用户名: 密码: 验证码:
电流变材料的设计、研制及其流变和应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电流变(ER)液,作为近年来发展较快的一类智能材料,由于其在电场作用下能在毫秒级时间内发生快速、可逆、可控的流变响应,因此在机电控制方面有重要的潜在应用。ER液一旦实现应用突破,将有可能引起机械、交通、液压等领域的重大变革,具有重要的国防价值与商业价值。
     80年代以来,由于无水ER液的出现,ER液的研究进入了繁荣时期。但因人们对ER效应的机理仍缺乏清楚的认识,ER液还存在着剪切应力低、漏电流大等问题,不能很好地满足工程实际应用的要求而受到限制。另外,对ER液及其悬浮介质的应用性能特别是与机械传动密切相关的摩擦学问题缺乏系统而深入的分析,也是减缓ER液实现应用突破的重要原因之一,很遗憾的是,直到目前人们对此仍未引起足够的重视。本学位论文在建立ER测试系统和方法的基础上,围绕ER液固体粒子材料设计、悬浮介质的应用性能及氯化石蜡油的改性,ER液的性能考察和ER效应的机理研究以及添加剂对ER液性能的影响、ER液的悬浮稳定性状况等内容进行了系统而深入的研究。
     甲壳胺(chitosan,CTS)是一类结构与纤维素相似的阳离子型聚电解质,具有较强的ER效应。对甲壳胺/蓖麻油(CTS/CTO)悬浮体系的ER性能进行了基础研究,结果表明甲壳胺ER液的剪切应力(τ)与漏电流密度(J)随电场强度(E)、固体颗粒浓度(C)的增大而增大,随剪切速率((?))的升高而减小,并存在临界固体
    
    1999年上海大学博士学位论文
    颗粒浓度及临界剪切速率,对以上实验事实,用极化机理和逾
    渗理论进行了解释.提出了甲壳胺类化合物ER液的r与J随脱
    乙酞度(D .D)的升高而增大,并指出其原因可能在于ER体系中
    可移动离子的数目增多.
     系统研究了活化剂(水、甘油)、表面分散剂及悬浮介质对
    甲壳胺ER液性能的影响及其作用机理.结果表明:l)甲壳胺
    在少量水(固体粒子含量的10.owt%)的活化下即产生明显的ER
    效应,并且ER液的公、J与含水量(Q)密切相关,随Q的增加
    而一直增加,未出现降低或饱和的现象.针对此现象,提出了
    适合CTS/C To ER体系的可移动离子、“氢键桥”机理.2)表面
    分散剂单聚异丁烯丁二酞亚胺(Tl 51)和二壬基蔡磺酸钡(T 705)的
    加人,大多使CTs/Cro ER液的公与J减小.表面分散剂的憎
    水基(R一)端越长、空间位阻越大,减小ER液T与J的效果越显
    著,其中,二壬基蔡磺酸钡(T705)由于具有较长的憎水基和较
    大的空间结构,可明显降低体系的漏电流密度.在以上实验结果
    基础上,提出了表面分散剂影响ER液性能的“绝缘层”,与分
    散剂憎水基扭一)端的分子链长和空间结构有关,发现绝缘层的厚
    度随表面分散剂R一端链长及空间结构的增大而变大.3) CTS在
    不同悬浮介质中的ER效应有差异,按丁氯化石蜡汕>公保护的氛化石蜡油
    >T蓖麻沪公硅耐项序降低,并用极化机理进行了解释.
     利用甲壳胺分子中的游离氨基(一HZ)易与金属及非金属碘
    (Iz)络合的特点,本文采用分子设计的观点对甲壳胺进行了分子
    设计和改性,通过在甲壳胺分子中引人金属离子或非金属碘(lz)
    化合物,研制了cTs一Mn+和cTs一l:络合物,并利用现代分析仪
    器对它们的结构与特性进行了表征.对其ER性能的研究结果表
    明随金属离子含量的增加,甲壳胺一金属络合物组成的ER液性
    
