用户名: 密码: 验证码:
热化学硫碘开路循环联产氢气和硫酸系统的基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢作为能源载体,由于其固有的特性,越来越引起社会各界的关注.大规模低成本制氢是发展氢能经济的基础,热化学循环水分解制氢则被认为是一种较理想的清洁可持续制氢方法,其利用热能通过一系列不同但又相互关联的化学反应,最终将水分解为氢气和氧气.在诸多的热化学循环中,硫碘循环由于其高热效率,低成本且较易实现大规模生产等原因被作为制氢的理想循环。
     结合中国国情,(1)作为SO_2来源的硫铁矿资源丰富、价格便宜;(2)除氢气以外的产品硫酸有很好的经济和市场价值,因此我们提出了热化学硫碘开路循环联产氢气和硫酸的多联产系统。该系统主要包含以下两个主要反应过程:
     Bunsen反应过程:xI_2+SO_2+2H_2O=2HIx+H_2SO_4
     HI分解过程:2HIx=xI_2+H_2
     在最优条件下,对该多联产系统进行了详细的描述及能量评估,整个系统能量转化率达到63.1%。
     本文实验研究了溶液成分和温度对Bunsen反应两相分离及副反应的影响,发现溶液越稀,出现分层所需I_2摩尔分数越大,分层时两相分离越不明显,但副反应越不容易发生;I_2摩尔分数的增加有利于两相的分层,有效抑制Bunsen反应副反应的发生;温度对分层现象影响不大,但温度的增加会促进副反应的发生。
     利用FactSage软件从热力学角度探讨了温度和压力对HI均相分解的影响,以及无水和有水参与时HI分解的热力学特性变化。HI分解对温度十分敏感,但压力对HI分解的热力学平衡状态不产生影响.在温度高于700℃时,水蒸汽的存在可以有效地促进HI的分解。利用CHEMKIN软件从动力学角度研究了温度、压力、停留时间及氧量对HI均相分解的影响,建立了无氧和有氧参与的HI均相分解详细化学动力学模型,无氧模型包括11个基元反应和5个物种,通过敏感性分析发现,反应HI+HI=H_2+I_2和HI+I=I_2+H对H_2的生成有积极意义。有氧模型包括43个基元反应和12个物种,通过敏感性分析可知,反应HI+I=I_2+H和HI+O=OH+I对H_2的生成起到积极的作用,尤其是反应HI+I=I_2+H,O参与HI分解反应时,虽然会消耗HI中的H生成H_2O,但仍在很大程度上促进了H_2的生成。在500℃-700℃的实验温度范围内,无氧模型模拟结果和实验结果可以较好的吻合。
     通过以上研究发现,HI的均相分解率极低,这意味着在实际的工业应用中,需要通过催化剂来促进HI的分解.接下来的章节中,我们自主开发了多种催化剂用于HI的分解。
     对不同制备方法及不同温度焙烧CeO_2催化剂的活性进行对比,通过TG-FTIR,BET,XRD,TEM和TPR的催化剂表征,发现低温(300和500℃)下焙烧的溶胶-凝胶CeO_2样品以单独的不规则纳米颗粒存在,表面形态比较疏松;比表面积较大,晶粒较小;表现出更多的晶格缺陷,如氧空位等,具有更好的表面活性及氧迁移能力.催化机理研究表明,表面还原位Ce~(3+)、氧空位及0活性基是CeO_2催化分解HI的关键,CeO_2在催化分解HI的过程中扮演了催化剂和氧化剂的双重角色。
     对不同制备方法、不同温度焙烧及不同气氛处理Pt/CeO_2催化剂的活性进行对比,Pt/CeO_2催化剂具有很好的催化分解HI活性。通过TG-FTIR,BET,XRD,TEM,TPR和XPS的催化剂表征,发现Pt共同参与溶胶一凝胶过程时Pt高子插入CeO_2的晶格取代了Ce~(4+),这对提高CeO_2载体的氧迁移能力,提高催化剂的热稳定性以及CeO_2和Pt活性组分之间强相互作用的形成都具有十分重要的意义。溶胶-凝胶法合成、高温下焙烧的Pt/CeO_2催化剂具有更好的催化活性,这与催化剂内复杂的转化反应Ce~(4+)+pt→Ce~(3+)+Pt~(2+)及氧空位在Pt-Ce-O体相内的迁移扩散都有直接关系。不同气氛处理的样品中,Reduced和Re-oxidized样品表现出略好的催化活性,本文建立了Ce~(4+)及氧空位的迁移扩散模型以及Pt颗粒的壳芯结构模型.ZrO_2固溶进入CeO_2晶格生成Ce_xZr_(1-x)O_2固溶体,和纯的CeO_2相比,大大提高了催化剂的贮氧能力和抗高温烧结性,更利于体相氧的迁移和扩散,使体相反应过程变得活泼。本文对不同Ce-Zr配比的Pt/Ce_xZr_y催化剂也进行了研究,发现Pt/Ce_(0.8)Zr_(0.2)的催化活性最好,这与Ce-Zr固溶体的高贮氧能力以及Pt与Ce-Zr固溶体之间的强相互作用有关。
     对不同制备方法、不同温度焙烧及不同气氛处理Ni/CeO_2催化剂的活性进行对比,Ni/CeO_2催化剂也具有很好的催化分解HI活性,在高的HI分解温度下,可与Pt催化剂相媲美。通过TG-FTIR,BET,XRD,TEM,TPR和XPS的催化剂表征,发现Ni共同参与溶胶-凝胶过程时Ni离子插入CeO_2的品格取代了Ce~(4+),这对Ni在CeO_2载体表面形成高度分散且稳定的活性组分,氧空位的形成以及CeO_2和Ni活性组分之间强相互作用的形成都具有十分重要的意义。催化机理研究表明,Ni/CeO_2催化剂在催化分解HI的过程中,纳米CeO_2的催化氧化机理依然是成立的,但由于过渡金属Ni的存在,其重要性肯定会明显降低。我们认为有三种表面活性位对HI的催化分解是十分重要的,一是Ni表面活性位;二是Ni-Ce界面活性位;三是表面氧空位。
     对不同Ce-Zr配比,不同制备方法及不同温度焙烧Ni/CexZry催化剂的活性进行对比,ZrO_2固溶进入CeO_2晶格生成Ce,Zn_(1-x)O_2固溶体,和纯的CeO_2相比,大大提高了催化剂的贮氧能力和抗高温烧结性,更利于体相氧的迁移和扩散,使体相反应过程变得活泼。在整个实验温度范围内,700℃焙烧、溶胶凝胶方法制备的Ni/Ce_(0.8)Zr_(0.2)催化活性最好,这与Ni在Ce-Zr固溶体表面形成高度分散且稳定的活性组,Ce-Zr固溶体的高贮氧能力和氧迁移扩散能力以及Ni与Ce-Zr固溶体之间的强相互作用息息相关。
     结合以上对热化学硫碘开路循环的一些基础问题的研究,目前我们实验小组在国家高技术研究发展计划(863计划)探索导向类项目以及能源清洁利用国家重点实验室的资助下正筹备建立实验室规模可连续运行的多联产试验装置。本文对实验室规模可连续运行的多联产试验系统进行了初步的系统设计和质量平衡计算,设计的产氢速率为1 L/h,Bunsen反应温度为60℃,HI分解温度500℃,采用我们自主开发的催化剂。建立实验室规模可连续运行的多联产试验装置是一项复杂的系统过程,还有很多工作要进一步细化。
Hydrogen has ideal characteristics as an energy carrier. Therefore, the concept of a hydrogen energy system has attracted worldwide interest. Huge hydrogen demand is expected in order to develop the hydrogen energy system. Thermochemical splitting of water has been proposed as a clean method for hydrogen production. Hydrogen is obtained by decomposition of water by using heat energy through a chemical cycle process that consists of several reactions. Among the large scale, cost effective and environmentally attractive hydrogen production processes, the sulfur-iodine (SI or IS) thermochemical cycle is a quite promising one.
     The selection of SI cycle to run in an open-loop fashion for China is tied-up with two important facts: (1) sulfur iron ore as SO_2 source is inexpensive and abundantly available; (2) The product sulfuric acid, in addition to hydrogen, is valuable and marketable.
     The open-loop SI cycle consists of following two reactions:
     Bunsen reaction: xI_2 + SO_2 + 2H_2O = 2HIx + H_2SO_4
     Hydrogen iodide (HI) decomposition reaction: 2HIx = xI_2 + H_2
     The mass and heat balance of the open-loop SI cycle were calculated with the optimized conditions. Thermal efficiency for hydrogen production was 63.1% with ideal operating conditions.
     The Bunsen reaction for the production of hydriodic and sulfuric acids from water, iodine and sulfur dioxide has been studied with the evaluation of the effect of solution temperature and composition of initial solution on separation characteristics of two liquid phase. The effect of solution temperature and composition of initial solution on side-reactions of the Bunsen reaction were also investigated. The separation characteristics were found to improve with the increase in iodine fraction and the decrease of water. The side-reactions can be controlled with the increase in iodine fraction and water. Results show that operative temperature has a minor effect on the phase separation, but the increase of temperature can enhance the side-reactions.
     Thermodynamics simulation of HI decomposition without and with water is investigated under different temperature by FactSage. Results show that the HI decomposition reaction is sensitive to temperature, but not to pressure. Vapor can improve HI decomposition as temperature increased above 700℃. Detailed kinetic modeling and sensitivity analysis for HI homogeneous decomposition with and without O were investigated. The kinetics model of HI decomposition without O was composed of 11 elemental reactions and 5 typical middle species. The result shows that the reactions HI+HI=H_2+I_2 and HI+I=I_2+H play a major role. The kinetics model of HI decomposition with O was composed of 43 elemental reactions and 12 typical middle species. According to the results, the reactions HI+I=I_2+H and HI+O=OH+I are the most important steps, especially the reaction HI+I=I_2+H. The presence of O can obviously promotes the HI decomposition reaction rate, but simultaneously consume H contained in HI. Kinetic calculations of HI decomposition without O are also compared with the experimental data, and all trends of the experiment can be reproduced by the model. The HI decomposition reaction path diagram was constructed in this dissertation.
     The conversion of HI homogeneous decomposition is rather low. The use of catalyst allows a substantial reduction in temperature to achieve workable reaction rates. We developed different kinds of catalysts to improve HI decomposition.
     CeO_2 which acts not only a catalyst but also an oxidant with different preparation methods and calcination temperatures have been tested to evaluate their effect on HI decomposition at various temperatures. According to the results of TG-FTIR, BET, XRD, TEM and TPR, the CeO_2 catalyst synthesized by citric-aided sol-gel method and calcined at low temperature(300 and 500℃) shows more lattice defects, smaller crystallites, larger surface area and better reducibility. Lattice defects, especially the reduced surface sites, i.e., Ce~(3+) and oxygen vacancy, and O species play the dominant role in surface reactions of HI decomposition. An original reaction mechanism for HI catalytic decomposition on CeO_2 catalyst is proposed.
     The Pt/CeO_2 catalysts with different preparation methods, calcination temperatures and oxidative/reductive treatments have been tested to evaluate their effect on HI decomposition. The Pt/CeO_2 catalysts strongly enhance the decomposition of HI. According to the results of TG-FTIR, BET, XRD, TEM,TPR and XPS, it was found that, through sol-gel method, the Pt ions could be inserted into the ceria lattice. This brought about a different synergistic effect between the Pt and Ce components, such as increased the oxygen mobility in ceria support and improved the thermal stability of catalyst. A mechanism is supposed to exist in the Pt/CeO_2 catalysts synthesized by sol-gel at high calcination temperature. It involves the complex conversion such as Ce~(4+)+Pt→Ce~(3+)+Pt~(2+) and oxygen-vacancy diffusion in the Pt-Ce-O system. The oxidative /reductive atmosphere affected the structure and performance of the catalyst by the strong metal-support interaction (SMSI). The activity of the reduced and re-oxidized samples are better than the as-received and oxidized samples. Models were constructed to describe the diffusion of Ce~(4+) and oxygen vacancies as well as the possible shell-core structure of Pt crystallites and the decoration/encapsulation by ceria support. Compared to pure ceria, inserting ZrO_2 into the ceria lattice to form ceria-zirconia solid solutions has improved the thermal stability and oxygen storage capacity. Pt/Ce_(0.8)Zr_(0.2) showed the best catalytic performance as a combined result of high oxygen storage capacity of ceria in Ce-ZrO_2, strong interaction between Ni and Ce-ZrO_2 and basic property of the catalyst.
     The Ni/CeO_2 catalysts with different preparation methods, calcination temperatures and oxidative/reductive treatments have been tested to evaluate their effect on HI decomposition. The Ni/CeO_2 catalysts also strongly enhance the decomposition of HI. According to the results of TG-FTIR, BET, XRD, HRTEM/TPR and XPS, it was found that the Ni~(2+) ions could be inserted into the ceria lattice. This brought about the strong interaction between Ni and CeO_2 and the generation of oxygen vacancies. An original reaction mechanism of HI catalytic decomposition on Ni/CeO_2 has been constructed. We believe that there are three important reactive sites for HI catalytic decomposition. One is the surface site which exhibits in the Ni-Ce interphase, where interfacial Ni sites are located and the strong interaction between Ni and CeO_2 occurs. The other is oxygen vacancy related to the reduced surface sites of CeO_2 support, i.e., Ce~(3+) and Ni~(2+) ions dissolved into the ceria lattice instead of the Ce~(4+) ions. The third reactive sites is reduced Ni surface.
     The Ni/Ce_xZr_(1-x)(x=1, 0.8, 0.5, 0.2 and 0) synthesized by citric-aided sol-gel method and calcined at 700℃have been tested to evaluate their effect on HI decomposition. Ni/Ce_(0.8)Zr_(0.2) showed the best catalytic performance. Then Ni/Ce_(0.8)Zr_(0.2) with different preparation methods and calcination temperatures have also been tested to evaluate their effect on HI decomposition. Compared to pure ceria, inserting ZrO_2 into the ceria lattice to form ceria-zirconia solid solutions has improved the thermal stability and oxygen storage capacity. Ni/Ce_(0.8)Zr_(0.2) synthesized by citric-aided sol-gel method and calcined at 700℃showed the best catalytic performance due to its high degrees of metal dispersion, high oxygen storage capacity of ceria in Ce-ZrO_2, surface oxygen mobility and strong interaction between Ni and Ce-ZrO_2.
     Based on our fundamental research and the support of National High Technology Research and Development Program of China (863 Program) and State Key Laboratory of Clean Energy Utilization. We try to construct a bench-scale open-loop SI cycle for continuous hydrogen production. The system design and mass balance of the open-loop SI cycle have already been investigated with the optimized conditions. Designed H_2 production rate is 1 L/h. The Bunsen reaction and HI decomposition reaction are operated at 60℃and 500℃. The catalyst developed by ourself will be selected for HI decomposition. Continuous operation for hydrogen production in a stable state is one of the challenges.
引文
1. 毛宗强,氢能--21世纪的绿色能源.化学工业出版社.2005.
    
