共混结构的电极性能最佳,其具有较负的起始电位(—1.08 V)、较高的电流密度(163 mA cm-2)、较小的表观活化能(5.1 kJ mol-1),主要原因在于电极材料可与电极膏中的导电剂有效接触,减小了电极极化,从而提高了电极的综合性能;另外,由镁微/纳米结构和γ-MnO2纳米线组装的Mg/MnO2电池展现出了平稳的放电平台及高的放电比容量等良好的电化学性能。
     (2)采用物理气相沉积法通过蒸发商业高纯铝粉制备出了多种铝微/纳米材料。在制备过程中,采用多孔阳极氧化铝模板为衬底时,在750-950℃均易得到以微米球为主、纳米颗粒为辅的材料,主要原因是具有多孔结构的衬底会影响铝沉积初期的成核数量。经调节衬底种类、载气流速、加热时间等实验参数,摸索出了制备铝纳米棒的最优化实验条件:采用不锈钢网衬底、加热温度选用1000℃保温10小时、沉积温度300℃和载气流速1000 cm3 min-1。制得纳米棒的直径为30-90 nm,长度可达数微米。高分辨透射电镜表明,纳米棒具有良好的结晶度,晶格条纹间距为0.23 nm,对应铝晶体结构的(111)晶面,说明铝纳米棒是沿着[111]向生长的。当制备的铝纳米材料选用膏体配方为65 wt%活性物质、25 wt% Vulcan XC-72碳导电剂和10 wt%聚四氟乙烯(PTFE)干粉粘合剂时,电极性能可明显优于商业高纯铝粉。另外,铝纳米棒组装的铝/空气电池展现出了高的放电平台和放电比容量,其适合开发长寿命的电池体系。
Recently, electrochemical storage and generation of energy in primary batteries have attracted considerable research attention due to their high energy density, superior discharge performances, and low cost. Active metals (e.g., Li, Mg, Al and Zn) can be used in various primary batteries. Among the metallic materials, Mg and Al are especially suitable for being anodes in power devices because of the advantages of high theoretical energy density, high theoretical voltage, non-toxicity for the environment, and safety. However, some problems still remain for the two materials such as low anode utilization of Mg or Al sheet material, and low actual energy density, which hinder their widespread applications in the consumer market. The scientific issues associated with the practical problems can be grouped into three categories:low kinetics of active materials, passivation of the anode surfaces, and unsuitable electrolyte leading to a high corrosion rate of the anodes. In addition, micro/nanoscale materials own a series of specific physical and chemical properties that are different from their bulk counterparts because of unique crystallographic structure, which are paving a good way for the influence of the electrochemical capacity. Therefore, enhancing the electrochemical properties of the micro/nanoscale electrode materials and using an appropriate electrolyte can greatly improve the performances of primary batteries.
     In this thesis, the developments of typical primary batteries were reviewed, especially for magnesium based and aluminum based batteries. The aims of the present study were to focus on the preparation processes, the structural characterization and the electrochemical properties of microscale and nanoscale Mg and Al as anode materials. The main content follows:
     (1) The morphology-controlled synthesis of magnesium micro/nanomaterials and their electrochemical performance as the anode of primary Mg/MnO2 batteries have been reported. Mg micro/nanoscale materials with controllable shapes have been prepared via a conventional vapor-transport method under an inert atmosphere by adjusting the heating temperatures, heating time, flow-rates of argon gas, and the deposition temperatures. Extensive analyzing techniques including SEM, XRD, TEM/HRTEM, and BET were carried out to characterize the as-obtained samples. The results show that the as-prepared Mg samples are microspheres or micro/nanospheres with specific surface areas of 0.61-1.92 m2 g-1. The electrochemical properties of the as-prepared Mg and commercial Mg powders were further studied in terms of linear sweep voltammograms, impedance spectra, and discharge capabilities. By comparing the performances of different inhibitors in electrolytes, it was found that NaNO2 (2.6 mol L-1) as an inhibitor in the Mg(NO3)2 (2.6 mol L-1) electrolyte affords an Mg electrode with high current density and low corrosion rate. In particular, the Mg sample consisting of microspheres with a diameter of 1.5-3.0μm and nanospheres with a diameter of 50-150 nm exhibited superior electrode properties including negative initial potential (—1.08 V), high current density (163 mA cm-2), low apparent activation energy (5.1 kJ mol-1), and high discharge specific capacity (784 mAh g-1). The mixture of Mg microspheres and nanospheres is promising for the application in Mg/MnO2 primary batteries because of the sufficient contact with the electrolyte and greatly reduced charge transfer impedance and polarization.
