用户名: 密码: 验证码:
多级结构过渡金属氧化物:微纳结构形态调控及催化、气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属氧化物基于自身优异的物理、化学性能以及在生产、生活中不可估量的潜在应用价值,成为无机功能材料研究领域的重要分支之一。以低维纳米结构单元组装形成、具有特殊微纳结构状态的过渡金属氧化物材料受到当前科研者的普遍青睐。调控合成具有特殊微纳结构形态(微粒尺寸、选择性暴露晶面、空心及多孔结构等)的微纳米材料,对阐明材料的微纳结构与性能之间的关系,以及进一步拓展材料的功能研究具有重要的意义。在过渡金属氧化物中,二氧化钛(TiO2)、四氧化三钴(Co3O4)、钴酸镍(NiCo2O4)及氧化锌(ZnO)等代表性氧化物都获得了广泛的研究且在光、电、磁等应用中表现优异。本论文采用一种金属醇盐前驱体导向合成的方法,实现了过渡金属氧化物功能材料的可控制备。无需加入任何模板剂、表面活性剂,开发出一种以甘油、异丙醇为混合溶剂的溶剂热方法,调控合成出多种过渡金属醇盐前驱体(Ti、Co、Ni及Zn),进而获得了具有不同微纳结构形态的过渡金属氧化物,并研究了它们在光化学产氢/产氧、电解水及气体传感方面的性能。
     本论文主要包括以下内容:
     一、开发出一种无氟离子参与的{010}活性晶面暴露的TiO2纳米材料的合成方法。在甘油、异丙醇混合溶剂中,以异丙醇钛为钛源,溶剂热法合成出具有多级结构的钛甘油盐前驱体,经过煅烧处理后,获得了具有大比表面积的多级结构锐钛矿相TiO2微球,透射电镜数据证实TiO2微球的基本结构单元是洁净{010}活性晶面暴露的纳米带。这种具有{010}活性晶面的多孔TiO2材料在光催化产氢方面表现优异,产氢速率是商业二氧化钛P25的2倍以上。此方法简便、安全可靠,为探索纳米材料的晶面控制合成提供了新的思路。
     二、设计了一种新奇的“自模板”路线,并合成出由多孔、超薄类单晶纳米片(<5nm)组成的空心Co3O4纳米材料。所得空心Co3O4纳米材料的比表面积高达180m2/g。我们发现该材料是一种高效的非贵金属水氧化催化剂,可用于电催化产氧以及光催化产氧反应。电催化水氧化性能测试中,空心Co3O4纳米材料在采用电流密度为10mA/cm2的工作电流时,过电势大约为0.40V。而且,在光敏化剂([Ru(bpy)3]2+(bpy=2,2'-bipyridine))的辅助下,空心Co3O4纳米材料在可见光(>450nm)辐照下,产氧速率可以达到~12218μmol g-1h-1。上述结果表明,设计合成具有精细微观结构的纳米材料是获得高效水氧化催化剂的可行路线。
     三、通过上述“自模板”路线,并引入镍源,我们合成出双金属NiCo2O4空心微球水氧化催化剂。研究发现,NiCo2O4空心微球由更薄(<3nm)的多孔纳米片组成,比表面积高达180m2/g。在光敏化剂的辅助下,NiCo2O4空心微球的可见光(>420nm)产氧速率可以达到~843μmol g-1min-1。它的产氧速率是相同方法下得到的单金属Co3O4空心微球水氧化剂的2.5倍,NiO纳米片的7.8倍。NiCo2O4空心微球的光催化活性归因于Co和Ni的双金属协同效应和它自身的结构特点。本工作为制备其它具有新奇结构的先进双金属无机功能材料开辟了一条新路径。
     四、在甘油、异丙醇混合溶剂中,我们还合成出具有多级结构的锌甘油盐微米球。同只有甘油的实验结果相比,在体系中引入异丙醇不仅降低了锌甘油盐的合成温度,而且有助于锌甘油盐纳米片自组装成多级结构的微米球。将此前驱体进行煅烧即可得到一种由放射状排列的多孔纳米棒构筑的纤锌矿ZnO微球,这种材料能够很好的避免纳米粒子团聚的问题,并对乙醇气体有很好的响应。
Research on transition metal oxide has been one of the most important branches ofinorganic functional materials due to their excellent physical and chemical properties andpotential applications in industry and daily life. Transition metal oxide with hierarchicalmicro-/nano-structures, which was built by nanosized building blocks, attractedresearcher's attention. Controllable synthesis of micro/nanomaterials with novel micro-and nano-structure (e.g., size, crystal planes, exposed facets, hollow, porous structure,etc.) is significant for understanding the relationships between their structures andproperties, and further exploring the application of these materials. Typical transitionmetal oxides, such as TiO2, Co3O4, NiCo2O4and ZnO were widely studied and applied inthe field of optical, electrical and magnetic. In this work, metal alkoxide precursormethod was used to prepare transition metal oxide materials with controlled structures.We developed a solvothermal method without any additions of surfactants or templates inpreparation of various transition metal (Ti, Co, Ni and Zn) alkoxide precursors in amixture of glycerol and isopropanol. Then, transition metal oxides with differenthierarchical structure and morphology were obtained by a simple heat-treatment and usedin water splitting and gas sensor, respectively.
     The main parts of this thesis including:
     1. A new approach was developed for the preparation of TiO2nanomaterials with {010}facet without the assistance of F ions. Porous anatase TiO2microspheres composed of{010}-faceted nanobelts were prepared by using a hierarchical flower-like titaniumglycerolate as the starting material. Through a simple thermal treatment, the precursorwas directly converted into the desired TiO2material with a large surface area. Theas-prepared TiO2nanomaterial was shown to serve as an efficient photocatalyst for H2evolution, and its activity was more than twice that of the benchmark P25TiO2. The clean {010} active facet, porosity, and especially the high photocatalytic activity of the TiO2material all highlight the importance of this precursor strategy.
     2. We report the facile synthesis of hollow Co3O4microspheres composed of porous,ultrathin (<5nm), single-crystal-like nanosheets via a novel “self-template” route. Theas-obtained hollow Co3O4nanomaterial possesses a high BET surface area (~180m2/g),and can serve as an active and stable water oxidation catalyst under both electrochemicaland photochemical reaction conditions, owing to its unique structural features. In theelectrochemical water oxidation, this catalyst affords a current density of10mA/cm2(avalue related to practical relevance) at the overpotential of~0.40V. Moreover, with theassistance of sensitizer [Ru(bpy)3]2+(bpy=2,2'-bipyridine), this nanomaterial cancatalyze water oxidation reaction under visible light irradiation (>450nm) with an O2evolution rate of~12218μmol g-1h-1. Our results suggest that delicate nanostructuringcan offer unique advantage for developing efficient water oxidation catalysts.
     3. Hollow NiCo2O4microspheres as a noble-metal-free solid-state bimetallic wateroxidation catalysts, were successful prepared by a similar approach as that of preparingCo3O4. The as-obtained hollow NiCo2O4microspheres were composed of porous,ultrathin (<3nm) nanosheets, with a large BET surface area of~180m2/g. With theassistance of sensitizer [Ru(bpy)3]2+, this nanomaterial can also catalyzed water oxidationreaction under visible light irradiation (>420nm) with an O2evolution rate of~843μmolg-1min-1, and its activity was more than twice that of the hollow Co3O4microspheres,seven times than that of the NiO nanosheets. NiCo2O4has better performance, owing tothe bimetallic synergy of Co and Ni and its unique structural features. This work isexpected to open up new synthetic avenues towards the preparation of other advancedbimetallic inorganic nanomaterials with with unique structures and excellent properties.
     4. Wurtzite ZnO microspheres composed of radially aligned porous nanorods wereprepared through simple thermal treatment of a zinc monoglycerolate precursor.Isopropanol solvent can greatly decrease the formation temperature of zincmonoglycerolate (85oC), and also influence the morphology of zinc monoglycerolate. The as-prepared ZnO material was used as a highly sensitive sensing material for ethanoldetection.
引文
[1]吕派,第四周期过渡金属氧化物的结构控制合成研究[D].大连:大连理工大学,2012。
    [2] YUAN C, WU H B, XIE Y, et al. Mixed transition-metal oxides: design, synthesis,and energy-related applications [J]. Angewandte Chemie International Edition,2014,53(6):1488-1504.
    [3] ARMAROLI N, BALZANI V. The future of energy supply: Challenges andopportunities [J]. Angewandte Chemie International Edition,2007,46(1-2):52-66.
    [4]ZECCHINA A. Energy sources and carbon dioxide waste [J]. Rendiconti Lincei,2013,25(1):113-117.
    [5] FUJISHIMA A. Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,238(3):7-8.