    2. T.Nejat.Veziroglu, Hydrogen Energy Technologies. UNIDO Emerging Technologies Series, UNIDO, Vienna,. 1998.
    
    3. T.Nejat.Veziroglu, Twenty years of the hydrogen movement Int J Hydrogen Energy. 1995;20(1):1-7.
    
    4. National Energy Plicy-Reliable,Affordable and Environmentally Sound Energy for America's Future. Report of the National Energy Policy Development Group. May 2001.
    
    5. A national vision of America's transition to a hydrogen economy-to 2030 and beyond. U.S.Department of Energy. February 2002
    
    6. Nuclear Hydrogen R&D Plan. Office of nuclear energy.Science and Technology, U.S.Department of Energy. March 2004.
    
    7. Office of fossil energy-Hydrogen program plan. Hydrogen from natural gas and coal:The road to a sustainable energy future. Hydrogen Coordination Group, U.S.Department of Energy. June 2003.
    
    8. National Hydrogen Energy Roadmap. U.S.Department of Energy. November 2002.
    
    9. Hydrogen Posture Plan-An integrated research,development and demonstration plan. U.S.Department of Energy. February 2004.
    
    10. European Commission. European fuel cell and hydrogen projects 1999-2002. Luxembourg: Office for Official Publications of the European Communities; 2003.
    
    11. T.R.C. Femandes, F.C., Maria da Graca Carvalho., "HySociety" in support of European hydrogen projects and EC policy. Int J Hydrogen Energy. 2005;30:239-245.
    
    12. IP/01/710. A sustainable Europe for a better world: a European union strategy for sustainable development. GXoteborg Summit in June 2001.
    
    13. The Lisbon European Council. An agenda of economic and social renewal for Europe. Doc/00/7 Brussels, February 2000.
    
    14. Towards a Secure and Renewable Hydrogen Economy for Asia:Fundamentals International Experience and Steps Forward. Anchor Document Renewable Hydrogen Conference. Sponsored by the U.S. Agency for International Development . Philippines Energy Celebration Week. December 7-9,2004 Manila, Philippines.
    
    15. 胡亚范,马予芳,张永责,绿色能源—氢能.节能技术,2007;25(5):466-469.
    
    16. 宋雯,郭家强,欧美发展氢能和燃料电池汽车的举措及对我国的建议.中外能源,2008; 13(1): 20-22.
    
    17. 韩美,氢能经济时代正快步走来.低温与特气,2007;25(5):20-20.
    
    18. 任南琪,吉洁,马涛,氢能替代石油能源的商业应用分析.商业研究,2007;12:102-105.
    
    19. 毛宗强,氢能知识系列讲座(12)前景日益重要的氢能.太阳能,2007;12:9-11.
    
    20. Steinberg M, Cheng H. Modern and prospective technologiesfor hydrogen production from fossil fuels. Int J HydrogenEnergy 1989;14(11):797-820.
    
    21. Benson HE. Processing of gasification products. In: Chemistry of coal utilization, 2nd supplementary volume. New York: Wiley; 1981.
    
    22. T.Nejat.Veziroglu, Hydrogen movement and the next action:fossil fuels industry and??sustainability economics. Int J Hydrogen Energy. 1997;22(6):551-556.
    