     (2) Various Al micro/nanoscale materials were successfully prepared via a conventional physical vapor deposition through the evaporation of commercial Al powders at certain experimental conditions. The mixture of microspheres and nanoparticles were fabricated via using anodic aluminum oxide (AAO) template as substrate even at a wide range of heating temperatures of 750-950℃, because the AAO substrate can play a crucial role in affecting the amount of nucleation in the initial depositing stage. After studying the effect of experimental parameters on the morphologies of micro/nanoscale materials, the optimal condition for synthesizing Al nanorods with uniform diameters of 30-90 nm were selected at a heating temperature of 1000℃for 10 h, a depositing temperature of 300℃with a constant argon gas of 1000 cm3·min-1 on the stainless steel mesh substrate. The HRTEM image of part of an Al nanorod shows that clear fringes with an interplanar spacing is 0.23 nm, which is in accordance with the d-spacings between the (111) crystal planes, indicating that the Al nanorod grows along the [111] direction. The electrode made from the as-deposited Al nanorods with the composition of 65 wt% Al,25 wt% carbon, and 10 wt% PTFE exhibits superior electrochemical properties to that made from commercial Al powders. Furthermore, the laboratorymade Al/air battery with the as-prepared Al nanorods displays high operating voltage and discharge specific capacity, which is important for developing long-life battery systems.
引文
[1]李国欣.新型化学电源导论,上海:复旦大学出版社,1992
    [2]程岩.高能化学电源电极反应机理及其现场红外光谱研究:[博士学位论文].上海:复旦大学,2006
    [3]徐学笛.化学电源的发展及展望.化学工程与装备,2008,2:95-98
    [4]Abbott A. The battery:not yet a terminal case. Science,2002,296:1224~1226
    [5]Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications:A Review. Crit. Rev. Solid State Mater. Sci.,2010,35:52~71
    [6]陈军,陶占良,苟兴龙.化学电源—原理、技术与应用,北京:化学工业出版社,2006.
    [7]陈振华.镁合金,北京:化学工业出版社,2004
    [8]宋光铃.镁合金腐蚀与防护,北京:化学工业出版社,2006
    [9]丁文江.镁合金科学与技术,北京:科学出版社,2007
    [10](美)戴维.林登(David Linden)托马斯B.雷迪(Thomas B. Reddy)著,汪继强等译.电池手册Handbook of Batteries (原著第三版),北京:化学工业出版社,2007
    [11]Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries. Nature,2000,407:724~727
    [12]李宏磊,娄花芬,李向宇,等.一种利用带式法进行连续铸轧生产变形镁合金带卷的方法.中国专利,200710054995.X.2009-12-02
    [13]潘复生,韩恩厚.高性能变形镁合金及加工技术,北京:科学出版社,2007
    [14]Li W Y, Li C S, Chen J, et al. Metallic magnesium nano/scale structures:their shape-controlled preparation and Mg/air battery applications. Angew. Chem,Int., Ed.,2006, 45:6009~6012
    [15]李庆峰,邱竹贤.沈阳:东北大学出版社,2003
    [16]Birkin P R, Nestoridi M, Pletcher D. Studies of the anodic dissolution of aluminium alloys containing tin and gallium using imaging with a high-speed camera. Electrochim. Acta, 2009,54:6668~6673