    [6] SUN H, YU Y, LUO J, et al. Morphology-controlled synthesis of ZnO3D hierarchicalstructures and their photocatalytic performance [J]. CrystEngComm,2012,14(24):8626-8632.
    [7] TADA H, JIN Q, NISHIJIMA H, et al. Titanium (IV) dioxide surface-modified withiron oxide as a visible light photocatalyst [J]. Angewandte Chemie InternationalEdition,2011,50(15):3501-3505.
    [8] CHENG W Y, YU T H, CHAO K J, et al. Cu2O-Decorated Mesoporous TiO2Beadsas a Highly Efficient Photocatalyst for Hydrogen Production [J]. ChemCatChem,2014,6(1):293-300.
    [9] BLAKEMORE J D, GRAY H B, WINKLER J R, et al. Co3O4nanoparticlewater-oxidation catalysts made by pulsed-laser ablation in liquids [J]. ACS Catalysis,2013,3(11):2497-2500.
    [10] LINSEBIGLER A L, LU G, YATES JR J T. Photocatalysis on TiO2surfaces:principles, mechanisms, and selected results [J]. Chemical Reviews,1995,95(3):735-758.
    [11] GR TZEL M. Photoelectrochemical cells [J]. Nature,2001,414(6861):338-344.
    [12] WU A, TIAN C, YAN H, et al. Intermittent microwave heating-promoted rapidfabrication of sheet-like Ag assemblies and small-sized Ag particles and their use asco-catalyst of ZnO for enhanced photocatalysis [J]. Journal of Materials ChemistryA,2014,2(9):3015-3023.
    [13] PAN C, ZHU Y. New type of BiPO4oxy-acid salt photocatalyst with highphotocatalytic activity on degradation of dye [J]. Environmental Science&Technology,2010,44(14):5570-5574.
    [14] WANG D, KAKO T, YE J. Efficient photocatalytic decomposition of acetaldehydeover a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3under visible-lightirradiation [J]. Journal of the American Chemical society,2008,130(9):2724-2725.
    [15] JUNG S, YONG K. Fabrication of CuO-ZnO nanowires on a stainless steel mesh forhighly efficient photocatalytic applications [J]. Chemical Communications,2011,47(9):2643-2645.
    [16] LIU W, NI J, YIN X. Synergy of photocatalysis and adsorption for simultaneousremoval of Cr (VI) and Cr (III) with TiO2and titanate nanotubes [J]. Water Research,2014,53,12-25.
    [17] MOHAMED R, ABDEL SALAM M. Photocatalytic reduction of aqueous mercury(II) using multi-walled carbon nanotubes/Pd-ZnO nanocomposite [J]. MaterialsResearch Bulletin,2014,50,85-90.
    [18] SUN B, REDDY E P, SMIRNIOTIS P G. Visible light Cr (VI) reduction and organicchemical oxidation by TiO2photocatalysis [J]. Environmental Science&Technology,2005,39(16):6251-6259.
    [19] MAZLOOMI K, GOMES C. Hydrogen as an energy carrier: prospects andchallenges [J]. Renewable and Sustainable Energy Reviews,2012,16(5):3024-3033.
    [20] DUNN S. Hydrogen futures: toward a sustainable energy system [J]. InternationalJournal of Hydrogen Energy,2002,27(3):235-264.
    [21] MAZLOOMI K, GOMES C. Hydrogen as an energy carrier: prospects andchallenges [J]. Renewable and Sustainable Energy Reviews,2012,16(5):3024-3033.
    [22] WU H-C, LI Y-Y, SAKODA A. Synthesis and hydrogen storage capacity ofexfoliated turbostratic carbon nanofibers [J]. International Journal of HydrogenEnergy,2010,35(9):4123-4130.
    [23] BALAT H, K RTAY E. Hydrogen from biomass-present scenario and futureprospects [J]. International Journal of Hydrogen Energy,2010,35(14):7416-7426.
    [24] BOLTON J R. Solar photoproduction of hydrogen: a review [J]. Solar Energy,1996,57(1):37-50.
    [25] KELLY N A, GIBSON T L. Solar energy concentrating reactors for hydrogenproduction by photoelectrochemical water splitting [J]. International Journal ofHydrogen Energy,2008,33(22):6420-6431.
    [26] SERNA á, TADEO F. Offshore hydrogen production from wave energy [J].International Journal of Hydrogen Energy,2014,39(3):1549-1557.
    [27] OSTERLOH F E, PARKINSON B A. Recent developments in solar water-splittingphotocatalysis [J]. MRS bulletin,2011,36(1):17-22.
    [28] REECE S Y, HAMEL J A, SUNG K, et al. Wireless solar water splitting usingsilicon-based semiconductors and earth-abundant catalysts [J]. Science,2011,334(6056):645-648.
    [29] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting [J].Chemical Society Reviews,2009,38(1):253-278.
    [30] KUDO A, KATO H, TSUJI I. Strategies for the development of visible-light-drivenphotocatalysts for water splitting [J]. Chemistry Letters,2004,33(12):1534-1539.
    [31]李敦钫,郑菁,陈新益等,光催化分解水体系和材料研究[J].化学进展,2007,19(4):464-477。
    [32] MAEDA K, DOMEN K. Photocatalytic water splitting: recent progress and futurechallenges [J]. The Journal of Physical Chemistry Letters,2010,1(18):2655-2661.
    [33] MAEDA K, TAKATA T, HARA M, et al. GaN: ZnO solid solution as a photocatalystfor visible-light-driven overall water splitting [J]. Journal of the American ChemicalSociety,2005,127(23):8286-8287.
    [34] KATO H, HORI M, KONTA R, et al. Construction of Z-scheme type heterogeneousphotocatalysis systems for water splitting into H2and O2under visible lightirradiation [J]. Chemistry Letters,2004,33(10):1348-1349.
    [35] MAEDA K, HIGASHI M, LU D, et al. Efficient nonsacrificial water splittingthrough two-step photoexcitation by visible light using a modified oxynitride as ahydrogen evolution photocatalyst [J]. Journal of the American Chemical Society,2010,132(16):5858-5868.
    [36] TOWNSEND T K, BROWNING N D, OSTERLOH F E. Nanoscale strontiumtitanate photocatalysts for overall water splitting [J]. ACS Nano,2012,6(8):7420-7426.
    [37] SATO J, SAITO N, YAMADA Y, et al. RuO2-loaded β-Ge3N4as a non-oxidephotocatalyst for overall water splitting [J]. Journal of the American ChemicalSociety,2005,127(12):4150-4151.
    [38] NI M, LEUNG M K, LEUNG D Y, et al. A review and recent developments inphotocatalytic water-splitting using TiO2for hydrogen production [J]. Renewableand Sustainable Energy Reviews,2007,11(3):401-425.
    [39] YANG X H, LI Z, LIU G, et al. Ultra-thin anatase TiO2nanosheets dominated with{001} facets: thickness-controlled synthesis, growth mechanism and water-splittingproperties [J]. CrystEngComm,2011,13(5):1378-1383.
    [40] MURDOCH M, WATERHOUSE G, NADEEM M, et al. The effect of gold loadingand particle size on photocatalytic hydrogen production from ethanol over Au/TiO2nano-particles [J]. Nature Chemistry,2011,3(6):489-492.
    [41] KHAN M A, WOO S I, YANG O. Hydrothermally stabilized Fe (III) doped titaniaactive under visible light for water splitting reaction [J]. International Journal ofhydrogen Energy,2008,33(20):5345-5351.
    [42] YU J, RAN J. Facile preparation and enhanced photocatalytic H2-production activityof Cu(OH)2cluster modified TiO2[J]. Energy&Environmental Science,2011,4(4):1364-1371.
    [43] CHOI H-J, KANG M. Hydrogen production from methanol/water decomposition ina liquid photosystem using the anatase structure of Cu loaded TiO2[J]. InternationalJournal of Hydrogen Energy,2007,32(16):3841-3848.
    [44] KHAN M A, WOO S I, YANG O. Hydrothermally stabilized Fe (III) doped titaniaactive under visible light for water splitting reaction [J]. International Journal ofHydrogen Energy,2008,33(20):5345-5351.
    [45] BRIMBLECOMBE R, KOO A, DISMUKES G C, et al. Solar driven wateroxidation by a bioinspired manganese molecular catalyst [J]. Journal of theAmerican Chemical Society,2010,132(9):2892-2894.
    [46] KANADY J S, TSUI E Y, DAY M W, et al. A synthetic model of the Mn3Ca subsiteof the oxygen-evolving complex in photosystem II [J]. Science,2011,333(6043):733-736.
    [47] ROBINSON D M, GO Y B, GREENBLATT M, et al. Water oxidation by λ-MnO2:Catalysis by the cubical Mn4O4subcluster obtained by delithiation of spinelLiMn2O4[J]. Journal of the American Chemical Society,2010,132(33):11467-11469.