    23. J.Rothstein. Hydrogen and Fossil Fuels. Int J Hydrogen Energy. 1995;20(4):283-286.
    
    24. 祁威,张蕾,张磊,舒新前,丁兆军,李钢,煤催化热解制氢的研究进展.中国煤炭, 2007;33(10):57-58.
    
    25. 许世森,程健,煤气化制氢及氢能发电试验系统.中国电力,2007;40(3):9-13.
    
    26. 王峰,田文栋,肖云汉,煤直接制氢实验研究.中国电机工程学报,2007;27(32):40-45.
    
    27. 谢继东,李文华,陈亚飞,煤制氢发展现状.洁净煤技术,2007;13(2):77-81.
    
    28. 任相坤,袁明,高聚忠,神华煤制氢技术发展现状.媒质技术,2006;1:4-7.
    
    29. 步学朋,徐振刚,我国煤炭气化制氢现状及发展趋势.工厂动力,2004;1:33-37.
    
    30. 王智化,王勤辉,骆仲泱,周俊虎,樊建人,岑可法.,新型煤气化燃烧集成制氢系统的 热力学研究.中国电机工程学报,2005;25(12):91-97.
    
    31. Lin SY, Suzuki Y, Hatano H, Harada M. Kagaku Kogaku Ronbunshu. 1999;27:520l
    
    32. Lin SY. Suzuki Y, Hatano H. Japanese patent, 2979149; 1999.
    
    33. CO2 abatement by the use of carbon-rejection processes. IEA GHG Report PH3/36; February 2001.
    
    34. Hart D, Freud P, Smith A. Hydrogen today and tomorrow. IEA GHG Programme, April 1999. ISBN 1 898373248.
    
    35. Fulcheri L, Schwob Y. From methane to hydrogen, carbon black and water. Int J Hydrogen Energy 1995;20(3):197-202
    
    36. MuradovNZ. How to produce hydrogen from fossil fuels without CO2 emission. Int J Hydrogen Energy 1993;18(3):211-215.
    
    37. 汤桂兰,孙振钧,生物制氢技术的研究现状与发展.生物技术,2007;17(1):93-97.
    
    38. 周汝雁,尤希凤,张全国,光合微生物制氢技术的研究进展.中国沼气,2006;24(2): 31-34.
    
    39. 李冬敏,陈洪章,李佐虎.生物制氢技术的研究进展.生物技术通报,2003;4:1-5..
    
    40. 任南琪,李建政.生物制氢技术.太阳能,2003;2:4-6.
    
    41. 解东来,叶根银,李自卫,乔伟艳,生物质气化制氢中的流化床工艺选择.中外能源, 2007;12(6):20-24.
    
    42. 林鹏,虞亚辉,罗永浩,陈祎,生物质热化学制氢的研究进展.化学反应工程与工艺, 2007;23(3):267-272.
    
    43. 闫桂焕,孙立,许敏,孙荣峰,生物质热化学转化制氢技术.可再生能源,2004;4:33-36.
    
    44. 汤桂兰,孙振钧,李玉英,微生物发酵法制氢与产氢微生物的研究进展.农业工程学报, 2007;23(12):285-290.
    
    45. 张续春,黄兵,曹东福,微生物厌氧发酵制氢技术现状和展望.云南化工,2007;34(2): 67-70.
    
    46. Benemann JR. Feasibility analysis of photobiological hydrogen production. Int J Hydrogen Energy 1997;22:979-987.
    
    47. Greenbaum E. Hydrogen production by photosynthetic water splitting. In: Veziroglu TN, Takashashi PK, editors. Hydrogen energy progress VIII. Proceedings 8th WHEC, Hawaii. New York: Pergamon Press, 1990. p. 743-754.
    
    48. Sasikala K, Ramana ChV, Rao PR, Kovacs KL. Anoxygenic phototrophic bacteria: physiology and advances in hydrogen technology. Adv Appl Microbiol 1993;10:211-215.
    
    49. 周俊虎,戚峰,程军,谢琳,谢斌飞,刘建忠,岑可法,秸秆发酵产氢的碱性预处理方 法研究.太阳能学报,2007;28(3):229-333.
    
    50. Cozzani V, Nicolella C, Pctarca L. Ind Eng Chem Res 1995;34:2006.
    
    51. Encinar JM, Beltra FJ, Gonzalez FJ, et al. Ind Chem Tech Biotcchnol 1997;70:400.
    
    52. Raveendran K, Ganesh A, Khilar KC. Fuel 1996;75:987.
    
    53. 庞志成.罗震宁,电解制氢电极材料的研究进展.责州化工,2006;31(3):33-35.
    
    54. 汪家铭.水电解制氢技术进展及应用.技术与市场,2006;11A:6-6.
    
    55. 周文利,牛振杰,水电解制氢设备简介.青海气象,2006;4:35-36.
    
    56. 钱丽苹,刘奎仁,半导体光解水制氢的研究.材料与冶金学报,2003;2(1):10-15.
    
    57. 田蒙奎,上官文峰,欧阳自远,王世杰,光解水制氢半导体光催化材料的研究进展.功 能材料,2005;36(10):1489-1492,1500.
    
    58. 冉锐,吴晓东,翁端,光解水制氢的可见光催化材料的研究进展.材料导报,2004;18 (F10):39-42.
    
    59. 许家胜,薛冬峰,利用可见光催化分解水制氢的研究进展.材料导报,2006;20(10): 1-4.
    
    60. 上官文峰,太阳能光解水制氢的研究进展.无机化学学报,2001;17(5):619-626.
    
    61. J.E.Funk, R.M.Reinstrom, Energy requirements in the production of hydrogen from water. IEC Proc.Res.Dev. 1966, 5: 336.
    
    62. Knoche KF. Thermodynamic aspects of coupled chemicalreactions. Round Table on Direct Hydrogen Production, Ispra, Italy, 1969.
    
    63. De Beni G, Marchetti C. Hydrogen, key to the energy market. Eurospectra 1970;9(2):46.
    
    64. Gregory DP et al. A hydrogen energy system. Catalogue No.L21173, American Gas Association, 1972.
    
    65. Barnert H. Water decomposition by nuclear means. Atomwirt Atomtech 1972;18(8-9) :408-410.
    
    66. Beghi G. Non-electric application of nuclear energy: hydrogen production. CEC Annual Report, 1973.
    
    67. Booth LA, Balcomb JD. Nuclear heat and hydrogen in future energy utilization. Los Alamos, New Mexico, USA: Los Alamos Science Laboratory, 1973, p. 28.
    
    68. Hardy-Grena C. Decomposition thermique de l'eau a travers des cycles chimiques de la famille Fe-CI2. Graz de France,1973.
    
    69. Marchetti C. Hydrogen and energy, Chem Econom Engng Rev 1973; 5(7):7-24.
    
    70. Michel JW. Hydrogen and exotic fuels. Oak Ridge National Laboratory Report, TM 4461, 1973.
    
    71. Ramsey WJ. Process for thermochemical decomposition of water using process heat to produce hydrogen. Livermore, CA, USA: Lawrence Livermore Laboratory University of California, 1973. p. 17.
    
    72. Souriau D. Method and device for the use of high temperature heat-energy, in particular of nuclear origin. Gaz de France, Patent No. 3761352,1973.
    
    73. Ohta T. Solar-hydrogen energy systems. Oxford: Pergamon Press, 1979.
    
    74. Beghi GE. A decade of research on thermochemical hydrogen at the joint research center, Ispra. Int J Hydrogen Energy 1986;11(12):761-71.
    
    75. Russell Jr JL, Porter JT. A search for thermochemical water-splitting cycles. Hydrogen Economy Miami Energy Conference, Miami, 1974.
    
    76. Williams L. Hydrogen power. New York: Pergamon Press, 1980.
    
    77. Yalcin S. A review of nuclear hydrogen production. Int J Hydrogen Energy??1989;14(8):551-61.
    
    78. Casper MS, editor. Hydrogen manufacture by electrolysis, thermal decomposition, and unusual techniques. Park Ridge, NJ:Noyes Data Corp, 1978.
    
    79. Bamberger CE. Hydrogen production from water by thermochemical cycles; a 1977 update. Cryogenics 1978;18(3):170-83.
    
    80. Bockris JO'M. Energy. The solar-hydrogen alternative. Australia:Wiley, 197S.
    
    81. Pretzel CW, Funk JE. The development status of solar thermochemical hydrogen production. Sandia Report 86-8056,1987.
    
    82. Funk JE. A technoeconomic analysis of large scale thermochemical production of hydrogen. EPRIEM-287, Project 467 Final Report, 1976.
    
    83. Funk JE.Thermochemical hydrogen production: past and present. Int J Hydrogen Energy 2001;26:185-190.
    
    84. Yoshioka H, Nakayama T, Kameyama H, Yoshida K. Operation of a bench-scale plant for hydrogen production by the UT-3 cycle. Hydrogen energy progress V: proceedings of the fifth World hydrogen energy conference. Toronto, Canada, 15-20 July 1984. p. 413-20.
    
