用户名: 密码: 验证码:
单层有机复合光电导体产业化关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要涉及了单层有机复合光电导体产业化的三大关键技术,即光电导材料的制备技术(包括有机光电导材料的复合、增感和纳米化)、单层有机光电导体的涂布工艺技术以及涂布设备制造技术。
     酞菁复合有机光电导材料的光电导性能的研究出现了与单一酞菁有机光电导材料不同的协同增强效应(H_2Pc/InCIPc)、线形叠加效应(TiOPc/CuPc)和相互抵消的负效应(TiOPc/InClPc)。对具有协同增强效应材料体系的研究表明:紫外-可见吸收光谱发现其吸收范围得到明显拓宽;X-ray衍射表明复合后两者形成了共晶形态;XPS研究表明复合体系中发生了分子间部分电荷转移;UPS研究表明复合体系的功函数基本不变,而价电子结合能是各组分电子结合能的线形组合。
     少量的三硝基芴酮(TNF,TNF/BAH≤0.005)可以大幅度提高有机单层光电导体(TiOPc/BAH/PC体系)的光敏性。差热扫描量热法(DSC)、紫外可见光谱(UV)和循环伏安(CV)等测试方法发现随着TNF浓度的增加,TNF和BAH之间形成电荷转移络合物,从而导致光电导体光敏性能的下降。
     以络合物溶解法制备的InClPc纳米微粒,其光电导性有较大的提高。紫外吸收光谱表明纳米微粒的两个吸收峰较之本体材料发生了显著的蓝移;PVK包覆的纳米微粒固体粉末的衍射峰明显变宽。
     研究了溶剂、聚合物、配比和涂布速度等因素对单层有机光电导体的影响,获得了在本实验条件下的最佳工艺条件。
     同时研究了单层有机光电导体产业化的关键生产设备设计的主要参数与制造技术的要点。
The paper is involved of three key technologies about the industrialization of single-layered organic photoconductor(SLPR), namely, preparation of organic photoconductive materials including phthalocyanine composite, processing of SLPR, and fabrication devices.The photoconductivity of a single-layered organic photoconductor comprising phthalocyanine composites was investigated. Positive (InClPc/H2Pc) and linear addition (TiOPc/CuPc) and negative (TiOPc/InClPc) photosensitivity effects were observed compared with pure phthalocyanine. The electronic and aggregate structures of the composites were characterized by UV/Vis absorption spectra, X-ray powder diffraction pattern, XPS and UPS.Small amount of 2,4,7-trinitryl-fluoenone (TNF) could improve the photoconductivity and further TNF leaded to poor photoconductivity. DSC, UV/Vis, and cyclic voltammograms studies showed that the decline of photoconductivity was due to the formation of the charge transfer complex of TNF-BAH.Chloroindium phthalocyanine (InClPc) nanoparticles were prepared by dissolving InClPc in aprotic solvent/Lewis acid. The photoconductivity of InClPc nanoparticles in single-layered photoconductor was higher than that of bulk InClPc. InClPc nanoparticles were characterized by UV/Vis absorption , X-rays diffraction pattern, and TEM. The results showed that InClPc nanoparticles were ball-shaped with a size of 25-50nm, that their diffraction peaks become broader, and that the blue-shift in UV/Vis absorptin was observed.The solvent, polymer matrix, CGM (charge generation material ) /Polymer that influenced the photoconductivity, and the coating velocity, viscosity of photoconductive material that influenced the photoconductive coating thickness, were also discussed.The design and fabrication of coating machine for industrialization of single-layered organic photoconductor were studied.
引文
[1] Carlson, C. F. U. S. Patent 2, 221, 776, 1940.
    [2] Kock-Yee Law, Chem. Rev. 1993, 93, 449-486
    [3] Seraphin, B. O., Ed., Solar Energy Conversion-Solid State Physics Aspects(Topics in Applied Physics,Vol. 31);Springer-Verlag:New York, 1979.