    [48] ROBINSON D M, GO Y B, MUI M, et al. Photochemical water oxidation bycrystalline polymorphs of manganese oxides: Structural requirements for catalysis[J]. Journal of the American Chemical Society,2013,135(9):3494-3501.
    [49] MCCOOL N S, ROBINSON D M, SHEATS J E, et al. A Co4O4“cubane” wateroxidation catalyst inspired by photosynthesis [J]. Journal of the American ChemicalSociety,2011,133(30):11446-11449.
    [50] HARA M, WARAKSA C C, LEAN J T, et al. Photocatalytic water oxidation in abuffered tris (2,2'-bipyridyl) ruthenium complex-colloidal IrO2system [J]. Journalof Physical Chemistry A,2000,104(22):5275-5280.
    [51] HUANG Z, LUO Z, GELETII Y V, et al. Efficient light-driven carbon-freecobalt-based molecular catalyst for water oxidation [J]. Journal of the AmericanChemical Society,2011,133(7):2068-2071.
    [52] JIAO F, FREI H. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica asEfficient Oxygen-Evolving Catalysts [J]. Angewandte Chemie International Edition,2009,48(10):1841-1814.
    [53] DAU H, LIMBERG C, REIER T, et al. The mechanism of water oxidation: fromelectrolysis via homogeneous to biological catalysis [J]. ChemCatChem,2010,2(7):724-761.
    [54]池波。钴尖晶石水电解用复合阳极的制备及性能研究[D].北京:清华大学,2004。
    [55]庞志成、罗震宁。电解制氢电极材料的研究进展[J].贵州化工,2006,31(3):33-35。
    [56] SK LASON E, KARLBERG G S, ROSSMEISL J, et al. Density functional theorycalculations for the hydrogen evolution reaction in an electrochemical double layeron the Pt (111) electrode [J]. Physical Chemistry Chemical Physics,2007,9(25):3241-3250.
    [57] MCCRORY C C, JUNG S, PETERS J C, et al. Benchmarking HeterogeneousElectrocatalysts for the Oxygen Evolution Reaction [J]. Journal of the AmericanChemical Society,2013,135(45):16977-16987.
    [58] SMITH R D, SPORINOVA B, FAGAN R D, et al. Facile Photochemical Preparationof Amorphous Iridium Oxide Films for Water Oxidation Catalysis [J]. Chemistry ofMaterials,2014,26(4)1654-1659.
    [59] HARRIMAN A, PICKERING I J, THOMAS J M, et al. Metal oxides asheterogeneous catalysts for oxygen evolution under photochemical conditions [J].Journal of the Chemical Society, Faraday Transactions1: Physical Chemistry inCondensed Phases,1988,84(8):2795-2806.
    [60] K TZ R, LEWERENZ H, STUCKI S. XPS studies of oxygen evolution on Ru andRuO2anodes [J]. Journal of the Electrochemical Society,1983,130(4):825-829.
    [61] BOCKRIS J O M, OTAGAWA T. The electrocatalysis of oxygen evolution onperovskites [J]. Journal of the Electrochemical Society,1984,131(2):290-302.
    [62] ISUPOVA L A, ALIKINA G M, TSYBULYA S V, et al. Real structure and catalyticactivity of La1-xSrxCoO3perovskites [J]. International Journal of Inorganic Materials,2001,3(6):559-562.
    [63] SUNTIVICH J, MAY K J, GASTEIGER H A, et al. A perovskite oxide optimizedfor oxygen evolution catalysis from molecular orbital principles [J]. Science,2011,334(6061):1383-1385.
    [64] MATSUMOTO Y, SATO E. Electrocatalytic properties of transition metal oxides foroxygen evolution reaction [J]. Materials Chemistry and Physics,1986,14(5):397-426.
    [65] ESSWEIN A J, MCMURDO M J, ROSS P N, et al. Size-dependent activity ofCo3O4nanoparticle anodes for alkaline water electrolysis [J]. The Journal ofPhysical Chemistry C,2009,113(33):15068-15072.
    [66] LI Y, HASIN P, WU Y. NixCo3-xO4nanowire arrays for electrocatalytic oxygenevolution [J]. Advanced Materials,2010,22(17):1926-1929.
    [67] TRICOLI A, RIGHETTONI M, TELEKI A. Semiconductor gas sensors: drysynthesis and application [J]. Angewandte Chemie International Edition,2010,49(42):7632-7659.
    [68] KOROTCENKOV G. Metal oxides for solid-state gas sensors: What determines ourchoice?[J]. Materials Science and Engineering: B,2007,139(1):1-23.
    [69] FRANKE M E, KOPLIN T J, SIMON U. Metal and metal oxide nanoparticles inchemiresistors: does the nanoscale matter?[J]. Small,2006,2(1):36-50.
    [70] SUGIURA M. Oxygen storage materials for automotive catalysts: ceriazirconia solidsolutions [J]. Catalysis Surveys from Asia,2003,7(1):77-87.
    [71] WANG C, YIN L, ZHANG L, et al. Metal oxide gas sensors: sensitivity andinfluencing factors [J]. Sensors,2010,10(3):2088-2106.
    [72] DANG L, ZHANG G, KAN K, et al. Heterostructured Co3O4/PEI-CNTs Composite:Fabrication, Characterization and CO Gas Sensors at Room Temperature [J]. Journalof Materials Chemistry A,2014,2,4558-4565.
    [73] DENG J, MA J, MEI L, et al. Porous α-Fe2O3nanosphere-based H2S sensor withfast response, high selectivity and enhanced sensitivity [J]. Journal of MaterialsChemistry A,2013,1(40):12400-12403.
    [74] WANG P-P, QI Q, ZOU X, et al. A precursor route to porous ZnO nanotubes withsuperior gas sensing properties [J]. RSC Advances,2013,3(46):23980-23983.
    [75] ZHOU L-J, ZOU Y-C, ZHAO J, et al. Facile synthesis of highly stable and porousCu2O/CuO cubes with enhanced gas sensing properties [J]. Sensors and Actuators B:Chemical,2013,188,533-539.
    [76] ZHANG Z, WANG C-C, ZAKARIA R, et al. Role of particle size in nanocrystallineTiO2-based photocatalysts [J]. The Journal of Physical Chemistry B,1998,102(52):10871-10878.
    [77] BLAKEMORE J D, GRAY H B, WINKLER J R, et al. Co3O4nanoparticlewater-oxidation catalysts made by pulsed-laser ablation in liquids [J]. ACS Catalysis,2013,3(11):2497-2500.
    [78] LU F, LIU Y, DONG M, et al. Nanosized tin oxide as the novel material withsimultaneous detection towards CO, H2and CH4[J]. Sensors and Actuators B:Chemical,2000,66(1):225-227.
    [79] YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2single crystals with a largepercentage of reactive facets [J]. Nature,2008,453(7195):638-641.
    [80] HAN X, KUANG Q, JIN M, et al. Synthesis of titania nanosheets with a highpercentage of exposed (001) facets and related photocatalytic properties [J]. Journalof the American Chemical Society,2009,131(9):3152-3153.
    [81] LIU S, YU J, JARONIEC M. Tunable photocatalytic selectivity of hollow TiO2microspheres composed of anatase polyhedra with exposed {001} facets [J]. Journalof the American Chemical Society,2010,132(34):11914-11916.
    [82] PAN J, LIU G, LU G Q M, et al. On the true photoreactivity order of {001},{010},and {101} facets of anatase TiO2crystals [J]. Angewandte Chemie InternationalEdition,2011,50(9):2133-2137.
    [83] LI J, XU D. Tetragonal faceted-nanorods of anatase TiO2single crystals with a largepercentage of active {100} facets [J]. Chemical Communications,2010,46(13):2301-2303.
    [84] WANG D, KANHERE P, LI M, et al. Improving photocatalytic H2evolution of TiO2via formation of {001}-{010} quasi-heterojunctions [J]. The Journal of PhysicalChemistry C,2013,117(44):22894-22902.
    [85] HU L, PENG Q, LI Y. Selective synthesis of Co3O4nanocrystal with different shapeand crystal plane effect on catalytic property for methane combustion [J]. Journal ofthe American Chemical Society,2008,130(48):16136-16137.
    [86] ZHOU X, LAN J, LIU G, et al. Facet-mediated photodegradation of organic dyeover hematite architectures by visible light [J]. Angewandte Chemie InternationalEdition,2012,124(1):182-186.
    [87] LEE J-H. Gas sensors using hierarchical and hollow oxide nanostructures: overview[J]. Sensors and Actuators B: Chemical,2009,140(1):319-336.