    85. Kameyama H, Tomino Y, Sato T, Amir R, Orihara A, Aihara M, Yoshida K. Process simulation of mascot plant using the UT-3 thermochemical cycle for hydrogen production. Int J Hydrogen Energy 1988;14(5):323-330.
    
    86. Aihara M, Umida H, Tsutsumi A, Yoshida K. Kinetic study of UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 1990;15(1):7-11.
    
    87. Yoshida K, Kameyama H, Aochi T, Nobue M, Aihara M, Amir R, Kondo H, Sato T, Tadokoro Y, Yamaguchi T, Sakai N. A simulation study of the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 1990;15(3):171 - 178.
    
    88. Sakurai M, Tsutsumi A, Yoshida K. Improvement of Ca-pellet reactivity in the UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 1995;20(4):297-301.
    
    89. Sakurai M, Bilgen E, Tsutsumi A, Yoshida K. Solar UT-3 thermochemical cycle for hydrogen production. Solar Energy 1996;57(1):51-58.
    
    90. Teo ED, Brandon NP, Vos E, Kramer GJ. A critical pathway energy efficiency analysis of the thermochemical UT-3 cycle. Int J Hydrogen Energy 2005;30(5):559-564.
    
    91. F. Lemort,C. Lafon, R. Dedryvere, D. Gonbeaub.Physicochemical and thermodynamic investigation of theUT-3 hydrogen production cycle:Anewtechnological assessment. Int J Hydrogen Energy 2006;31:906-918.
    
    92. 张龙,高伟民,李海东,S-I-Ni开路循环水分解制氢的反应条件及动力学研究.吉林工学 院学报,1994;15(1):54-58.
    
    93. 吴莘馨,方甬,厉日竹,小贯薰,高温堆的热利用-热化学循环制氢的研究.高技术通 讯,2002.9.
    
    94. WU Xinxin , ONUKI Kaoru.Thermochemical Water Splitting for Hydrogen Production Utilizing Nuclear Heat from an HTGR TSINGHUA SCIENCE AND TECHNOLOGY, 2005; 10 (2) : 270-276.
    
    95. J.H.Zhou, Y.W.Zhang, Zh.H.Wang, W.J.Yang, Zh.J.Zhou, J.Zh.Liu, K.F.Cen. Thermal efficiency evaluation of open-loop SI thermochemical cycle for the production of hydrogen, sulfuric acid and electric power. Int.J.Hydrogen Energy, 2007;32 : 567-575.
    
    96. Y.W.Zhang, J.H.Zhou, Zh.H.Wang, K.F.Cen. Detailed kinetic modeling and sensitivity analysis of hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production. Int??J Hydrogen Energy,2008;33:627-632
    
    97. Y.W. Zhang, Zh.H. Wang, J.H. Zhou, J.Zh. Liu, K.F. Cen. Effect of preparation method on platinum-ceria catalysts for hydrogen iodide decomposition in sulfur- iodine cycle, Int J Hydrogen Energy,2008;33:602-607.
    
    98. Y.W.Zhang, J.H.Zhou, Zh.H.Wang, J.Zh. Liu, K.F.Cen. Catalytic Thermal Decomposition of Hydrogen Iodide in Sulfur-Iodine Cycle for Hydrogen Production, Energy & Fuels, 2008;22:1227-1232
    
    99. Y.W.Zhang, J.H.Zhou, Zh.H.Wang, J.Zh. Liu, K.F.Cen. Influence of the oxidative/reductive treatments on Pt/CeO2 catalyst for hydrogen iodide decomposition in sulfur-iodine cycle,Int J Hydrogen Energy,2008;33:2211-2217.
    
    100. 刘广义.热化学硫碘循环制氢中Bunsen反应与碘化氢分解的模拟与实验研究.浙江大学 硕士学位论文.
    
    101. Norman JH, G.E.Besenbruch and D.O' Keefe. Thermochemical water-splitting for hydrogen production. GRI-80/010S,Gas Research Institute.1981.
    
    102. Knoche.K.F.,H.Scheper and K.Hesselmann.. Second law and cost analysis of the oxygen generation step of the General Atomic sulfur-iodine cycle.Proc. of the 5th World Hydrogen energy conf.,Toronto,Canada,1984; 487-502.Pergamon Press.New York,USA.
    
    103. Brown LC,Lentsch RD,Besenbruch GE,etc.Alternative flowsheets for the sulfur-iodine thermochemical hydrogen cycle.Proceeding of AlChe 2003 spring National Meeting,New Orleans USA,2003.
    
    104. Norman.J.H.,G.E.Besenbruch,L.C.Brown,D.R.O'Keefe and C.L.Allen. Thermochemical water-splitting cycle, Bench-scale investigations and process engineering. Int J Hydrogen Energy 1982;GA-A16713.
    
    105. L.C. BROWN, J.F. FUNK, and S.K. SHOWALTER.INITIAL SCREENING OF THERMOCHEMICAL WATER-SPLITTING CYCLES FOR HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER.GA-A23373,2000.
    
    106. L. C. Brown, et al.. High Efficiency Generation of Hydrogen Fuels Using Thermochemical Cycles and Nuclear Power. AIChE 2002 Spring National Meeting,New Orleans, Louisiana .2002
    
    107. L.C. BROWN, G.E. BESENBRUCH, K.R. SCHULTZ, S.K. SHOWALTER, A.C. MARSHALL, P.S. PICKARD, and J.F. FUNK.HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING THERMOCHEMICAL CYCLES AND NUCLEAR POWER.GA-A24326,2002
    
    108. L.C. BROWN, R.D. LENTSCH, G.E. BESENBRUCH, K.R. SCHULTZ, AND J.E. FUNK.ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE.GA-A24266.2003.
    
    109. Knoche.K.F.,H.Schepers and K.Hesselmann. Second law snd cost analysis of the oxygen generation step of the General Atomic sulfur-iodine cycle.Proc. of the 5lhWorld Hydrogen energy conf.,Toronto,Canada, 1984;487-502
    
    110. Roth.M.and K.F.Knoche. Thermochemical water splitting through direct HI-decomposition from H2O/HI/I2 solutions. Int J Hydrogen Energy 1989; 14(8):545-549.
    
    111. (?)ztürk.I.T.,A.Hammache and E.Bilgen. An improved process for H2SO4 decomposition step of the sulfur-iodine cycle.Energy Convers Mgmt 1995; 36 (1):11-21.
    
    112. Onuki K, Nakajima H, Ioka I, Futakawa M, Shimizu S. IS process for thermochemical hydrogen production. JAERI-Review 94-006; 1994.
    
    113. Onuki K, Kubo S, Kasahara S, Ishiyama S, Nakajima H, Higashi S, et al. Study on thermochemical iodine-sulfur cycle at JAERI. Proceedings of the 12th international conference on nuclear engineering, Arlington, VA, USA; April 25-29, 2004.ICONE12-49364.
    
    114. Fujikawa S, Hayashi H, Nakazawa T, Kawasaki K, Iyoku T, Nakagawa S. et al. Achievement of reactor-outlet coolant temperature of 950 (?)C in HTTR. J Nucl Sci Technol 2004;41(12):1245-254.
    
    115. Kasahara S, Kubo S, Hino R, Onuki K, Nomura M, Nakao S. Flowsheet study of the thermochemical water-splitting IS process for effective hydrogen production. Proceedings of AIChE 2005 spring national meeting, Atlanta, GA, USA; April 10-14,2005. 75a
    
    116. Shimizu S. Advanced methods for hydrogen production as a fusion nuclear application system.International symposium on advanced nuclear energy research—near-future chemistry in nuclear energy field, Oarai, Ibaraki, Japan; February 15-16,1989. p. 324-31.
    
    117. Futakawa M, Kubo S, Wakui T, Onuki K, Shimizu S, Yamaguchi A. Mechanical property evaluation of surface layer corroded in thermochemical-hydrogen-production process condition. J Jpn Soc Exp Mech 2003;3(2):109-114 [in Japanese].
    
    118. Kubo S, Futakawa M, Ioka I, Onuki K, Shimizu S, Ohsaka K, et al. Corrosion test on structural materials for iodine-sulfur thermochemical water splitting cycle. Proceedings of AIChE 2003 spring national meeting, New Orleans, LA, USA; March 30-April 3, 2003.153b.
    
    119. Nishiyama N, Futakawa M, Ioka I, Onuki K, Shimizu S, Eto M. et al. Corrosion resistance evaluation of brittle materials in boiling sulfuric acid. J Soc Mat Sci Jpn 1999;48(7):746-52 [in Japanese].
    
    120. Ota H, Terada A, Kubo S, Kasahara S, Hodotsuka M, Hino R, et al. Conceptual design study of sulfuric-acid decomposer for thermochemical iodine-sulfur process pilot plant. Proceedings of the 13th international conference on nuclear engineering, Beijing, China; May 16-20 2005.ICONE13-50494.
    
    121. Kasahara S, Kubo S, Onuki K, Nomura M, Nakao S. Sensitivity analysis of operation parameters and chemical properties for the design of the thermochemical hydrogen production IS process. Proceedings of the 15th world hydrogen energy conference, Yokohama, Japan;June 27-July 2, 2004. 29J-03.
    