    [17]Li Q F, Bjerrum N J. Aluminum as anode for energy storage and conversion:a review. J. Power Sources,2002,110:1~10
    [18]余祖孝,陈昌国,罗忠礼.铝—空气电池电解液的研究现状.化学研究与应用,2004,16:612-615
    [19]房振乾,刘文西,陈玉如.铝—空气燃料电池的研究进展.兵器材料科学与工程,2003,26:67-72
    [20]Shao H B, Wang J M, Wang X Y, et al. Anodic dissolution of aluminum in KOH ethanol solutions. Electrochem. Commun.,2004,6:6-9
    [21]Lou X W, Wang Y, Yuan C L, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater.,2006,18:2325~2329
    [22]Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxide as negative-electrode materials for lithium-ion batteries. Nature,2000,407:496~499
    [23]Lou X W, Deng D, Lee J Y, et al. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater.,2008,20:258~262
    [24]Datta K M, Kumta P N. Silicon and carbon based composite anodes for lithium ion batteries. J.Power Sources,2006,150:557~563
    [25]Liu W R, Wang J H, Wu H C, et al. Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J. Electrochem. Soc.,2005,152:A1719-A1725
    [26]饶睦敏,黄启明,李伟善.锂离子电池纳米负极材料的研究进展.电池工业,2008,13:132-136
    [27]李军,黄慧民,李大光等.锂离子电池纳米阴极材料的研究进展.2007,1:165-168
    [28]王福贞,马文存.气相沉积应用技术.北京:机械工业出版社,2006
    [29]Wang W L, Jiang H, Liu Z Q, et al. Effects of base concentration and cation on hydrothermal processes of cetyltrimethylammonium permanganate in various aqueous media. J. Mater. Chem.,2005,15:1002~1010
    [30]Che G, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature,1998,393:346~349
    [31]Yoon W S, Lee K K, Kim K B. Synthesis of LiAlyCol-yO2 using acrylic acid and its electrochemical properties for Li rechargeable batteries. J. Power Sources,2001,97~98: 303~307
    [32]Miller J B, Ko E. Control of mixed oxide textural and acidic properties by the sol-gel method. Catal. Today,1997,35:269~292
    [33]Lafond V, Mutin P H, Vioux A. Control of the texture of titania-silica mixed oxides prepared by nonhydrolytic sol-gel. Chem. Mater.,2004,16:5380~5386
    [34]Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282:1111~1114
    [35]Cheng F Y, Tao Z L, Liang J. et al. Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater.,2008,20:667~681
    [36]金俊阳,陆春华,许仲梓.纳米材料模板合成技术研究.材料导报,2007,11:143-147
    [37]Yoshimura M. J. Mater. Res.,1998,13:1091~1098.
    [38]Liu Z Q, Wang W L, Liu X M, et al. Synthesis of nanostructured spinel LiMn2O4 by hydrothermal method at 70 ℃. Inorg. Chem. Commun.,2004,7:308~310
    [39]Wang X, Li Y D. Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc.,2002,124:2880-2881
    [40]Blocher J M. Vapor-Deposited Materials, Chapter 1 in Vapor Deposition,1961
    [41]杨西,杨玉华.化学气相沉积技术的研究与应用进展.甘肃水利水电技术,2008,44:211-213
    [42]Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater.,2003,13:9-24.