    [88] LAI X, HALPERT J E, WANG D. Recent advances in micro-/nano-structuredhollow spheres for energy applications: from simple to complex systems [J]. Energy&Environmental Science,2012,5(2):5604-5618.
    [89] ZHAO Y, WANG W, LI Y, et al. Hierarchical branched Cu2O nanowires withenhanced photocatalytic activity and stability for H2production [J]. Nanoscale,2014,6(1):195-198.
    [90] NIE L, YU J, LI X, et al. Enhanced performance of NaOH-Modified Pt/TiO2towardroom temperature selective oxidation of formaldehyde [J]. Environmental Science&Technology,2013,47(6):2777-2783.
    [91] ZHU J, YIN Z, YANG D, et al. Hierarchical hollow spheres composed of ultrathinFe2O3nanosheets for lithium storage and photocatalytic water oxidation [J]. Energy&Environmental Science,2013,6(3):987-993.
    [92] WANG X, LIU W, LIU J, et al. Synthesis of nestlike ZnO hierarchically porousstructures and analysis of their gas sensing properties [J]. ACS Applied Materials&Interfaces,2012,4(2):817-825.
    [93] JUN Y W, CHOI J S, CHEON J. Shape control of semiconductor and metal oxidenanocrystals through nonhydrolytic colloidal routes [J]. Angewandte ChemieInternational Edition,2006,45(21):3414-3439.
    [94] QI K, YANG J, FU J, et al. Morphology-controllable ZnO rings: Ionic liquid-assistedhydrothermal synthesis, growth mechanism and photoluminescence properties [J].CrystEngComm,2013,15(34):6729-6735.
    [95] CHEN Q, MA W, CHEN C, et al. Anatase TiO2mesocrystals enclosed by (001) and(101) facets: synergistic effects between Ti3+and facets for their photocatalyticperformance [J]. Chemistry-A European Journal,2012,18(40):12584-12589.
    [96] XIANG Q, YU J, JARONIEC M. Tunable photocatalytic selectivity of TiO2filmsconsisted of flower-like microspheres with exposed {001} facets [J]. ChemicalCommunications,2011,47(15):4532-4534.
    [97] NAI J, TIAN Y, GUAN X, et al. Pearson’s principle inspired generalized strategy forthe fabrication of metal hydroxide and oxide nanocages [J]. Journal of the AmericanChemical Society,2013,135(43):16082-16091.
    [98] ROSEN J, HUTCHINGS G S, JIAO F. Ordered Mesoporous Cobalt Oxide as HighlyEfficient Oxygen Evolution Catalyst [J]. Journal of the American Chemical Society,2013,135(11):4516-4521.
    [99] JIAO F, HARRISON A, HILL A H, et al. Mesoporous Mn2O3and Mn3O4withcrystalline walls [J]. Advanced Materials,2007,19(22):4063-4066.
    [100] LU Q, CHEN Y, LI W, et al. Ordered mesoporous nickel cobaltite spinel withultra-high supercapacitance [J]. Journal of Materials Chemistry A,2013,1(6):2331-2336.
    [101] JAGADEESAN D, MANSOORI U, MANDAL P, et al. Hollow Spheres toNanocups: Tuning the Morphology and Magnetic Properties of Single-Crystalline-Fe2O3Nanostructures [J]. Angewandte Chemie International Edition,2008,120(40):7799-7802.
    [102] WANG X, HU P, FANGLI Y, et al. Preparation and characterization of ZnO hollowspheres and ZnO-carbon composite materials using colloidal carbon spheres astemplates [J]. The Journal of Physical Chemistry C,2007,111(18):6706-6712.
    [103] WANG J, YANG N, TANG H, et al. Accurate Control of Multishelled Co3O4Hollow Microspheres as High-Performance Anode Materials in Lithium-IonBatteries [J]. Angewandte Chemie International Edition,2013,125(25):6545-6548.
    [104] WANG X, LIU W, LIU J, et al. Synthesis of nestlike ZnO hierarchically porousstructures and analysis of their gas sensing properties [J]. ACS Applied Materials&Interfaces,2012,4(2):817-825.
    [105] XU H, WANG W. Template Synthesis of Multishelled Cu2O Hollow Spheres with aSingle-Crystalline Shell Wall [J]. Angewandte Chemie International Edition,2007,46(9):1489-1492.
    [106] HE T, CHEN D, JIAO X, et al. Co3O4Nanoboxes: Surfactant-TemplatedFabrication and Microstructure Characterization [J]. Advanced Materials,2006,18(8):1078-1082.
    [107] ZHONG L S, HU J S, LIANG H P, et al. Self-Assembled3D flowerlike iron oxidenanostructures and their application in water treatment [J]. Advanced Materials,2006,18(18):2426-2431.
    [108] KO S H, LEE D, KANG H W, et al. Nanoforest of hydrothermally grownhierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell [J]. NanoLetters,2011,11(2):666-671.
    [109] ZHENG Z, HUANG B, QIN X, et al. Strategic synthesis of hierarchical TiO2microspheres with enhanced photocatalytic activity [J]. Chemistry-A EuropeanJournal,2010,16(37):11266-11270.
    [110] YANG H G, ZENG H C. Preparation of hollow anatase TiO2nanospheres viaOstwald ripening [J]. The Journal of Physical Chemistry B,2004,108(11):3492-3495.
    [111] CHUN ZENG H. Ostwald ripening: a synthetic approach for hollow nanomaterials[J]. Current Nanoscience,2007,3(2):177-181.
    [112] KIRKENDALL E, SMIGELSKAS A. Zinc diffusion in alpha brass [J].Transactions of the metallurgical society of AIME,1947,171,130-142.
    [113] YIN Y, RIOUX R M, ERDONMEZ C K, et al. Formation of hollow nanocrystalsthrough the nanoscale Kirkendall effect [J]. Science,2004,304(5671):711-714.
    [114] MEL E, BUFFI RE M, TESSIER P Y, et al. Highly ordered hollow oxidenanostructures: the Kirkendall effect at the nanoscale [J]. Small,2013,9(17):2838-2843.
    [115] LIU B, ZENG H C. Fabrication of ZnO “dandelions” via a modified Kirkendallprocess [J]. Journal of the American Chemical Society,2004,126(51):16744-16746.
    [116] LU F, CAI W, ZHANG Y. ZnO hierarchical micro/nanoarchitectures: solvothermalsynthesis and structurally enhanced photocatalytic performance [J]. AdvancedFunctional Materials,2008,18(7):1047-1056.
    [117] LIU J, XIA H, LU L, et al. Anisotropic Co3O4porous nanocapsules towardhigh-capacity Li-ion batteries [J]. Journal of Materials Chemistry,2010,20(8):1506-1510.
    [118] PAN A, WU H B, YU L, et al. Template-Free synthesis of VO2hollowmicrospheres with various Interiors and their conversion into V2O5for lithium-ionbatteries [J]. Angewandte Chemie International Edition,2013,125(8):2282-2286.
    [119] JIANG J, GU F, SHAO W, et al. Fabrication of spherical multi-hollow TiO2nanostructures for photoanode film with enhanced light-scattering performance [J].Industrial&Engineering Chemistry Research,2012,51(7):2838-2845.
    [120] CAO A M, HU J S, LIANG H P, et al. Self-assembled vanadium pentoxide (V2O5)hollow microspheres from nanorods and their application in lithium-ion batteries[J]. Angewandte Chemie International Edition,2005,44(28):4391-4395.
    [121] DONG H, FELDMANN C. Porous ZnO platelets via controlled thermaldecomposition of zinc glycerolate [J]. Journal of Alloys and Compounds,2012,513,125-129.
    [122] LARCHER D, SUDANT G, PATRICE R, et al. Some insights on the use ofpolyols-based metal alkoxides powders as precursors for tailored metal-oxidesparticles [J]. Chemistry of Materials,2003,15(18):3543-3551.
    [123] TIAN G, CHEN Y, ZHOU W, et al.3D hierarchical flower-like TiO2nanostructure:morphology control and its photocatalytic property [J]. CrystEngComm,2011,13(8):2994-3000.
    [124] WANG X, WU X L, GUO Y G, et al. Synthesis and lithium storage properties ofCo3O4nanosheet-assembled multishelled hollow spheres [J]. Advanced FunctionalMaterials,2010,20(10):1680-1686.
    [1] TIAN N, ZHOU Z Y, SUN S G, et al. Synthesis of tetrahexahedral platinumnanocrystals with high-index facets and high electro-oxidation activity [J]. Science,2007,316(5825):732-735.
    [2] SUN Y, XIA Y. Shape-controlled synthesis of gold and silver nanoparticles [J].Science,2002,298(5601):2176-2179.
    [3] BI Y, OUYANG S, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4sub-microcrystals on photocatalytic properties [J]. Journal of the American ChemicalSociety,2011,133(17):6490-6492.