    122. Seiji Kasahara,Shinji Kubo, Ryutaro Hino, Kaoru Onuki,Mikihiro Nomura, Shin-ichiNakao.Flowsheet study of the thermochemicalwater-splitting iodine-sulfur process for effective hydrogen production.Int.J.Hydrogen Energy, 2007;32:489-496.
    
    123. Mikihiro Nomura,Hiroyuki Okuda, Seiji Kasahara, Shin-ichi Nakao.Optimization of the process parameters of an electrochemical cell in the IS process.Chemical Engineering Science.2005;60:7160-7167.
    
    124. Mikihiro Nomura,Seiji Kasahara, Hiroyuki Okuda, Shin-ichi Nakao.Evaluation of the IS process featuring membrane techniques by total thermal efficiency.Int.J.Hydrogen Energy,2005;30:1465-1473.
    
    125. Nariaki Sakaba, Seiji Kasahara, Kaoru Onuki, Kazuhiko Kunitomi.Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR.International Journal of Hydrogen Energy 32 (2007) 4160 - 4169.
    
    
    126. Nakajima.H.,M.Sakurai,K.Ikenoya,G.J.Hwang,K.Onuki and S.Shimizu. A study on a closed-cycle hydrogen production by thennochemical water-splitting IS process.7th Int Conf Nucl Eng, Tokyo,Japan, 1999. ICONE-7104.
    
    127. Nakajima, H., Ikenoya, K., Onuki, K., Shimizu, S.. Closed-Cycle Continuous Hydrogen Production Test by Thennochemical IS Process. Kagaku Kogaku Ronbunshu, 1998;24:352 -355.
    
    128. Shinji Kubo, Hayato Nakajima, Seiji Kasahara, Syunichi Higashi, Tomoo Masaki, Hiroyoshi Abe and Kaoru Onuki. A demonstration study on a closed-cycle hydrogen production by the thennochemical water-splitting iodine-sulfur process. Nucl Eng Des. 2004;233 :347-354.
    
    129. Shinji Kubo., Seiji Kasahara, Hiroyuki Okuda, Atsuhiko Terada, Nobuyuki Tanaka,Yoshitomo Inaba, Hirofumi Ohashi, Yoshiyuki Inagaki, Kaoru Onuki and Ryutaro Hino. A pilot test plan of the thennochemical water-splitting iodine-sulfur process. Nucl Eng Des. 2004;233 :355-362
    
    130. Onuki.K.,GJ.Hwang,Arifal and S.Shimizu. Electro-electrodialysis of hydriodic acid in the presence of iodine at elevated temperature. J.Membr.Sci. 2001; 192:193-199.
    
    131. Hwang, G. J., Onuki, K., Nomura, M., Kasahara, S,. Choi, H. S., Kim, J. W.,. Improvement of the thennochemical water-splitting IS process by electroelectrodialysis. J. Membr. Sci., 2003;220:129-136.
    
    132. Kasahara, S., Kubo, S., Onuki, K., Nomura, M., . Thermal efficiency evaluation of HI synthesis/ concentration procedures in the thermochemical water splitting IS process. Int. J. Hydrogen Energy, 2004;29:579-587.
    
    133. Nomura, M., Fujiwara, S., Okuda, H., Kasahara, S., Ikenoya, K., Kubo, S., Hwang, G.J., Choi, H. S., Onuki, K.,. Application of an electrochemical membrane reactor to the thermochemical water splitting IS process for hydrogen production. J. Membr. Sci, 2004;240 (1-2):221-226.
    
    134. Nomura, M., Fujiwara, S., Ikenoya, K., Kasahara, S., Nakajima, H., Kubo, S., Onuki, K., Nakao, S.,. Development of an electrochemical cell using a cation exchange membrane for efficient hydrogen production through the IS process. AIChE J. 2004;50(8):1991 -199a
    
    135. Onuki, K., Hwang, G.. J., Shimizu, S., . Electrodialysis of hydriodic acid in the presence of iodine. J. Membr. Sci., 2000;175:171-179.
    
    136. N.Ito,Y.shindo,T.Hakuta,etc, Enhanced Catalytic Decomposition of HI by Using a Microporous Membrane, Int.J.Hydrogen Energy, 10,835-839,1984.
    
    137. Hwang.G.J. and K.Onuki. Simulation study on the catalytic decomposition of hydrogen iodine in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process. J.Membr.Sci.2001;194:207-215.
    
    138. Hwang.G.J.,K.Onuki and S.Shimizu. Separation of hydrogen from a H2-H2O-HI gaseous mixture using a silica membrane. AICHE J., 2000;46(l):92-98.
    
    139. G.J.Hwang, Kaoru Onuki, Saburo Shimizu, etc. Hydrogen Sepration in H2-H2O-HI Mixture Using the Silica Membrane Prepared by Chemical Vapor Deposition, J.Membr.Sci. 162: 83-89, 1999.
    
    140. Mikihiro Nomura, Seiji Kasahara and Shin-ichi Nakao. Silica membrane reactor for the thermochemical Iodine-Sulfur process to produce hydrogen, Ind. Eng. Chem. Res., 43(18):5874-5879,2004.
    
    141. Kasahara.S.,G.J.Hwang,H.Nakajima,H.S.Choi, K.Onuki and M.Nomura. Effect of process parameters of the IS process on total thermal efficiency to produce hydrogen from water. J Chem Eng Jpn. 2003; 36 (7):887-899.
    
    142. Alain Le Duigou,Jean-Marc Borgard, Bruno Larousse, Denis Doizi, Ray Allen,Bmce C. Ewan,Geoff H. Priestman, Rachael Elder, Robin Devonshire, Victor Ramos, Giovanni Cerri,Coriolano Salvini, Ambra Giovannelli, Giovanni De Maria, Claudio Corgnale,Sergio Brutti,Martin Roeb, Adam Noglik, Peter-Michael Rietbrock, Stefan Mohr,Lamark de Oliveira,Nathalie Monnerie, Mark Schmitz, Christian Sattler, Alfredo Orden Martinez, Daniel de Lorenzo Manzano, Jorge Cedillo Rojas,Stephane Dechelotte, Olivier Baudouin.HYTHEC:An EC funded search for a long term massive hydrogen production route using solar and nuclear technologies.International Journal of Hydrogen Energy. 2007;32 :1516 -1529.
    
    143. Goldstein S, Borgard J-M, Vitart X. Upper bound and best estimate of the efficiency of the iodine sulphur cycle. Int J Hydrogen Energy 2005;30(6):619-626.
    
    144. Elder RH, Priestman GH, Ewan BC, Allen RWK. The separation of HIx in the sulphur-iodine thermochemical cycle for sustainable hydrogen production. Trans IChemE, Part B, Process Safety Environ Prot 2005;83:343-350.
    
    145. Orme CJ, Jones MG, Stewart FF. Pervapouration of water from aqueous HI using Nafion-117 membranes for the sulfur-iodine thermochemical water splitting process. J Membrane Sci 2005;252:245-252.
    
    146. Fend T, Hoffschmidt B, Pitz-Paal R, Reutter O, Rietbrock P. Porous materials as open volumetric receivers: experimental determination of thermophysical and heat transfer properties. Proceedings of the 11th SolarPACES international symposium on solar power and chemical energy technologies, 2002. p. 379-387.
    
    147. Tamme R, Buck R, Moller S. Advanced hydrogen production with concentrated solar power systems. Proceedings of ISEC 2003 international solar energy conference, Hawaii, USA;15-18 March 2003, ISEC2003-44085.
    
    148. Giampaolo Caputo, Claudio Felici, Pietro Tarquini, Alberto Giaconia, Salvatore Sau.Membrane distillation of HI/H2OandH2SO4/H2Omixtures for the sulfur-iodine thermochemical process.International Journal of Hydrogen Energy 32 (2007) 4736 - 4743.
    
    149. X. Vitart , A. Le Duigou, P. Carles.Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: An overview.Energy Conversion and Management 47 (2006) 2740-2747.
    
    150. Vitart X. Thermochemical production of hydrogen. Nuclear production of hydrogen. In: Hori M, Spitalnik J, editors. Current issues in nuclear energy series. International Nuclear Societies Council; 2004. p. 45-67.
    
    151. Vitart X et al. Investigation of the I-S cycle for massive hydrogen production. In: ANL symposium, Argonne, 2004.
    
    152. Elder RH, Borgard JM, Priestman GH, Ewan BC, Allen RWK. Use of membranes and reactive distillation for the separation of HIx in the sulphur-iodine cycle. In: Proceedings of the AIChE 2005 Annual meeting, in press.
    
    153. D. Doizi,V. Dauvois, J.L. Roujou, V. Delanne, P. Fauvet, B. Larousse, O. Hercher.P. Carles,C. Moulin, J.M. Hartmann.Total and partial pressure measurements for the sulphur-iodine thermochemical cycle.International Journal of Hydrogen Energy 32 (2007) 1183 - 1191.
    
    154. B. Belaissaoui, R. Thery, X.M. Meyer, M. Meyer, V. Gerbaud, X. Joulia.Vapour reactive distillation process for hydrogen production by HI decomposition from HI-I2-H2O solutions.Chemical Engineering and Processing 47 (2008) 396-407.
    