    [43]Xi X X, Pogrebnyakov A V, Xu S Y, et al. MgB2 thin films by hybrid physical-chemical vapor deposition. Physica C,2007,456:22~37
    [44]Helmersson U, Lattemann M, Bohlmark J, et al. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films,2006,513:1~24
    [45]Singh J, Wolfe D E. Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD). J. Mater. Sci.,2005,40:1~26
    [46]Matthews A. Plasma-based physical vapor deposition surface engineering processes. J. Vac. Sci. Technol. A,2003,21:S224~S231
    [47]张邦维.纳米材料物理基础.北京:化学工业出版社,2009
    [1]王福贞,马文存编著.气相沉积应用技术.北京:机械工业出版社,2006
    [2]张邦维编著.纳米材料物理基础.北京:化学工业出版社,2009
    [3]Sudarshan. T. S著,范玉殿等译.表面改性技术.北京:清华大学出版社,1992
    [4]Ford I J. Phys. Rev. E,1997,56:5615
    [5]Zel'dovich J B. Acta Physicochim USSR,1943,18:1
    [6]Flagan R C, in:Nanostructured materials, ed Gan-Moog Chow and N 1 Noskova, St. Peterburg:Kluwer Academic Publishers,1997,15~30
    [7]Granqvist C G, Buhrman R A. J. Appl. Phys.,1976,47:2200~2219
    [8]Ma H, Li C S, Su Y, et al. Studies on the vapor-transport synthesis and electrochemical properties of zinc micro-, meso-and nanoscale structures. J. Mater. Chem.,2007,17, 684~691
    [9]马礼敦.近代X射线多晶体衍射—实验技术与数据分析.北京:化学工业出版社,2004
    [10]Izumi F, Ikeda T. A rietveld-analysis programm RIETAN-98 and its applications to zeolites. Mater. Sci. Forum,2000,321-324:198~203
    [11]Izumi F, Ikeda T. A Rietveld-analysis program RIETAN-98 and its applications to zeolites. 1998. Budapest, Hungary:Trans Tech Publications Ltd.
    [12]吴刚主编.材料结构表征及应用.北京:化学工业出版社,2002
    [13]黄惠忠等编著.纳米材料分析.北京:化学工业出版社,2003
    [14]阿伦.J.巴德,拉里.R.福克纳著. 电化学方法原理和应用.邵元华,朱果逸,董献堆,等译.北京:化学工业出版社,2005
    [15]藤岛昭,相泽益男等著.电化学测定方法.陈震,姚建年译.北京:北京大学出版社,1995
    [16]查全性.电极过程动力学导论.北京:科学出版社,2004
    [1]Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?. Chem. Rev.,2004, 104:4245~4269
    [2]Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature,2001,414:345~352
    [3]Ping F L, Jiang G, Zhang L, et al. Theoretical study of aging effects on LaNi5 tritium storage. Sci. China, Ser. G,2005,48:676~686
    [4]Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature,2001, 414:353~358
    [5]Cheng F Y, Liang J, Zhao J Z, et al. Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. Chem. Mater.,2008,20:1889~1895
    [6]Zhao J Z, Ma H, Chen J. Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co-B as catalysts. Int. J. Hydrogen Energy,2007,32:4711~4716
    [7]Orimo S I, Nakamori Y, Eliseo J R, et al. Complex hydrides for hydrogen storage. Chem. Rev.,2007,107:4111~4132
    [8]Xu W, Tao Z L, Chen J. Progress of research on hydrogen storage. Prog. Chem.,2006,18: 200~210
    [9]Huot J, Liang G, Schulz R. Mechanically alloyed metal hydride systems. Appl. Phys. A Mater. Sci. Process,2001,72:187~195
    [10]Song M R, Chen M, Zhang Z J. Preparation and characterization of Mg nanoparticles. Mater. Charact.,2008,59:514~518
    [11]de Jongh P E, Wagemans R W P, Eggenhuisen T M, et al. The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem. Mater.,2007,19: 6052~6057
    [12]Aguey-Zinsou K F, Ares-Fernandez J R. Synthesis of colloidal magnesium:A near room temperature store for hydrogen. Chem. Mater.,2008,20:376~378
    [13]Zhang K, Rossi C. Tenailleau C, et al. Aligned three-dimensional prismlike magnesium nanostructures realized onto silicon substrate. Appl. Phy. Lett.,2008,92:063123
    [14]Novak P, Imhof R, Haas O. Magnesium insertion electrodes for rechargeable nonaqueous batteries-a competitive alternative to lithium? Electrochim. Acta,1999,45:351~367
    [15]Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries. Nature,2000,407:724~727
    [16]Peng B, Liang J, Tao Z L, et al. Magnesium nanostructures for energy storage and conversion. J. Mater. Chem.,2009,19:2877~2883
    [17]Armand M, Tarascon J M. Building better batteries. Nature,2008,451:652~657.