    [4] YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2single crystals with a largepercentage of reactive facets [J]. Nature,2008,453(7195):638-641.
    [5] YANG H G, LIU G, QIAO S Z, et al. Solvothermal synthesis and photoreactivity ofanatase TiO2nanosheets with dominant {001} facets [J]. Journal of the AmericanChemical Society,2009,131(11):4078-4083.
    [6] CHEN X, MAO S S. Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications [J]. Chemical reviews,2007,107(7):2891-2959.
    [7] KUBACKA A, FERNANDEZ-GARCIA M, COLON G. Advanced nanoarchitecturesfor solar photocatalytic applications [J]. Chemical Reviews,2011,112(3):1555-1614.
    [8] ZHAO X, JIN W, CAI J, et al. Shape-and Size-Controlled Synthesis of UniformAnatase TiO2Nanocuboids Enclosed by Active {100} and {001} Facets [J].Advanced Functional Materials,2011,21(18):3554-3563.
    [9] ZOU X X, LI G D, GUO M Y, et al. Heterometal alkoxides as precursors for thepreparation of porous Fe-and Mn-TiO2photocatalysts with high efficiencies [J].Chemistry-A European Journal2008,14(35):11123-11131.
    [10] HAN X, KUANG Q, JIN M, et al. Synthesis of titania nanosheets with a highpercentage of exposed (001) facets and related photocatalytic properties [J]. Journalof the American Chemical Society,2009,131(9):3152-3153.
    [11] LI J, XU D. Tetragonal faceted-nanorods of anatase TiO2single crystals with a largepercentage of active {100} facets [J]. Chemical Communications,2010,46(13):2301-2303.
    [12] YU J, QI L, JARONIEC M. Hydrogen Production by Photocatalytic Water Splittingover Pt/TiO2Nanosheets with Exposed (001) Facets [J]. The Journal of PhysicalChemistry C,2010,114(30):13118-13125.
    [13] CHEN J S, TAN Y L, LI C M, et al. Constructing hierarchical spheres from largeultrathin anatase TiO2nanosheets with nearly100%exposed (001) facets for fastreversible lithium storage [J]. Journal of the American Chemical Society,2010,132(17):6124-6130.
    [14] WEN C Z, ZHOU J Z, JIANG H B, et al. Synthesis of micro-sized titanium dioxidenanosheets wholly exposed with high-energy {001} and {100} facets [J]. ChemicalCommunications,2011,47(15):4400-4402.
    [15] XIANG Q, YU J, JARONIEC M. Tunable photocatalytic selectivity of TiO2filmsconsisted of flower-like microspheres with exposed {001} facets [J]. ChemicalCommunications,2011,47(15):4532-4534.
    [16] HAN X, WANG X, XIE S, et al. Carbonate ions-assisted syntheses of anatase TiO2nanoparticles exposed with high energy (001) facets [J]. RSC Advances,2012,2(8):3251-3253.
    [17] JIAO W, WANG L, LIU G, et al. Hollow Anatase TiO2Single Crystals andMesocrystals with Dominant {101} Facets for Improved Photocatalysis Activity andTuned Reaction Preference [J]. ACS Catalysis,2012,2(9):1854-1859.
    [18] ZHAO Y, ZHAO Q, LI X, et al. Synthesis and photoactivity of flower-like anataseTiO2with {001} facets exposed [J]. Materials Letters,2012,66(1):308-310.
    [19] PAN J, LIU G, LU G Q, et al. On the true photoreactivity order of {001},{010}, and{101} facets of anatase TiO2crystals?[J]. Angewandte Chemie International Edition,2011,50(9):2133-2137.
    [20] WU B, GUO C, ZHENG N, et al. Nonaqueous production of nanostructured anatasewith high-energy facets [J]. Journal of the American Chemical Society,2008,130(51):17563-17567.
    [21] YANG W, WANG Y, SHI W. One-step synthesis of single-crystal anatase TiO2tetragonal faceted-nanorods for improved-performance dye-sensitized solar cells [J].CrystEngComm,2012,14(1):230-234.
    [22] KIATKITTIPONG K, SCOTT J, AMAL R. Hydrothermally synthesized titanatenanostructures: impact of heat treatment on particle characteristics andphotocatalytic properties [J]. ACS Applied Materials&Interfaces,2011,3(10):3988-3996.
    [23] PAN J, WU X, WANG L, et al. Synthesis of anatase TiO2rods with dominantreactive {010} facets for the photoreduction of CO2to CH4and use in dye-sensitizedsolar cells [J]. Chemical Communications,2011,47(29):8361-8363.
    [24] DAS J, FREITAS F S, EVANS I R, et al. A facile nonaqueous route for fabricatingtitania nanorods and their viability in quasi-solid-state dye-sensitized solar cells [J].Journal of Materials Chemistry,2010,20(21):4425-4431.
    [25] PENG C-W, KE T-Y, BROHAN L, et al.(101)-Exposed Anatase TiO2Nanosheets[J]. Chemistry of Materials,2008,20(7):2426-2428.
    [26] SHAO F, SUN J, GAO L, et al. Template-free synthesis of hierarchical TiO2structures and their application in dye-sensitized solar cells [J]. ACS AppliedMaterials&Interfaces,2011,3(6):2148-2153.
    [27] SUN Z, KIM J H, ZHAO Y, et al. Rational design of3D dendritic TiO2nanostructures with favorable architectures [J]. Journal of the American ChemicalSociety,2011,133(48):19314-19317.
    [28] ZHU T, LI J, WU Q. Construction of TiO2hierarchical nanostructures fromnanocrystals and their photocatalytic properties [J]. ACS Applied Materials&Interfaces,2011,3(9):3448-3453.
    [29] TIAN G, CHEN Y, ZHOU W, et al.3D hierarchical flower-like TiO2nanostructure:morphology control and its photocatalytic property [J]. CrystEngComm,2011,13(8):2994-3000.
    [30] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting [J].Chemical Society Reviews,2009,38(1):253-278.
    [31] NI M, LEUNG M K H, LEUNG D Y C, et al. A review and recent developments inphotocatalytic water-splitting using TiO2for hydrogen production [J]. Renewableand Sustainable Energy Reviews,2007,11(3):401-425.
    [1] TURNER J A. A realizable renewable energy future [J]. Science,1999,285(5428):687-689.
    [2] MEYER T J. Catalysis: The art of splitting water [J]. Nature,2008,451(7180):778-779.
    [3] COOK T, DOGUTAN D, REECE S, et al. Solar energy supply and storage for thelegacy and nonlegacy worlds [J]. Chemical Reviews,2010,110(11):6474-6502.
    [4] KANAN M W, NOCERA D G In situ formation of an oxygen-evolving catalyst inneutral water containing phosphate and Co2+[J]. Science,2008,321(5892):1072-1075.
    [5] HARA M, WARAKSA C C, LEAN J T, et al. Photocatalytic water oxidation in abuffered tris(2,2'-bipyridyl) ruthenium complex-colloidal IrO2system [J]. TheJournal of Physical Chemistry A,2000,104(22):5275-5280.
    [6] HARA M, MALLOUK T E. Photocatalytic water oxidation by Nafion-stabilizediridium oxide colloids [J]. Chemical Communications,2000,(19):1903-1904.
    [7] UMENA Y, KAWAKAMI K, SHEN J-R, et al. Crystal structure of oxygen-evolvingphotosystem II at a resolution of1.9[J]. Nature,2011,473(7345):55-60.
    [8] ZOU X, GOSWAMI A, ASEFA T. Efficient Noble Metal-Free (Electro) Catalysis ofWater and Alcohol Oxidations by Zinc-Cobalt Layered Double Hydroxide [J].Journal of the American Chemical Society,2013,135(46):17242-17245.
    [9] WANG D, CHEN X, EVANS D G, et al. Well-dispersed Co3O4/Co2MnO4nanocomposites as a synergistic bifunctional catalyst for oxygen reduction andoxygen evolution reactions [J]. Nanoscale,2013,5(12):5312-5315.
    [10] SURENDRANATH Y, KANAN M W, NOCERA D G. Mechanistic studies of theoxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH [J]. Journalof the American Chemical Society,2010,132(46):16501-16509.
    [11] BEDIAKO D K, COSTENTIN C, JONES E C, et al. Proton-Electron Transport andTransfer in Electrocatalytic Films. Application to a Cobalt-Based O2EvolutionCatalyst [J]. Journal of the American Chemical Society,2013,135(28):10492-10502.
    [12] CHOU N H, ROSS P N, BELL A T, et al. Comparison of Cobalt-basedNanoparticles as Electrocatalysts for Water Oxidation [J]. ChemSusChem,2011,4(11):1566-1569.