    155. Xavier Vitart, Philippe Carles, Pascal Anzieu.A general survey of the potential and the main
    ??issues associated with the sulfureiodine thermochemical cycle for hydrogen production using nuclear heat.Progress in Nuclear Energy SO (2008) 402-410.
    
    156. Elder, R.H., Borgard, J.M., Pricstman, G.H., Ewan, B.C.R., Allen, R.W.K., 2005. Use of membranes and reactive distillation for the separation of HIx in the sulphureiodine cycle. 7th, AIChE 2005 (Cincinnati), OH, USA, 258£
    
    157. Hong SD, Kim CH, Kim JG, Lee SH, Bae KK, Hwang GJ. HI concentration from HIx (HI-H2O-I2) solution for the thermochemical water-splitting IS process by electro-electrodialysis. J Ind Eng Chem 2006;14(2):566.
    
    158. Seong-Dae Hong, Jeong-Keun Kim, Byeong-Kwon Kim, Sang-Il Choi,Ki-Kwang Bae, Gab-Jin Hwang.Evaluation on the electro-electrodialysis to concentrate HI from HIx solution by using two types of the electrode.International Journal of Hydrogen Energy 32 (2007) 2005 -2009.
    
    159. Chan Soo Kim , Sung-Deok Hong, Yong-Wan Kim, Jong-Ho Kim, Won Jae Lee, Jonghwa Chang.Thermal design of a laboratory-scale SO3 decomposer for nuclear hydrogen production. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY,in press.
    
    160. Trester PW, Staley H. Gas research Institute Report 80/00981,1981.
    
    161. B.Wong, R.T. Buckingham, L.C. Brown, B.E. Russ, G.E. Besenbruch,A. Kaiparambil,R. Santhanakrishnan, Ajit Roy.Construction materials development in sulfur-iodine thermochemical water-splitting process for hydrogen production.International Journal of Hydrogen Energy 32 (2007) 497 - 504.
    
    162. S.Sato,S.Shimizu,H.Nakajima,etc . A nickel-iodine-sulfur process for hydrogen production. Int.J.Hydrogen Energy, 1983;8(1): 15-22
    
    163. Shimizu.S,Onuki.K,Nakajima.H,etc. The nickel-iodine-sulfur process for hydrogen production IV.Bunsen Reaction. DENKI KAGAKU, 1985;53(2):114-118.
    
    164. M Sakurai,H Nakajima ,K.Onuki. Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process. Int. J. Hydrogen Energy, 2000;25:605-611.
    
    165. M Sakurai,H Nakajima,R Amir,etc. Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process.Int. J. Hydrogen Energy, 2000;25:613-619.
    
    166. G.J.Hwang,Y.H.Kim,C.S.Park,etc . Bunsen reaction in IS(Iodine-sulfur) process for thermochemical hydrogen production. Proceedings International Hydrogen Energy Congress and Exibition IHEC Istabul,Turkey, 2005.
    
    167. Lee TC. The Study on the separation characteristics of Bunsen reaction for thermochemical hydrogen production, University of Science and Technology (Korea), Master's Thesis, 2006.
    
    168. A. Giaconia, G. Caputo, A. Ceroli, M. Diamanti, V. Barbarossa, P. Tarquini, S. Sau.Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle.International Journal of Hydrogen Energy.2007;32(5):531-536.
    
    169. Sakurai M, Nakajima H, Onuki K, Ikenoya K, Shimizu S.Preliminary process analysis for the closed cycle operation of the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 1999;24:603-612
    
    170. Sakurai M, Nakajima H, Onuki K, Shimizu S. Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 2000;25:605-611.
    171. Colette S, Brijou-Mokrani N, Carles P, Fauvet P, Tabarant M,Dutruc-Rosset C, et al.Experimental study of Bunsen reaction in the framework of massive hydrogen production by the sulfur-iodine thermochemical cycle. WHEC16/13-16 June 2006, Lyon, France.
    
    172. Kang YH, Ryu JC, Park CS, Hwang GJ, Lee SH, Bae KK, et al. The study on Bunsen reaction process for iodine-sulfurthermochemical hydrogen production. Korean Chem Eng Res 2006;44(4):410-416.
    
    173. Lee DH, Lee KJ, Kang YH, Kim YH, Park CS, Hwang GJ, et al. High temperature phase separation of H2SO4-HI-H2O-I2 system in iodine-sulfur hydrogen production process. Trans Korean Hydrogen and New Energy Soc 2006;17(4):395-402
    
    174. Byung Jin Lee, Hee Cheon NO, Ho Joon Yoon, Seung Jun Kim, Eung Soo Kim.An optimal operating window for the Bunsen process in the I-S thermochemical cycle. International Journal of Hydrogen Energy.2008;33(9):2200-2210.
    
    175. J.H. Norman, K.J. Mysels, D.R. O'Keefe, S.A. Stowell, D.G.Williamson, in: Proceedings of the 2nd World Hydrogen Energy Conference, vol. 2,1978, p. 513.
    
    176. J.H. Norman, K.J. Mysels, R. Sharp, D. Williamson, Int. J. Hydrogen Energ. 7 (1982) 545.
    
    177. H. Tagawa, T. Endo, Int. J. Hydrogen Energ. 14 (1989) 11.
    
    178. L.N. Yannopoulos, J.F. Pierre, Int. J. Hydrogen Energ. 9 (1984) 383.
    
    179. Dokiya M, Kameyama T, Fukuda K, Kotera Y. The study of thermochemical hydrogen preparation. III. An oxygen-evolving step through the thermal splitting of sulfuric acid at high temperature. Bull Chem Soc Jpn 1977;50(10):2657.
    
    180. O'Keefe DR, Norman JH, Williamson DG. Catalysis research in thermochemical water-splitting processes. Catal Rev Sci Eng 1980; 22(3):325-69.
    
    181. Brittan RD, Hildenbrand DL. Catalytic decomposition of gaseous SO3. J Phys Chem 1983;87:3713-7.
    
    182. Tagawa H, Endo T. Catalytic decomposition of sulfuric acid using metal oxides as the oxygen generating reaction in thermochemical water splitting process. Int J Hydrogen Energy 1989;14(1):11-7.
    
    183. Schwartz D, Gadiou R, Brilhac J-F, Prado G, Martinez GA. Kinetic study of the decomposition of spent sulfuric acid at high-temperature. Ind Eng Chem Res 2000;39:2183-9.
    
    184. Kolb CE, Jayne JT, Worshop DR, Molina MJ, Meads RF, Viggiaro AA. Gas phase reaction of sulphur trioxide with water vapor. J Am Chem Soc 1994;116:10314-5.
    
    185. Larson LJ, Kuno M, Tao FM. Hydrolysis of sulfur trioxide to form sulfuric acid in small water clusters. J Chem Phys 2000;112:8830 - 8.
    
    186. Barbarossa V, Bruttib S, Diamantia M, Saua S, De Mariab G. Catalyticthermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production. Int J Hydrogen Energy 2006;31:883.
    
    187. A.M. Banerjee, M.R. Pai, K. Bhattacharya, A.K. Tripathi, V.S. Kamble,S.R. Bharadwaj*, S.K.KuIshreshtha.Catalytic decomposition of sulfuric acid on mixed Cr/Fe oxide samples and its application in sulfur-iodine cycle for hydrogen production.International Journal of Hydrogen Energy 33 (2008)319-326.
    
    188. Kanagawa A, Kasahara S, Terada A, Kubo S, Hino R, Kawahara Y, et al. Conceptual design of SO3 decomposer for thermochemical Iodine-Sulfur process pilot plant. In: International conference on nuclear engineering, Beijing, China, May 16-20,2005, ICONE-50451.
    
    189. Rodriguez G, Robin JC, Billot P, Berjon A, Cachon L, Carles P, et al. Development program
    ??of a key component of the iodine sulfur thermocbemical cycle: the SO3 decomposer. In: 16th world hydrogen energy conference, Lyon France, June 13-16,2006.
    
    190. Kim CS, Hong SD, Kim YW, Kim JH, Lee WJ, Chang JH. Thermal sizing of a lab-scale SO3 decomposer for nuclear hydrogen generation. In: ANS embedded topical meeting: ST-NH2, Boston, MA, USA, June 24-28,2007. p. 207-14
    
    191. Karasawa H, Sasahira A, Hoshino K. Thermal decomposition of SO3. Int J Nucl Hydrogen Prod Appl 2006;l(2):134-43.
    
    192. D.M. Ginosar, L.M. Petkovic, A.W. Glenn, K.C. Burch, Int. J. Hydrogen Energ. 32 (2007) 482
    
    193. D.M. Ginosar, L.M. Petkovic, K.C. Burch, Paper 258d, AIChE 2005National Meeting Overall Conference Proceedings, AIChE, New York,NY, 2005.
    
    194. L.M. Petkovic , D.M. Ginosar, H.W. Rollins, K.C. Burch, PJ. Pinhero, H.H. Farrell.Pt/TiO2 (rutile) catalysts for sulfuric acid decomposition in sulfur-based thermochemical water-splitting cycles.Applied Catalysis A: General 338 (2008) 27-36.
    