    [18]Li W Y, Li C S, Zhou C Y, et al. Metallic magnesium nano/mesoscale structures:Their shape-controlled preparation and Mg/air battery applications. Angew. Chem. Int. Ed.,2006, 45:6009~6012
    [19]Kumar G G, Munichandraiah N, Ageing of magnesium/manganese dioxide primary cells. J. Solid State Electrochem.,2001,5:8-16
    [20]Munichandraiah N. Electrochemical impedance studies of a decade-aged magnesium/manganese dioxide primary cell. J. Appl. Electrochem.,1999,29:463~471
    [21]Renuka R, Ramamurthy S. An investigation on layered birnessite type manganese oxides for battery applications. J. Power Sources,2000,87:144~152
    [22]Vuorilehto, K. An environmentally friendly water-activated manganese dioxide battery. J. Appl. Electrochem.,2003,33:15~21
    [23]Sathyanarayana S, Munichandraiah N. A new magnesium-air cell for long-life applications. J.Appl. Electrochem.,1981,11:33~39
    [24]Cheng F Y, Zhao J Z, Song W E, et al. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem.,2006,45:2038-2044
    [25]Cheng F Y, Chen J, Gou X L, et al. High-power alkaline Zn-MnO2 batteries using y-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater.,2005,17:2753~2756
    [26]Rietveld H M, Line Profiles of Neutron Powder-diffraction Peaks for Structure Refinement. Acta Crystallogr.,1967,22:151~152
    [27]Rietveld H M, A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr.,1969,2:65~71
    [28]Malmros G, Thomas J O. Least-squares structure refinement based on profile analysis of powder film intensity data measured on an automatic microdensitometer. J. Appl. Crystallogr.,1977,10:7-11
    [29]Khattak C P, Cox D E. Profile analysis of X-ray powder diffractometer data:structural refinement of La0.75Sr0.25CrO3. J. Appl. Crystallogr.,1977,10:405-411
    [30]Young R A, Machie P E, von Dreller R B. Application of the pattern-fitting structure-refinement method of X-ray powder diffractometer patterns. J. Appl. Crystallogr., 1977,10:262~269
    [31]He M Q, Mohammad S N. Novel chemical-vapor deposition technique for the synthesis of high-quality single-crystal nanowires and nanotubes. J. Chem. Phys.,2006,124:064714
    [32]Cheyssac P, Sacilotti M, Patriarche G. Vapor-liquid-solid mechanisms:Challenges for nanosized quantum cluster/dot/wire materials. J. Appl. Phys.,2006,100:044315
    [33]Tao Z L, Li C S, Chen J. Mg micro/nanoscale materials with sphere-like morphologies: Size-controlled synthesis and characterization. Sci. China Ser. G-Phys. Mech. Astron., 2009,52:35~39
    [34]Li W N, Yuan J K, Shen X F, et al. Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials. Adv. Funct. Mater.,2006,16:1247~1253
    [35]lzumi F, Ikeda T. A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum,2000,321-324:198~203
    [36]Fu L J, Liu H, Li C, et al. Surface modifications of electrode materials for lithium ion batteries. Solid State Sci.,2006,8:113~128
    [37]Lee J, Yang H J, Lee J, et al. Adhesion, passivation, and resistivity of a Ag(Mg) gate electrode for an amorphous silicon thin-film transistor. J. Mater. Res.,2003,18:1441~1446
    [38]Ricci D, Pacchioni G, Sushko P V, et al. Reactivity of (H+)(e-) color centers at the MgO surface:formation of O2- and N2- radical anions. Surf. Sci.,2003,542:293~306
    [39]Khaleel A, Kapoor P N, Klabunde K J. Nanocrystalline metal oxides as new adsorbents for air purification. Nanostruct. Mater.,1999.11:459~468
    [40]Jarvis L. The beneficial effect of increased cathode water content on magnesium battery performance. J. Power Sources,1990,32:271~276