    [13] ZHANG Y, CUI B, ZHAO C, et al. Co-Ni layered double hydroxides for wateroxidation in neutral electrolyte [J]. Physical Chemistry Chemical Physics,2013,15(19):7363-7369.
    [14] MCCRORY C C, JUNG S, PETERS J C, et al. Benchmarking HeterogeneousElectrocatalysts for the Oxygen Evolution Reaction [J]. Journal of the AmericanChemical Society,2013,135(45):16977-16987.
    [15] MATTIOLI G, GIANNOZZI P, AMORE BONAPASTA A, et al. Reaction Pathwaysfor Oxygen Evolution Promoted by Cobalt Catalyst [J]. Journal of the AmericanChemical Society,2013,135(41):15353-15363.
    [16] ROBINSON D M, GO Y B, MUI M, et al. Photochemical water oxidation bycrystalline polymorphs of manganese oxides: Structural requirements for catalysis[J]. Journal of the American Chemical Society,2013,135(9):3494-3501.
    [17] JIAO F, FREI H. Nanostructured cobalt and manganese oxide clusters as efficientwater oxidation catalysts [J]. Energy&Environmental Science,2010,3(8):1018-1027.
    [18] PINTADO S, GOBERNA-FERRO N S, ESCUDERO-ADA N E C, et al. Fast andPersistent Electrocatalytic Water Oxidation by Co-Fe Prussian Blue CoordinationPolymers [J]. Journal of the American Chemical Society,2013,135(36):13270-13273.
    [19] ZOU X, SU J, SILVA R, et al. Efficient oxygen evolution reaction catalyzed bylow-density Ni-doped Co3O4nanomaterials derived from metal-embedded graphiticC3N4[J]. Chemical Communications,2013,49(68):7522-7524.
    [20] YUSUF S, JIAO F. Effect of the Support on the Photocatalytic Water OxidationActivity of Cobalt Oxide Nanoclusters [J]. ACS Catalysis,2012,2(12):2753-2760.
    [21] LI Y, HASIN P, WU Y. NixCo3-xO4nanowire arrays for electrocatalytic oxygenevolution [J]. Advanced Materials,2010,22(17):1926-1929.
    [22] TROTOCHAUD L, RANNEY J K, WILLIAMS K N, et al. Solution-Cast MetalOxide Thin Film Electrocatalysts for Oxygen Evolution [J]. Journal of the AmericanChemical Society,2012,134(41):17253-17261.
    [23] ESSWEIN A J, MCMURDO M J, ROSS P N, et al. Size-dependent activity ofCo3O4nanoparticle anodes for alkaline water electrolysis [J]. The Journal ofPhysical Chemistry C,2009,113(33):15068-15072.
    [24] BLAKEMORE J D, GRAY H B, WINKLER J R, et al. Co3O4nanoparticlewater-oxidation catalysts made by pulsed-laser ablation in liquids [J]. ACS Catalysis,2013,3(11):2497-2500.
    [25] GRZELCZAK M, ZHANG J, PFROMMER J, et al. Electro-and PhotochemicalWater Oxidation on Ligand-free Co3O4Nanoparticles with Tunable Sizes [J]. ACSCatalysis,2013,3(3):383-388.
    [26] LIANG Y, LI Y, WANG H, et al. Co3O4nanocrystals on graphene as a synergisticcatalyst for oxygen reduction reaction [J]. Nature Materials,2011,10(10):780-786.
    [27] BAJDICH M, GARC A-MOTA M, VOJVODIC A, et al. Theoretical Investigationof the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water [J].Journal of the American Chemical Society,2013,135(36):13521-13530.
    [28] YEO B S, BELL A T. Enhanced activity of gold-supported cobalt oxide for theelectrochemical evolution of oxygen [J]. Journal of the American Chemical Society,2011,133(14):5587-5593.
    [29] KOZA J A, HE Z, MILLER A S, et al. Electrodeposition of Crystalline Co3O4ACatalyst for the Oxygen Evolution Reaction [J]. Chemistry of Materials,2012,24(18):3567-3573.
    [30] ROSEN J, HUTCHINGS G S, JIAO F. Ordered Mesoporous Cobalt Oxide asHighly Efficient Oxygen Evolution Catalyst [J]. Journal of the American ChemicalSociety,2013,135(11):4516-4521.
    [31] T YS Z H, HWANG Y J, KHAN S B, et al. Mesoporous Co3O4as an electrocatalystfor water oxidation [J]. Nano Research,2013,6(1):47-54.
    [32] XIE X, SHEN W. Morphology control of cobalt oxide nanocrystals for promotingtheir catalytic performance [J]. Nanoscale,2009,1(1):50-60.
    [33] LOU X W D, ARCHER L A, YANG Z. Hollow Micro-/Nanostructures: Synthesisand Applications [J]. Advanced Materials,2008,20(21):3987-4019.
    [34] WANG X, TIAN W, ZHAI T, et al. Cobalt (II, III) oxide hollow structures:fabrication, properties and applications [J]. Journal of Materials Chemistry,2012,22(44):23310-23326.
    [35] WANG Z, ZHOU L. Metal Oxide Hollow Nanostructures for Lithium-ion Batteries[J]. Advanced Materials,2012,24(14):1903-1911.
    [36] OHNISHI M, KOZUKA Y, YE Q-L, et al. Phase selective preparations and surfacemodifications of spherical hollow nanomagnets [J]. Journal of Materials Chemistry,2006,16(31):3215-3220.
    [37] TITIRICI M-M, ANTONIETTI M, THOMAS A. A generalized synthesis of metaloxide hollow spheres using a hydrothermal approach [J]. Chemistry of Materials,2006,18(16):3808-3812.
    [38] DU H, JIAO L, WANG Q, et al. Facile carbonaceous microsphere templatedsynthesis of Co3O4hollow spheres and their electrochemical performance insupercapacitors [J]. Nano Research,2013,6(2):87-98.
    [39] WANG C-A, LI S, AN L. Hierarchically porous Co3O4hollow spheres with tunablepore structure and enhanced catalytic activity [J]. Chemical Communications,2013,49(67):7427-7429.
    [40] TIAN Z, ZHOU Y, LI Z, et al. Generalized synthesis of a family of multishelledmetal oxide hollow microspheres [J]. Journal of Materials Chemistry A,2013,1(11):3575-3579.
    [41] XIA X-H, TU J-P, WANG X-L, et al. Mesoporous Co3O4monolayer hollow-spherearray as electrochemical pseudocapacitor material [J]. Chemical Communications,2011,47(20):5786-5788.
    [42] MING J, WU Y, PARK J-B, et al. Assembling metal oxide nanocrystals into dense,hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application[J]. Nanoscale,2013,5(21):10390-10396.
    [43] WANG J, YANG N, TANG H, et al. Accurate Control of Multishelled Co3O4HollowMicrospheres as High-Performance Anode Materials in Lithium-Ion Batteries [J].Angewandte Chemie International Edition,2013,52(25):6417-6420.
    [44] ZHAN L, WANG Y, QIAO W, et al. Hollow carbon spheres with encapsulation ofCo3O4nanoparticles as anode material for lithium ion batteries [J]. ElectrochimicaActa,2012,78:440-445.
    [45] LIU J, WAN Y, LIU C, et al. Solvothermal Synthesis of Uniform Co3O4/C HollowQuasi-Nanospheres for Enhanced Lithium Ion Intercalation Applications [J].European Journal of Inorganic Chemistry,2012,2012(24):3825-3829.
    [46] SOHN J H, CHA H G, KIM C W, et al. Fabrication of hollow metal oxidenanocrystals by etching cuprous oxide with metal (ii) ions: approach to the essentialdriving force [J]. Nanoscale,2013,5(22):11227-11233.
    [47] LIU J, XIA H, LU L, et al. Anisotropic Co3O4porous nanocapsules towardhigh-capacity Li-ion batteries [J]. Journal of Materials Chemistry,2010,20(8):1506-1510.
    [48] WANG X, WU X L, GUO Y G, et al. Synthesis and lithium storage properties ofCo3O4nanosheet-assembled multishelled hollow spheres [J]. Advanced FunctionalMaterials,2010,20(10):1680-1686.
    [49] YOSHIKAWA H, HAYASHIDA K, KOZUKA Y, et al. Preparation and magneticproperties of hollow nano-spheres of cobalt and cobalt oxide: Drastic cooling-fieldeffects on remnant magnetization of antiferromagnet [J]. Applied Physics Letters,2004,85(22):5287-5289.
    [50] SHI R, CHEN G, MA W, et al. Shape-controlled synthesis and characterization ofcobalt oxides hollow spheres and octahedra [J]. Dalton Transactions,2012,41(19):5981-5987.