    [4] Parkinson, B. Acc. Chem. Res. 1984, 17, 431.
    [5] Fox, M. A. Acc. Chem. Res. 1983, 16, 314.
    [6] Albery, W. J. Acc. Chem. Res. 1982, 15, 142.
    [7] Gratzel, M. Acc. Chem. Res. 1981, 14, 376.
    
    [8] Heller, A. Acc. Chem. Res. 1981, 14, 154.
    [9] Wrighton, M. S. Acc. Chem. Res. 1979, 12, 303.
    [10] Gerischer, H. Electroanal. Chem. Interfacial Electrochem. 1975. 58, 263.
    [11] M. Smith, et, al U. K. P. 1, 337, 228(1973)
    [12] R. J. Regeniouger. Et, al. U. K. P 1, 337, 227(1973)
    [13] Sharp J H, Lardon M. J Phys Chem, 1968, 72: 3230
    [14] Ebert AA, Gottlieb H B. JAm Chem Soc, 1952, 74: 2806
    [15] Karasek F W. J Am Chem Soc, 1952, 74: 4716
    [16] Shigemitsu M. Bull Chem Soc Jpn, 1959, 32: 607
    [17] Byrne J F, Kurz P F. US Pat. 3, 357, 989,
    [18] Loufty R O, Hor AM, Hsiao C K, et al. Pure Appl Chem, 1988, 60: 1047
    [19] Kakuta A, Mori Y, Takano S, et al. J Imaging Technol, 1985, 11: 7
    [20] Enokida T, Hirohashi R, Mizukami S. J Imaging Sci, 1991, 35: 235
    [21] Enokida T, Ehashi S. Chem Lett, 1988 (2): 179
    [22] Knudsen B I, Rolskov H S. US Pat. 3, 160, 635
    [23] Enokida T, Hirohashi R, Nakamura T. J Imaging Sci, 1990, 34: 234
    [24] Enokida T, Kurata R, Seta T, et al. Electrophotography, 1988, 27: 19
    [25] Fujimaki Y, Tadokoro H, Oda Y, et al, SPIE Proceedings, the Fifth International Congress on Advances in Non-Impact Printing Technologies, Japan, 1990. 37
    [26] Oda Y, Homma T, J Imaging Technol, 1990, 29: 250
    [27] Takano S, Mimura Y, Matsui N, et al. J Imaging Technol, 1990, 17: 46
    [28] Fujimaki Y, Tadokoro H, Oda Y, et al. SPIE Proceedings, the Fifth International Congress on Advances in Non-Impact Printing Technologies, Japan, 1990. 37
    [29] Loutfy R O, Hsiao C K, Kazmaler P M. Photogr Sci Eng, 1983, 27: 5
    [30] Law K Y. J Phys Chem, 1988, 92: 4226
    [31] Law K Y, Chen C C. J Phys Chem, 1989, 93: 2533
    [32] Kuramoto N, Enomoto S, Ozaki Y. Langmuir, 1995, 11: 2195
    [33] Matsumoto M, Takayoshi N, Tanaka M, et al. Bull Chem Soc Jpn, 1987, 60: 2723
    [34] Farnum D C, Neuman M A, Suggs W T. J Cryst Mol Struct, 1974, 4: 199
    
    [35] Tristani-Kendra M, Eekhardt C. J Chem Phys, 1984, 81: 1160
    [36] Law K Y. Interfacial J Imaging Sci Technol, 1992, 36: 587
    [37] Graster F, Hadicke E. Kristallstruktur und farbe bei Ann Chem, 1980 (12): 1994
    [38] Graster F, Hadicke E. Kristallstruktur und farbe bei Ann Chem, 1984 (3): 483
    [39] Graster F, Hadicke E. Acta Cryst, 1986, C42: 189