    [41]Bard A J, Faulkner L R. Electrochemical methods fundamentals and applications.2nd ed. John wiley & Sons,2003
    [42]Anguchamy Y K, Lee J W, Popov B N. Electrochemical performance of polypyrrole/silver vanadium oxide composite cathodes in lithium primary batteries. J. Power Sources,2008, 184:297~302
    [43]马华.高容量锂电池纳米电极材料合成表征与电化学性能研究:[博士学位论文].天津:南开大学,2009年
    [1]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001,414:359~368
    [2]Winter M, Brodd R. What are batteries, fuel cells, and supercapacitors? J. Chem. Rev.,2004, 104:4245~4269
    [3]Sorensen E M, Izumi H K, Vaughey J T, et al. Ag4V2O6F2:an electrochemically active and high silver density phase. J. Am. Chem. Soc.,2005,127:6347~6352
    [4]Long J W, Dunn B, Rolison D R, et al. Three-dimensional battery architectures. Chem. Rev., 2004,104:4463~4492
    [5]Wang Y, Cao G Z. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater.,2006,18:2787~2804
    [6]Li Q F, Bjerrum N J. Aluminum as anode for energy storage and conversion:a review. J. Power Sources,2002,110:1~10
    [7]Zhang X, Yang S H, Knickle H. Novel operation and control of an electric vehicle aluminum/air battery system. J. Power Sources,2004,128:331~341
    [8]Yang S H, Knickle H. Design and analysis of aluminum/air battery system for electric vehicles. J. Power Sources,2002,112:162~173
    [9]Licht S, Levitin G, Tel-Vered R, et al. The effect of water on the anodic dissolution of aluminum in non-aqueous electrolytes. Electrochem. Commun.,2000,2:329~333
    [10]Han B, Liang G C. Neutral electrolyte aluminum air battery with open configuration. Rare Metals,2006,25:360~363
    [11]韩斌.金属(铝、镁)/空气电池的结构与性能研究:[硕士学位论文].天津:河北工业大学,2007
    [12]Li W Y, Li C S, Zhou C Y, et al. Metallic magnesium nano/mesoscale structures:their shape-controlled preparation and Mg/air battery applications. Angew. Chem. Int., Ed.,2006, 45:6009~6012
    [13]Ngala J K, Alia S, Dobley A, et al. Characterization and electrocatalytic behavior of layered Li2Mn03 and its acid-treated. Form Chem. Mater.,2007,19:229~234
    [14]Crisostomo V M B, Ngala J K, Alia S, et al. New synthetic route, characterization, and electrocatalytic activity of nanosized manganite. Chem. Mater.,2007,19:1832~1839
    [15]Chan K Y, Savinell R F. Modeling calculations of an aluminum-air cell. J. Electrochem. Soc.,1991,138:1976~1984
    [16]Keir D S, Pryor M J, Speery P R. Galvanic corrosion characteristics of aluminum alloyed with group IV metals. J. Electrochem. Soc.,1967,114:777~782
    [17]Keir D S, Pryor M J, Speery P R. The influence of ternary alloying additions on the galvanic behavior of aluminum-tin alloys. J. Electrochem. Soc.,1969,116:319~322
    [18]Ponchel B M, Horst R L. Performance of AlZnSn alloy anodes in sea water service. Mater. Protect.,1968,7:38
    [19]张盈盈.铝/空气电池用铝合金阳极材料性能及活化机理研究:[硕士毕业论文],湖北省:华中科技大学,2005
    [20]Ho G S, Carter E A. Mechanical response of aluminum nanowires via orbital-free density functional theory. J. Comput. Chem. Theor. Nanoscience,2009,6:1236~1246
    [21]Saka M, Nakanishi R. Fabrication of Al thin wire by utilizing controlled accumulation of atoms due to electromigration. Mater. Lett.,2006,60:2129~2131
    [22]Saka M, Ueda R. Formation of metallic nanowires by utilizing electromigration. J. Mater. Res.,2005,20:2712~2718
    [23]Lu Y B, Saka M. Effect of purity on the fabrication of Al micro/thin-materials by utilizing electromigration. Mater. Lett.,2009,63:2294~2296