    [51] HE T, CHEN D, JIAO X, et al. Surfactant-assisted solvothermal synthesis of Co3O4hollow spheres with oriented-aggregation nanostructures and tunable particle size [J].Langmuir,2004,20(19):8404-8408.
    [52] HE T, CHEN D, JIAO X, et al. Co3O4Nanoboxes: Surfactant-Templated Fabricationand Microstructure Characterization [J]. Advanced Materials,2006,18(8):1078-1082.
    [53] JIAO Q, FU M, YOU C, et al. Preparation of Hollow Co3O4Microspheres and TheirEthanol Sensing Properties [J]. Inorganic Chemistry,2012,51(21):11513-11520.
    [54] CAO Y, YUAN F, YAO M, et al. A new synthetic route to hollow Co3O4octahedrafor supercapacitor applications [J]. CrystEngComm,2014,16(5):826-833.
    [55] SILVA R, VOIRY D, CHHOWALLA M, et al. Efficient Metal-Free Electrocatalystsfor Oxygen Reduction: Polyaniline-Derived N-and O-Doped Mesoporous Carbons[J]. Journal of the American Chemical Society,2013,135(21):7823-7826.
    [56] LARCHER D, SUDANT G, PATRICE R, et al. Some insights on the use ofpolyols-based metal alkoxides powders as precursors for tailored metal-oxidesparticles [J]. Chemistry of Materials,2003,15(18):3543-3551.
    [57] LI J, FAN H, JIA X. Multilayered ZnO nanosheets with3D porous architectures:synthesis and gas sensing application [J]. The Journal of Physical Chemistry C,2010,114(35):14684-14691.
    [58] YIN Y, RIOUX R M, ERDONMEZ C K, et al. Formation of hollow nanocrystalsthrough the nanoscale Kirkendall effect [J]. Science,2004,304(5671):711-714.
    [59] WANG W, DAHL M, YIN Y. Hollow nanocrystals through the nanoscale Kirkendalleffect [J]. Chemistry of Materials,2012,25(8):1179-1189.
    [60] CABOT A, PUNTES V F, SHEVCHENKO E, et al. Vacancy coalescence duringoxidation of iron nanoparticles [J]. Journal of the American Chemical Society,2007,129(34):10358-10360.
    [61] YUAN C, LI J, HOU L, et al. Ultrathin mesoporous NiCo2O4nanosheets supportedon Ni foam as advanced electrodes for supercapacitors [J]. Advanced FunctionalMaterials,2012,22(21):4592-4597.
    [62] LOU X W D. Growth of ultrathin mesoporous Co3O4nanosheet arrays on Ni foamfor high-performance electrochemical capacitors [J]. Energy&EnvironmentalScience,2012,5(7):7883-7887.
    [63] LIU X, YI R, ZHANG N, et al. Cobalt hydroxide nanosheets and their thermaldecomposition to cobalt oxide nanorings [J]. Chemistry-An Asian Journal,2008,3(4):732-738.
    [64] GAO M-R, XU Y-F, JIANG J, et al. Water oxidation electrocatalyzed by an efficientMn3O4/CoSe2nanocomposite [J]. Journal of the American Chemical Society,2012,134(6):2930-2933.
    [65] GARDNER G P, GO Y B, ROBINSON D M, et al. Structural requirements inlithium cobalt oxides for the catalytic oxidation of water [J]. Angewandte ChemieInternational Edition,2012,51(7):1616-1619.
    [66] ROBINSON D M, GO Y B, GREENBLATT M, et al. Water oxidation by λ-MnO2:Catalysis by the cubical Mn4O4subcluster obtained by delithiation of spinelLiMn2O4[J]. Journal of the American Chemical Society,2010,132(33):11467-11469.
    [67] HARRIMAN A, PICKERING I J, THOMAS J M, et al. Metal oxides asheterogeneous catalysts for oxygen evolution under photochemical conditions [J].Journal of the Chemical Society, Faraday Transactions1: Physical Chemistry inCondensed Phases,1988,84(8):2795-2806.
    [68] YAMADA Y, YANO K, HONG D, et al. LaCoO3acting as an efficient and robustcatalyst for photocatalytic water oxidation with persulfate [J]. Physical ChemistryChemical Physics,2012,14(16):5753-5760.
    [1] HURST J K. In pursuit of water oxidation catalysts for solar fuel production [J].Science,2010,328(5976):315-316.
    [2] TURNER J. Oxygen catalysis: The other half of the equation [J]. Nature Materials,2008,7(10):770-771.
    [3] COOK T R, DOGUTAN D K, REECE S Y, et al. Solar energy supply and storagefor the legacy and nonlegacy worlds [J].Chemical Reviews,2010,110(11):6474-6502.
    [4] KANAN M W, NOCERA D G. In situ formation of an oxygen-evolving catalyst inneutral water containing phosphate and Co2+[J]. Science,2008,321(5892):1072-1075.
    [5] BARBER J. Photosynthetic energy conversion: natural and artificial [J]. ChemicalSociety Reviews,2009,38(1):185-196.
    [6] UMENA Y, KAWAKAMI K, SHEN J-R, et al. Crystal structure of oxygen-evolvingphotosystem II at a resolution of1.9[J]. Nature,2011,473(7345):55-60.
    [7] LI Y, HASIN P, WU Y. NixCo3-xO4nanowire arrays for electrocatalytic oxygenevolution [J]. Advanced Materials,2010,22(17):1926-1929.
    [8] GARDNER G P, GO Y B, ROBINSON D M, et al. Structural requirements inlithium cobalt oxides for the catalytic oxidation of water [J]. Angewandte ChemieInternational Edition,2012,51(7):1616-1619.
    [9] ZOU X, GOSWAMI A, ASEFA T. Efficient Noble Metal-Free (Electro) Catalysis ofWater and Alcohol Oxidations by Zinc-Cobalt Layered Double Hydroxide [J].Journal of the American Chemical Society,2013,135(46):17242-17245.
    [10] ZHANG Y, CUI B, ZHAO C, et al. Co-Ni layered double hydroxides for wateroxidation in neutral electrolyte [J]. Physical Chemistry Chemical Physics,2013,15(19):7363-7369.
    [11] MCCRORY C C, JUNG S, PETERS J C, et al. Benchmarking HeterogeneousElectrocatalysts for the Oxygen Evolution Reaction [J]. Journal of the AmericanChemical Society,2013,135(45):16977-16987.
    [12] PINTADO S, GOBERNA-FERRO N S, ESCUDERO-ADA N E C, et al. Fast andPersistent Electrocatalytic Water Oxidation by Co-Fe Prussian Blue CoordinationPolymers [J]. Journal of the American Chemical Society,2013,135(36):13270-13273.
    [13] ROSEN J, HUTCHINGS G S, JIAO F. Ordered Mesoporous Cobalt Oxide asHighly Efficient Oxygen Evolution Catalyst [J]. Journal of the American ChemicalSociety,2013,135(11):4516-4521.
    [14] BLAKEMORE J D, GRAY H B, WINKLER J R, et al. Co3O4nanoparticlewater-oxidation catalysts made by pulsed-laser ablation in liquids [J]. ACS Catalysis,2013,3(11):2497-2500.
    [15] BAJDICH M, GARC A-MOTA M, VOJVODIC A, et al. Theoretical Investigationof the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water [J].Journal of the American Chemical Society,2013,135(36):13521-13530.
    [16] JIAO F, FREI H. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica asEfficient Oxygen-Evolving Catalysts [J]. Angewandte Chemie InternationalEdition,2009,48(10):1841-1844.
    [17] ZOU X, SU J, SILVA R, et al. Efficient oxygen evolution reaction catalyzed bylow-density Ni-doped Co3O4nanomaterials derived from metal-embeddedgraphitic C3N4[J]. Chemical Communications,2013,49(68):7522-7524.
    [18] LIAO M, FENG J, LUO W, et al. Co3O4Nanoparticles as robust water oxidationcatalysts towards remarkably enhanced photostability of a Ta3N5photoanode [J].Advanced Functional Materials,2012,22(14):3066-3074.
    [19] YUAN C, LI J, HOU L, et al. Template-engaged synthesis of uniform mesoporoushollow NiCo2O4sub-microspheres towards high-performance electrochemicalcapacitors [J]. RSC Advances,2013,3(40):18573-18578.
    [20] ZHANG G, LOU X W D. General Solution Growth of Mesoporous NiCo2O4Nanosheets on Various Conductive Substrates as High-Performance Electrodes forSupercapacitors [J]. Advanced Materials,2013,25(7):976-979.
    [21] ZHANG G Q, WU H B, HOSTER H E, et al. Single-crystalline NiCo2O4nanoneedle arrays grown on conductive substrates as binder-free electrodes forhigh-performance supercapacitors [J]. Energy&Environmental Science,2012,5(11):9453-9456.