    [40] Sadrai M, Bird G R, Potenza JA. Acta Cryst, 1990, C46: 637
    [41] Klebe G, Graster F, Hadicke E, et al. Acta Cryst, 1989, B45: 67
    [42] Loutfy R O, Hor A M, Kazmaier P M, et al. J Imaging Sci, 1989, 33:151
    [43] Law K Y, Tarnawskyj I W. J Imaging Sci Technol, 1993, 37: 22
    [44] Khe C K, Takenouchi O, Kawara T, et al. Photogr Sci Eng, 1984, 28: 195
    [45] Dipaola-Baranyi G, Hsiao C K, HorA M. J Imaging Sci, 1990, 34: 224
    [46] Buraway A, Salem A G, Thompson A R. J Chem Soc, 1952 (12): 4793
    [47] Wang M, Yang S L, Ma X F, Electrophotography, 1989, 28(2): 134
    [48] Takimoto H, Pongo K, JP6-234, 937, 1994
    [49] Nukada K, Imai A, Daimon K, JP4-372, 663, 1992
    [50] Itami A, Suzuki S, Watanabe K, JP4-333, 852, 1992
    [51] Tamiki K, Yoshizawa H, Fujimaki Y, et al JP5-114, 470, 1993
    [52] Kobayashi M, Oohashi T, JP 5-271, 564, 1993
    [53] Shigeomatsu Y, Oohashi T, Hayashi M, JP8-110, 650, 1996
    [54] Fujimori M, Yamada Y, JP6-345, 050, 1995
    [55] Fujimori M, Yamada Y, JP7-05, 711, 1995
    [56] Enokida T, Hirohashi R, Mizukami S, J. Imaging Sci., 1991, 35: 235
    [57] ] Saito T, Kawanishi T, Kakuta A, Jpn. J. Appl. Phys. A 1991, 30: L1182
    [58] Wang Y, Deng K, Gui L L, et al. J. Colloid & Interface Sci. 1999, 213: 270
    [59] Yoshiaki T, Tsuyoshi A, Hiroshi M, Appl. Surf. Sci. 2000, 168: 85
    [60] Jenekhe S A, Yi S J, Adv. Mater. 2000, 12(17): 1274
    [61] Chen H Z, Jiang K J, Wang M, Yang S L, J. Photochem. Photobio. A: Chemistry, 1998, 117: 149
    [62] Chen H Z, Pan C, Wang M, Nanostruct. Mater., 1999, 11: 523
    [63] 徐瑞松,有机/聚合物光电导材料结构与性能的研究,硕士毕业论文, 2000.
    [6
    
    [64] 楚宪锋,浙江大学硕士学位论文,1998.
    [65] 徐明生,有机酞菁复合光生载流子材料的制备与研究,浙江大学硕士学位论文,1999.
    [66] Xu M S, Xu J B, Tian D X, et al. Thin Solid Films, 2001, 384: 109.
    [67] 伊藤哲也,日本写真学会志,1994,57(2):99
    [68] 贝黎虹,新闻报,1997年9月6日
    [69] 朱堂良,计算机产品与流通,2004.8.2
    [70] Sato; Hiroyuki, USPat 5, 124, 721
    [71] Oshima; Hiroyo, USPat, 4, 478, 910; Akiya; Takashi, USPat, 4, 758, 461; Otouma; Hiroshi, USPat, 4, 780, 356; Drake, et al. USPat, 5, 352, 503
    [72] Haneda Akira, Yokozawa Shigeru, JP61-237680
    [73] Murakam Kakuijina, Gaikiyofumi, JP02-29472
    [74] 田禾,功能性色素在高技术中的应用,化学工业出版社,2000年
    [75] 郑敏之,影象技术,1999(4),13
    [76] 牛宝兴,中国专利CN1052450A
    [77] Bradury R et al. US Pat. 5985988
    [78] 史蒂夫·J·皮斯特罗,中国专利 ZL 96194605.9
    [79] 吴建明,中国专利,CN 1207986A
    [80] 杉田纯一郎,中国专利,CN 1256664A
    [81] Crystal et al, USPat. 5072234
    [82] Shinohara et al, USPat. 5851720

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700