     电流变材料的设计、研制及其流变和应用性能研究
    能亦加强.发现由甲壳胺一非金属碘(Iz)组成的ER液不需水分子
    的活化作用,并且具有较强的ER效应,是一类较优良的无水ER
    材料.针对CTS一Mn+和CTS一12络合物的ER效应提出了不同的ER
    作用机理,前者在于增加了ER体系中的可移动离子数目,后
    者是由于n一cT型电荷转移络合物的形成.鉴于CTS一I:络合物是
    具有较高活性的新型无水ER材料,本文已就此申请了专利.
     空心微珠具有较低的密度,对改善ER液的悬浮稳定性非
    常有吸引力.本文较详细地研究了悬浮介质及预热处理温度对
    由空心微珠组成的ER液性能的影响作用.结果表明空心微珠在
    蓖麻油中不产生ER效应,在硅油中有ER效应产生,并且ER
    液的丁随预热处理温度的升高而增加,即随结合水含量的减小
    而增大.就此发现了空心微珠是一类无水ER材料.
     空心微珠密度很小,在ER悬浮介质(如氯化石蜡油、硅油
    等)中易漂浮起来.为充分利用好它的低密度优势,本文对其进
    行了分子设计,通过共混法制备了以空心微珠为“核”,以高分
    子化合物(甲壳胺或聚乙烯醇)为“外壳”的“核壳”型复合物.离
    心强化及静止沉降实验结果表明空心微珠复合物ER液的稳定
    性很好;另外,研究结果同时表明空心微珠形成“核壳”复合物
    后,其ER液的剪切应力明显升高.鉴于空心微珠及以空心微珠
    为核制备的系列新的“核壳”型ER材料的特性和优点,本文已
    就此申请了专利.
     采用长脂肪链环氧保护法,对ER悬浮介质一氯化石蜡油
    中的游离氯(Cl一)进行了保护,对比研究了氯化石蜡油被保护前
    后的ER性能.结果表明由其组成的ER体系的漏电流显著减
    小,剪切应力也减小,并用极化机理进行了解释.应用性能研
    究亦表明保护的氯化石蜡油不产生铜腐蚀、钢锈蚀的问题,悬
    
    !999年上海大学博士学位论文
    浮介质的热稳定性也得到显著改善.
     针对?
Electrorheological (ER) fluids, or suspensions, as a kind of smart materials, have very important and potential applications in electromechanical control due to their attractive features of rapid (with ms order), reversible, and controllable changes in rheological properties upon application of an external electric field with kv/mm order. Once ER fluids have met the engineering targets, they will bring revolution in several areas of industry and technology such as mechanics, transportation, hydraulics and so on.
    Upon the emergence of anhydrous ER fluids, the research of ER suspensions has been in wide progress. But the development of ER technology in industry is currently hindered by ER fluids for want of excellent properties such as high activity and low density. On the other hand, a lack of systematical analysis of ER fluids'or dispersing media's application properties, especially the want of tribological studies, has also slowed down the progress of application of ER fluids. Based on the establishment of ER measuring instrument in this dissertation, the design, properties and mechanism of ER fluids based on chitosan(CTS) or hollow cenosphere, the influence of the dispersing media and protection of chlorinated paraffin, the influence of additives(including water, surfactant) on ER fluids and the stability of ER fluids, were investigated.
    The ER suspensions containing CTS as dispersed particulate
    
    
    
    material, exhibited good ER effect. Factors influencing the ER effect and leak current density (J) were studied. The results showed that the shear stress( ) and J increased with the increasing field strength (E) and weight fraction of particles(C) respectively, and decreased with the increasing shear rate ( ). The phenomena were studied with the polarization mechanism and percolation model. It was found that with the increasing deacetylation degree, the ER effect and J of CTS-based ER fluids also increased. The viewpoint of moving ions was used to elucidate this phenomenon.
    The factors influencing properties of CTS-based ER fluids such as water, glycerol, some surfactants and dispersing media were studied in detail. The results showed that and J of CTS-based ER fluids increased with the increasing water content (Q). It was discussed upon the principles of moving ions and "hydrogen-bond bridges". The ER effect of the suspensions decreased with the increasing surfactant, such as T151 and T705. It was found that the longer the non-polar molecules and the bigger the space volume of the surfactants, the lower will be and J. Based on these experimental results, the viewpoint of "insulation film" was proposed. ER effect was typically affected with the dispersing media. For CTS-based ER fluids, the value of r decreased in the order of chlorinated paraffin oil, protected paraffin oil, castor oil or silicone. Polarization mechanism was used to explain this phenomenon.
    With the molecular design method, a series of CTS-Mn+ and iodine doped chitosan (CTS-I2 complex) have been prepared and characterized by IR, X-Ray and TGA or DSC. Their characteristics
    