    [22] YUAN C, LI J, HOU L, et al. Ultrathin mesoporous NiCo2O4nanosheets supportedon Ni foam as advanced electrodes for supercapacitors [J]. Advanced FunctionalMaterials,2012,22(21):4592-4597.
    [23] DU J, ZHOU G, ZHANG H, et al. Ultrathin porous NiCo2O4nanosheet arrays onflexible carbon fabric for high-performance supercapacitors [J]. ACS AppliedMaterials&Interfaces,2013,5(15):7405-7409.
    [24] PRABU M, KETPANG K, SHANMUGAM S. Hierarchical nanostructured NiCo2O4as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-airbatteries [J]. Nanoscale,2014,6(6):3173-3181.
    [25] XIAO Y, HU C, QU L, et al. Three-Dimensional Macroporous NiCo2O4Sheets as aNon-Noble Catalyst for Efficient Oxygen Reduction Reactions [J]. Chemistry-AEuropean Journal,2013,19(42):14271-14278.
    [26] LEE D U, KIM B J, CHEN Z. One-pot synthesis of a mesoporous NiCo2O4nanoplatelet and graphene hybrid and its oxygen reduction and evolution activitiesas an efficient bifunctional electrocatalyst [J]. Journal of Materials Chemistry A,2013,1(15):4754-4762.
    [27] HARRIMAN A, PICKERING I J, THOMAS J M, et al. Metal oxides asheterogeneous catalysts for oxygen evolution under photochemical conditions [J].Journal of the Chemical Society, Faraday Transactions1: Physical Chemistry inCondensed Phases,1988,84(8):2795-2806.
    [28] THISSEN A, ENSLING D, FERN NDEZ MADRIGAL F J, et al. Photoelectronspectroscopic study of the reaction of Li and Na with NiCo2O4[J]. Chemistry ofMaterials,2005,17(20):5202-5208.
    [29] KIM J-G, PUGMIRE D, BATTAGLIA D, et al. Analysis of the NiCo2O4spinelsurface with Auger and X-ray photoelectron spectroscopy [J]. Applied SurfaceScience,2000,165(1):70-84.
    [30] MARCO J, GANCEDO J, GRACIA M, et al. Characterization of the NickelCobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, andXPS Study [J]. Journal of Solid State Chemistry,2000,153(1):74-81.
    [31]CHOUDHURY T, SAIED S, SULLIVAN J, et al. Reduction of oxides of iron, cobalt,titanium and niobium by low-energy ion bombardment [J]. Journal of Physics D:Applied Physics,1989,22(8):1185-1195.
    [32] ROGINSKAYA Y E, MOROZOVA O, LUBNIN E, et al. Characterization of Bulkand Surface Composition of CoxNi1-xOyMixed Oxides for Electrocatalysis [J].Langmuir,1997,13(17):4621-4627.
    [33] ZHONG J-H, WANG A-L, LI G-R, et al. Co3O4/Ni(OH)2composite mesoporousnanosheet networks as a promising electrode for supercapacitor applications [J].Journal of Materials Chemistry,2012,22(12):5656-5665.
    [1] NIEDERBERGER M, BARTL M H, et al. A Versatile Reaction System for theNonaqueous and Low-Temperature Preparation of Crystalline and LuminescentTitania Nanoparticles [J]. Chemistry. Material,2002,14:4364-4370.
    [2] DJURI I A B, CHEN X, LEUNG Y H, et al. ZnO nanostructures: growth,properties and applications [J]. Journal of Materials Chemistry,2012,22(14):6526-6535.
    [3] LIU D P, LI G D, SU Y, et al. Highly Luminescent ZnO Nanocrystals Stabilized byIonic-Liquid Components [J]. Angewandte Chemie International Edition,2006,45(44):7370-7373.
    [4] JING Z, ZHAN J. Fabrication and Gas-Sensing Properties of Porous ZnONanoplates [J]. Advanced Materials,2008,20(23):4547-4551.
    [5] LI J, FAN H, JIA X. Multilayered ZnO nanosheets with3D porous architectures:synthesis and gas sensing application [J]. The Journal of Physical Chemistry C,2010,114(35):14684-14691.
    [6] ZHANG L, ZHAO J, LU H, et al. Facile synthesis and ultrahigh ethanol response ofhierarchically porous ZnO nanosheets [J]. Sensors and Actuators B: Chemical,2012,161(1):209-315.
    [7] ZOU X-X, LI G-D, ZHAO J, et al. Light-driven transformation ofZnS-cyclohexylamine nanocomposite into zinc hydroxysulfate: a photochemicalroute to inorganic nanosheets [J]. Inorganic Chemistry,2011,50(18):9106-9113.
    [8] WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonicwaves [J]. Science,2007,316(5821):102-105.
    [9] ZHANG Q, DANDENEAU C S, ZHOU X, et al. ZnO Nanostructures forDye-Sensitized Solar Cells [J]. Advanced Materials,2009,21(41):4087-4108.
    [10] LIM J H, KANG C K, KIM K K, et al. UV Electroluminescence Emission fromZnO Light-Emitting Diodes Grown by High-Temperature RadiofrequencySputtering [J]. Advanced Materials,2006,18(20):2720-2724.
    [11] FRANKE M E, KOPLIN T J, SIMON U. Metal and metal oxide nanoparticles inchemiresistors: does the nanoscale matter?[J]. Small,2006,2(1):36-50.
    [12] WANG X, LIU W, LIU J, et al. Synthesis of nestlike ZnO hierarchically porousstructures and analysis of their gas sensing properties [J]. ACS Applied Materials&Interfaces,2012,4(2):817-825.
    [13] ZHANG H, WU R, CHEN Z, et al. Self-assembly fabrication of3D flower-likeZnO hierarchical nanostructures and their gas sensing properties [J].CrystEngComm,2012,14(5):1775-1782.
    [14] QIU Y, CHEN W, YANG S. Facile hydrothermal preparation of hierarchicallyassembled, porous single-crystalline ZnO nanoplates and their application indye-sensitized solar cells [J]. Journal of Materials Chemistry,2010,20(5):1001-1006.
    [15] LIU X, ZHANG J, WANG L, et al.3D hierarchically porous ZnO structures andtheir functionalization by Au nanoparticles for gas sensors [J]. Journal of MaterialsChemistry,2011,21(2):349-356.
    [16] ZHANG J, WANG S, XU M, et al. Hierarchically porous ZnO architectures for gassensor application [J]. Crystal Growth and Design,2009,9(8):3532-3537.
    [17] PAWAR R, SHAIKH J, SURYAVANSHI S, et al. Growth of ZnO nanodisk,nanospindles and nanoflowers for gas sensor: pH dependency [J]. Current AppliedPhysics,2012,12(3):778-783.
    [18] KIM K-M, KIM H-R, CHOI K-I, et al. ZnO hierarchical nanostructures grown atroom temperature and their C2H5OH sensor applications [J]. Sensors and ActuatorsB: Chemical,2011,155(2):745-751.
    [19] ZHANG Y, XU J, XIANG Q, et al. Brush-like hierarchical ZnO nanostructures:synthesis, photoluminescence and gas sensor properties [J]. The Journal of PhysicalChemistry C,2009,113(9):3430-3435.
    [20] LIU B, XU J, RAN S, et al. High-performance photodetectors, photocatalysts, andgas sensors based on polyol reflux synthesized porous ZnO nanosheets [J].CrystEngComm,2012,14(14):4582-4588.
    [21] ZHOU X, CHEN S, ZHANG D, et al. Microsphere organization of nanorodsdirected by PEG linear polymer [J]. Langmuir,2006,22(4):1383-1387.
    [22] MO M, YU J C, ZHANG L, et al. Self-Assembly of ZnO Nanorods andNanosheets into Hollow Microhemispheres and Microspheres [J]. AdvancedMaterials,2005,17(6):756-760.
    [23] HAMBLEY T, SNOW M. The crystal and molecular structure of zinc (II)monoglycerolate [J]. Australian journal of chemistry,1983,36(6):1249-1253.
    [24] JIANG P, SONG Y, DONG Y, et al. Zinc glycerolate with lanthanum stearate toinhibit the thermal degradation of poly (vinyl chloride)[J]. Journal of AppliedPolymer Science,2013,127(5):3681-3686.
    [25] MIR N, SALAVATI-NIASARI M, DAVAR F. Preparation of ZnO nanoflowers andZn glycerolate nanoplates using inorganic precursors via a convenient rout andapplication in dye sensitized solar cells [J]. Chemical Engineering Journal,2012,181-182:779-789.
    [26] ZHAO J, ZOU X-X, SU J, et al. Synthesis and photocatalytic activity of porousanatase TiO2microspheres composed of {010}-faceted nanobelts [J]. DaltonTransactions,2013,42(13):4365-4368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700