    [24]Lu YB, Saka M. Fabrication of Al micro-belts by utilizing electromigration. Mater. Lett., 2009,63:2227~2229
    [25]Sasagawa K, Fukushi S, Sun Y X, et al. A numerical simulation of nanostructure formation utilizing electromigration. J. Electron. Mater.,2009,38:2201~2206
    [26]Saka M, Tohmyoh H, Muraoka M, et al. Formation of metallic micro/nanomaterials by utilizing migration phenomena and techniques for their spplications. Mater. Sci. Forum, 2009,614:3-9
    [27]Sun Y X, Tohmyoh H, Saka M. Fabrication of Al microspheres by utilizing electromigration. J. Nanoscience Nanotechnology,2009,9:1972~1975
    [28]Saka M, Kato K, Tohmyoh H, et al. Controlling electromigration to selectively form thin metal wires and metal microspheres. J. Mater. Res.,2008,23:3122~3128
    [29]Wang J J, Liu F, Deng X G, et al. Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography. J. Vac. Sci. Technol. B,2005,23: 3164~3167
    [30]Pang Y T, Meng G W, Zhang L D, et al. Synthesis of ordered Al nanowire arrays. Solid State Sci.,2003,5:1063~1067
    [31]Pomfret M B, Brown DJ, Epshteyn A, et al. Electrochemical template deposition of aAluminum nanorods using ionic liquids. Chem. Mater.,2008,20:5945~5947
    [32]Kokonou M, Rebholz C, Giannakopoulos KP, et al. Fabrication of nanorods by metal evaporation inside the pores of ultra-thin porous alumina templates. Nanotechnology,2007, 18:495604
    [33]Suzuki M, Nagai K, Kinoshita S, et al. Vapor phase growth of Al whiskers induced by glancing angle deposition at high temperature. Appl. Phys. Lett.,2006,89:133103
    [34]Biring S, Tsai K T, Sur U K, et al. High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication. Nanotechnology.2008,19:355302
    [35]Perre E, Nyholm L, Gustafsson T, et al. Direct electrodeposition of aluminium nano-rods. Electrochem. Commun.,2008,10:1467~1470
    [36]Mahendiran C, Ganesan R, Gedanken A. Sonoelectrochemical Synthesis of Metallic Aluminum Nanoparticles. Eur. J. Inorg. Chem.,2009,14:2050~2053
    [37]Owrutsky J C, Pomfret M B, Brown D J. Coherent Acoustic Oscillations of Nanorods Composed of Various Metals. J. Phys. Chem. C,2009,113:10947~10955
    [38]Chen Y J, Hsu J H, Lin H N. Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process. Nanotechnology,2005,16:1112~1115
    [39]Ma H, Li C S, Su Y, et al. Studies on the vapour-transport synthesis and electrochemical properties of zinc micro-, meso- and nanoscale structures. J. Mater. Chem.,2007,17: 684-691
    [40]Ma R, Bando Y. Investigation on the growth of boron carbide nanowires. Chem. Mater., 2002,14:4403~4407
    [41]Rao C N R, Deepak F L, Gundiah G, et al. Inorganic nanowires. Prog. Solid State Chem., 2003,31:5~147
    [42]Wang Y W, Meng G W, Zhang L D, et al. Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence. Chem. Mater.,2002,14: 1773~1777
    [43]Mathur S, Shen H, Sivakov V, et al. Germanium nanowires and core-shell nanostructures by chemical vapor deposition of [Ge(C5H5)2]. Chem. Mater.,2004,16:2449~2456
    [44]Shao H B, Wang J M, Wang X Y, et al. Anodic dissolution of aluminum in KOH ethanol solutions. Electrochem. Commun.,2004,6:6-9
    [45]常晓途.铝在碱性甲醇-水溶液中的腐蚀与电化学行为研究.浙江省:浙江大学,2008
    [46]卢凌彬.铝-空气电池用铝合金阳极与电解液添加剂的研究:[硕士学位论文],湖南省:中南大学,2002
    [47]Zhang G Y, Chen J. Synthesis and application of La0.59Ca0.41Coo3 nanotubes. J. Electrochem. Soc.,2005,152:A2069-A2073
    [48]http://altekfuel.com/userfiles/File/SDS_APS100_12-24_V-04.pdf. Alkaline Aluminum-Air Fuel Cell Power Supply System APS 100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700