    195. Hechenova A. High temperature heat exchanger annual report, DE-FC-07-04ID14566. Lasvegas, NV, USA, 2005.
    
    196. Rodriguez G, Robin JC, Billot P, Berjon A, Cachon L, Carles P, et al.Development program of a key component of the iodine sulfurthermochemical cycle: the SO3 decomposer. In: 16th world hydrogen energy conference, Lyon France, June 13-16,2006.
    
    197. Kim YW, Park JW, Kim MH, Hong SD, Lee WJ, Chang JH. High temperature and high pressure corrosion resistant process heat exchanger for a nuclear hydrogen production system. Republic of Korea Patent submitted, 2006, assigned to Korea Atomic Energy Research Institute, 10-2006-0124716.
    
    198. Hong SD, Kim JH, Kim CS, Kim YW, Lee WJ, Change, JH. Development of a compact nuclear hydrogen coupled components (CNHCC) test loop. In: ANS Embedded Topical Meeting: ST-NH2, Boston, MA, USA, June 24-28,2007. p. 215-21.
    
    199. Valery Ponyavin , Yitung Chen, Taha Mohamed, Mohamed Trabia,Anthony E. Hechanova, Merrill Wilson.Parametric study of sulfuric acid decomposer for hydrogen production. Progress in Nuclear Energy 50 (2008) 427e433.
    
    200. Chan Soo Kim , Sung-Deok Hong, Yong-Wan Kim, Jong-Ho Kim, Won Jae Lee, Jonghwa Chang.Thermal design of a laboratory-scale SO3 decomposer for nuclear hydrogen production.INTERNATIONAL JOURNAL OF HYDROGEN ENERGY.in press.
    
    201. Charles Forsberg, Brian Bischoff, Louis K. Mansur, Lee Trowbridge, and P. Tortorelli.A Lower-Temperature Iodine-Westinghouse-Ispra Sulfur Process for Thermochemical Production of Hydrogen.Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725,2003.
    
    202. Christopher J. Orme, Frederick F. Stewart.Pervaporation of water from aqueous hydriodic acid and iodine mixtures using Nafion(?) membranes.Journal of Membrane Science 304 (2007) 156-162
    
    203. G.J. Hwang, K. Onuki, Simulation study on the catalyticdecomposition of hydrogen iodide in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process, J. Membr. Sci. 194 (2001) 207.
    
    204. Oosawa Y, Kumagai T, Mizuta S, Kondo W, Takemori Y, Fujii K. Kinetics of the catalytic decomposition of hydrogen iodide in the magnesium-iodine thermochemical cycle. Bull chem.??Soc Jpn 1981;54(3):742-748.
    
    205. Iida I. The kinetic behaviour of the decomposition of hydrogen iodide on the surface of platinum. Z Phys Chem Neue Folge 1978;109:221-232
    
    206. Oosawa Y, Takemori Y, Fujii K. Catalytic decomposition of hydrogen iodide in the magnesium-iodine thermochemical cycle. The Chemical Society of Japan 1980;7:1081-1987.
    
    207. Shindo Y, Ito N, Haraya K, Hakuta T, Yoshitome H. Kinetics of the catalytic decomposition of hydrogen iodine in the thermochemical hydrogen production. Int J Hydrogen Energy 1984;9(8):695-70a
    
    208. Park JH, Yang RT, Predicting adsorption isotherms of low-volatile compounds by temperature programmed desorption iodine on carbon. Langmuir 2005;21:5055-5060.
    
    209. Jung-Min Kim, Jung-Eun Park, Young-Ho Kim, Kyoung-Soo Kang, Chang-Hee Kim,Chu-Sik Park, Ki-Kwang Bae.The Decomposition of Hydrogen Iodide on Pt/C-based Catalysts for Hydrogen Production.International Journal of Hydrogen Energy.in press.
    
    210. M.Dokiya,K.Fukuda,T.Kameyama,Y.Kotera. Denki Kagaku.1977;45:139.
    
    211. T.Ohta,N.Kamiya and M.Yamaguchi.International Journal of Hydrogen Energy.1978;3:203.
    
    212. Nonnan.J.H.,D.R.O'Keefe.Proc.2nd World Hydrogen Energy Conf. 1978;p513.
    
    213. GJ. Hwang, K. Onuki, S. Shimizu, H. Ohya, Hydrogenseparation in H2-H2O-HI gaseous mixture using the silicamembranes prepared by chemical vapor deposition, J. Membr.Sci. 162 (1999) 83.
    
    214. G.J. Hwang, K. Onuki, S. Shimizu, Studies on hydrogen separation membrane for IS process, Membrane preparation with porous -alumina tube, JAERI, Research Report 98-002, JAERI, Ibaraki, Japan, 1998.
    
    215. G.J. Hwang, K. Onuki, S. Shimizu, Separation of hydrogen from H2-H2O-HI gaseous mixture using a silica membrane, AIChE J. 46 (1) (2000) 92.
    
    216. GabJin Hwang, Jong-Won Kim, Ho-Sang Choi, Kaoru Onuki.Stability of a silica membrane prepared by CVD using and alumina tube as the support tube in the HI-H2O gaseous mixture.Journal of Membrane Science 215 (2003) 293-302
    
    217. W.L.Conger. Open-loop thermochemical cycles for the production of hydrogen. Int J Hydrogen Energy. 1979;4:517-22
    
    218. H.K.Abdel-Aal. Opportunities of open-loop thermochemical cycles: a case study. Int J Hydrogen Energy. 1984;9:767-772
    
    219. H.K.Abdel-Aal, M.A. Fahim and M.A. Gashgari. Utilization of concentrated solar energy as a source of heat in the production of hydrogen. J.Coop.Med.pour Energie Solarie(COMPLES), 2nd Semestre,1974.
    
    220. G.H.Farbman. The conceptual design of an integrated nuclear-hydrogen production plant using the sulfur cycle water decomposition system.NASA-CR-134976,1976.
    
    221. Huang Xin. Advancing China's pyrite-based sulfuric acid production. Sulfuric Acid Industry. 2004;5:15-19. (In Chinese).
    
    222. Wu Xuemei. The production and consumption of phosphate fertilizer and sulfuric acid in China in 2003. PHOSPHATE & COMPOUND FERTILIZER. 2004;4:6-8. (In Chinese).
    
    223. Qi Yan. Situation of China's sulphuric acid and phosphate fertilizer in 2004. Sulfuric Acid Industry. 2005;2:11-14. (In Chinese).
    
    224. Wu Giyan. The production and consumption of sulfuric acid in China. Sulfuric Acid Industry. 2000;6:10-12. (In Chinese).
    
    225. 李梅,柳召刚,胡艳宏等.铈基稀土氧化物粉体的制备及应用.中国稀土学报,2003专辑, 21卷.
    
    226. A.E.Lutz,RJ.Kee, and J-AMillcr. SENKIN: a fortran program for predicting homogenous gas phase reaction kinetics with sensitivity analysis. Sandia National Laboratories Report SAND87-8248.1988.
    
    227. K.Otsuka, Y.Wang, E.Sunada, I.Yamanaka. Direct Partial Oxidation of Methane to Synthesis Gas by Cerium Oxide. J. Catal., 1998,175:152-1601
    
    228. C.Agrafiotis, A.Tsetsekou, CJ. Stournaras, A.Julbe, L.Dalmazio, CGuizard, G.Boretto, M.Debenedetti, F.Parussa. Evaluation of sol-gel methods for the synthesis of doped-ceria environmental catalysis systems Part II. Catalytic activity and resistance to thermal aging. Appl.Catal.B, 2001;34:149-159.
    
    229. S.S. Deshmukh, M.H.Zhang, V.I. Kovalchuk, J. L. d'Itri. Effect of SO2 on CO and C3H6 oxidation over CeO2 and Ce0.75Zr0.25O2. Appl.Catal.B, 2003;45:135-145.
    
    230. N. Laosiripojana., S. Assabumrungrat. Catalytic dry reforming of methane over high surface area ceria. Appl.Catal.B, 2005;60:107-116.
    
    231. M. Zhao, M. Shen, J. Wang. Effect of surface area and bulk structure on oxygen storage capacity of CeO.67ZrO.33O2. J. Catal., 2007;248:258-267.
    
    232. E.N.Ndifor, T.Garcia, B.Solsona, S.H.Taylor. Influence of preparation conditions of nano-crystalline ceria catalysts on the total oxidation of naphthalene, a model polycyclic aromatic hydrocarbon. Appl.Catal.B, 2007;76:248-256.
    
    233. D. Andreeva, R. Nedyalkova, L. Ilieva, M.V. Abrashev, Appl. Catal. B Environ. 52 (2004) 157.
    
    234. Gratian R. Bamwenda, Hironori Arakawa. Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ce4+aq and Fe3+aq species, Journal of Molecular Catalysis A: Chemical 2000;161:105-113.
    
    235. L.Y.Mo, X.M.Zheng and C.Yeh. Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures, Chem. Commun. 2004,1426-1427.
    
    236. J.Fan, X.D.Wu, R.Ran, D.Weng. Influence of the oxidative/reductive treatments on the activity of Pt/Ce0.67Zr0.33O2 catalyst. Appl. Surf. Sci. 2005, 245: 162-171.
    
    237. Xiaodong Wu, Jun Fan, Rui Ran, Duan Weng. Effect of preparation method on the structure and redox behavior of platinum-ceria-zirconia catalysts. Chem. Eng. J. 2005,109:133-139.
    
    238. C. Bozo, N. Guilhaume, J.M. Herrmann, J. Catal. 203 (2001) 393.
    
    239. A. Holmgren, F. Azarnoush, E. Fridell, Influence of pre-treatment on the low-temperature activity of Pt/ceriaAppl. Catal. B 1999,22: 49-61.
    
    240. L.F. Liotta, A. Longo, A. Macaluso, A. Martorana, G. Pantaleo, A.M. Venezia, G. Deganello, Appl. Catal. B 48 (2004) 133.
    
    241. C. Bozo, N. Guilhaume, J.-M. Herrmann, Role of the Ceria-Zirconia Support in the Reactivity of Platinum and Palladium Catalysts for Methane Total Oxidation under Lean ConditionsJ. Catal. 2001, 203: 393-406.
    
    242. S. Bernal, J. J. Calvino, M. A. Cauqui, J. M. Gatica, C. Larese, J. A. P. Omil, J. M. Pintado, Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal. Today 1999,50: 175-206.
    
    243. S. Bernal, J.J. Calvino, J.M. Gatica, C. Larese, C. Lopez-Cartes, J.A.P. Omil, Nanostructural Evolution of a Pt/CeO2 Catalyst Reduced at Increasing Temperatures (473-1223 K): A HREM Study. J. Catal. 1997,169:510-515.
    
    244. Peterson Santos Querino, Jose Renato Carlos Bispo, Maria do Carmo Rangel. The effect of cerium on the properties of Pt/ZrO2 catalysts in the WGSR. Catalysis Today 2005; 107-108:920-925.
    
    245. N. Laosiripojana, S. Assabumrungrat.Methane steam reforming over Ni/Ce-ZrO2 catalyst: Influences of Ce-ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics.Applied Catalysis A: General 290 (2005) 200-211.
    
    246. T. Masui, T. Ozaki, K. Machida, G. Adachi, J. Alloys Comp. 303-304 (2000) 49-55.
    
    247. W.Q. Zheng, J. Zhang, Q.J. Ge, H.Y. Xu , W.Zh Li. Effects of CeO2 addition on Ni/A12O3 catalysts for the reaction of ammonia decomposition to hydrogen. Appl. Catal. B, 2008;80:98-105.
    
    248. L.H.Wang, Sh.X.Zhang, Y.Liu. Reverse water gas shift reaction over Co-precipitated Ni-CeO2 catalysts, J. Rare Earths, 2008,26: 66-70.
    
    249. N. Laosiripojana, S. Assabumrungrat, Appl.Catal.A-Gen. 290(2005)200.
    
    250. D. Kim, K. Stowe, F. Muller, W. F. Maier, Mechanistic study of the unusual catalytic properties of a new Ni - Ce mixed oxide for the CO2 reforming of methaneJ. Catal.247(2007)101.
    
    251. H. Roh, H.S. Potdar, K. Jun, Catal. Today 93-95 (2004) 39.
    
    252. Sittichai Natesakhawat, Okan Oktar, Umit S. Ozkan. Effect of lanthanide promotion on catalytic performance of sol-gel Ni/A12O3 catalysts in steam reforming of propane.Journal of Molecular Catalysis A: Chemical 241 (2005) 133-146.
    
    253. M.C. Sanchez-Sanchez, R.M. Navarro, J.L.G. Fierro.Ethanol steam reforming overNi/MxOy-A12O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy 32 (2007) 1462 - 1471.
    
    254. Yong Li, Baocai Zhang, Xiaolan Tang, Yide Xu, Wenjie Shen.Hydrogen production from methane decomposition over Ni/CeO2 catalysts.Catalysis Communications 7 (2006) 380-386.
    
    255. Jin Nishikawa, Tomohisa Miyazawa, Kazuya Nakamura, Mohammad Asadullah, Kimio Kunimori, Keiichi Tomishige.Promoting effect of Pt addition to Ni/CeO2/A12O3 catalyst for steam gasification of biomass.Catalysis Communications 9 (2008) 195-201.
    
    256. Keiichi Tomishige , Takeo Kimura, Jin Nishikawa, Tomohisa Miyazawa, Kimio Kunimori.Promoting effect of the interaction between Ni and CeO2 on steam gasification of biomass.Catalysis Communications 8 (2007) 1074-1079.
    
    257. P. Boizumault-Moriceau, A. Pennequin, B. Grzybowska, Y. Barbaux.Oxidative dehydrogenation of propane on Ni-Ce-0 oxide: effect of the preparation method, effect of potassium addition and physical characterization.Applied Catalysis A: General 245 (2003) 55-67.
    
    258. Tianli Zhu, Maria Flytzani-Stephanopoulos.Catalytic partial oxidation of methane to synthesis gas over Ni-CeO2.Applied Catalysis A: General 208 (2001) 403-417.
    
    259. R. Wojcieszak, S. Monteverdi, M.M. Bettahar.Ni/CeO2 catalysts prepared by aqueous hydrazine reduction.Colloids and Surfaces A: Physicochem. Eng. Aspects 317 (2008) 116-122
    
    260. Antoninho Valentini, Neftali L.V. Carren~o, Luiz F.D. Probst,A. Barison, A.G. Ferreira,Edson R. Leite, Elson Longo.Ni:CeO2 nanocomposite catalysts prepared by polymeric precursor method.Applied Catalysis A: General 310 (2006) 174-182
    
    
    261. Junichiro Kugai, Velu Subramani, Chunshan Song, Mark H. Engelhard, Ya-Huei Chin.Effects of nanocrystalline CeO2 supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol Journal of Catalysis 238 (2006) 430-440.
    
    262. Jixiang Chen, Rijie Wang, Jiyan Zhang, Fei He, Sen Han.Effects of preparation methods on properties of Ni/CeO2-Al2O3 catalysts for methane reforming with carbon dioxide Journal of Molecular Catalysis A: Chemical 235 (2005) 302-310.
    
    263. Z. Chafi, N. Keghouche, C. Minot.DFT study of Ni-CeO2 interaction: Adsorption and insertion.Surface Science 601 (2007) 2323-2329.
    
    264. J. Kaspar, P. Fornasiero, M. Graziani, Catal. Today 50 (1999) 285-286.
    
    265. W.Sh. Dong, H. Ron, K. Jun, S. Park, Y. Oh. Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content, Appl.Catal.A 2002,226:63-72
    
    266. Xiaoyin Chen, Andrew R. Tadd, Johannes W. Schwank.Carbon deposited on Ni/Ce-Zr-O isooctane autothermal reforming catalysts.Journal of Catalysis 251 (2007) 374-387.
    
    267. Hyun-Seog Roh, H.S. Potdar, Ki-Won Jun.Carbon dioxide reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 catalysts.Catalysis Today 93-95 (2004) 39-44.
    
    268. Hyun-Seog Roh, H.S. Potdar, Ki-Won JunJae-Woo Kim, Young-Sam Oh.Carbon dioxide reforming of methane over Ni incorporated into Ce-ZrO2 catalysts.Applied Catalysis A: General 276 (2004) 231-239.
    
    269. Hyun-Seog Roh, Ki-Won Jun, Wen-Sheng Dong, Jong-San Chang,Sang-Eon Park , Yung-Il Joe.Highly active and stable Ni/Ce-ZrO2 catalyst for H2 production from methane Journal of Molecular Catalysis A: Chemical 181 (2002) 137-142
    
    270. Shan Xu, Xiaolai Wang.Highly active and coking resistant Ni/CeO2-ZrO2 catalyst for partial oxidation of methane.Fuel 84 (2005) 563-567.
    
    271. Yuan Zhang, Zengxi Li, Xuebing Wen, Yuan Liu.Partial oxidation of methane over Ni/Ce-Ti-O catalysts.Chemical Engineering Journal 121 (2006) 115-123.
    
    272. Hyun-Seog Roh, Ki-Won Jun, Sang-Eon Park.Methane-reforming reactions over Ni/Ce-ZrO2/θ-Al2O3 catalysts.Applied Catalysis A: General 251 (2003) 275-283.
    
    273. Sitthiphong Pengpanich, Vissanu Meeyoo, Thirasak Rirksomboon.Methane partial oxidation over Ni/CeO2-ZrO2 mixed oxide solid solution catalysts.Catalysis Today 93-95 (2004) 95-105.
    
    274. J.A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzon.Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel.Catalysis Today 63 (2000) 71-85.
    
    275. Prashant Kumar, Yanping Sun, Raphael O. Idem.Nickel-Based Ceria, Zirconia, and Ceria -Zirconia Catalytic Systems for Low-Temperature Carbon Dioxide Reforming of Methane.Energy & Fuels 2007; 21:3113 - 3123.
    
    276. A. Davidson, J. F. Tempere,M. Che.H. Roulet.G. Dufour.Spectroscopic Studies of Nickel(Ⅱ) and Nickel(Ⅲ) Species Generated upon Thermal Treatments of Nickel/Ceria-Supported MaterialsJ. Phys. Chem. 1996; 100: 4919-4929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700