    
    as ER dispersed particles and influence factors have been investigated. The and J of CTS-Mn+ based ER fluids increased with the increasing of Mn+ content due to the increasing number of moving ions. It was found that CTS-I2 complex was an excellent anhydrous ER dispersed particulate material. The value of of CTS-I2 complex was about twice of that of CTS-based ER fluids (Q=10.0wt%, of particles).
    In investigating hollow cenosphere ER effect, it was shown that the hollow cenosphere particles had ER effect in silicone oil, but no effect in castor oil. It was also found that hollow cenosphere is an anhydrous ER dispersed particulate material because that r increased with the increasing pre-heated temperature. After heat treatment at 400 C for 2 hours, the hollow cenosphere particles show stronger ER effect than those pre-heated at 100 C.
    Hollow cenosphere composite particles with core-shell structure were prepared by surface modification of hollow cenosphere particles by ble
引文
1 Chen T.J., Zitter R.N., Tao R. Phys. Rev. Lett., 1992; 68(16):2555
    2 Halsey T.C., Martin J.E. Sci., 1994; (2): 27
    3 Stangroom J.E. Phys. Technol., 1983; 14:290
    4 Deinega Y.F., Vinogradov G.V. Rheol. Acta, 1984; (23): 636
    5 Jordan T.C., Show M.T. IEEE Trans. Electr. Insul., 1989; 24 (6): 849
    6 Hartsock D.L., Novak R.F., Chaundy G.J.J. Rheol., 1991; 35(7): 1305
    7 Culshaw B. Smart Structure and Materials, Boston, London: Artech House Publishers, 1996
    8 U.S. Department of Energy. Office of Energy Research. Office of Program Analysis. U.S. Goverment Printing Office. Electrorheological (ER) Fluids, Washington DC, 1993; DE-AC02-91ER30172
    9 Bullough W.A. Adv. Mater. Opt. Electron., 1992; 1:159
    10 Winslow W.M. US Pat. Specif. 2417850, 1947
    11 Winslow W.M. J. Appl. Phys, 1949;20:1137
    12 Klass D.L., Martinek T.W.J. Appl. Phys., 1967; 38:67-74
    13 Klass D.L., Martinek T.W.J. Appl. Phys., 1967; 38:75-80
    14 Uejima H. Jpn. J.Appl. Phys., 1972;11:319
    15 Stangroom J.E.J. Stat. Phys., 1991; 64(516): 1059
    16 Block H. In: Forsman W. C. ed. Polymers in Solution, New York: Plenum Press, 1986:111-143
    17 Block H., Kelley J.P.J. Phys. D:Appl. Phys., 1988;21:1661
    18 Gast A.P., Zukoski C.F. Adv, colloid Interf. Sci., 1989; 30:153
    19 Xu Y.Z., Liang R.F.J. Rheol., 1991;35(7): 1355
    20 Filisko F.E., Radzilowski L.H.J. Rheol., 1990; 34(4): 539
    21 Block H., Kelly J.P. US Pat. 4687589, 1987
    22 Filisco F.E., Armsyrong W.F. US Pat. 4744914, 1988
    23 Carlson J.D. Eur. Pat. Appl. 0319201, 1988
    
    
    24 Felisko F.E. Eur. Pat. Appl.0313351, 1988
    25 Harry H., Kelly J.P. UK Pat. Appl. 2170510A, 1985
    26 Inoue A. Jpn. Pat. Laying Open Publ. Sho 63-97694, 1988
    27 Gilles D., Sutcliffe L., Bailey P. UK Pat. Appl. 2219598A
    28 Otsubo Y., Edamura K.J.J. Colloid Interf Sci., 1994; 168:230-234
    29 Shaw M.T., Kanu R.C., Yu W.C. Polym. Mater. Sci. Eng., 1995; 72:164-165
    30 Andrade E.N., Dodd C. Nature, 1939; 143:26
    31 Andrade E.N,, Dodd C. Proc. Roy. Soc., 1946; A187:296
    32 Andrade E.N., Dodd C. Proc. Roy. Soc., 1951; A204:449
    33 Andrade E.N., Dodd C. Proc. Roy. Soc., 1954; A225:463
    34 Winslow W.M., US Pat. Specif. 2661596, 1953
    35 Petrzhik G.G., et al. Russ. Pat. Specif. 715596, 1982
    36 Kanbara, Eur. Pat. 0342041 A1, 1989
    37 Sprecher A.F., Carlson J.D., Conrad H. Mater. Sci. Eng., 1987; 95:187-197
    38 Smith K.L., Fuller G.G.J. Colloid Interf Sci., 1993; 155:183
    39 Frood D.G., Carlson J.D., et al. Electrorheological Fluids. Busel: Technomic Publ. Co.,1990:265
    40 Conrad H., Sprecher A.K.J. Stat. Phys., 1991; 64(516): 1073
    41 Brooks D., Goodwin J., Hjelm C., Marshall L., Zukoski C. Colloids Surf, 1986; (18): 293
    42 Cow C.J., Zukoski C.E J. Colloid Interf Sci., 1990; 136:175
    43 Otsubo Y. Colloid Surf, 1991; (58): 73
    44 Chen T.Y., Luckham P.F.J.Phys. D:Appl. Phys., 1994; 27;.1556
    45 Block H., Kelly J.P., Qin A., Watson T. Langmuir, 1990; 6(1): 6-14
    46 Yu W.C., Shaw M.T., Huang X.Y., et al. J. Polym. Sci. B: Polym. Phys., 1994; (32): 481
    47 Korobko E.V., SchulmanZ.P. In: Proc., 1st Int. Symp. Electrorheol. Fluids, Boston, 1987:115
    48 Klingenberg D.J., Zukoski C.F. Langmuir, 1990; 6:15
    49 Conrad H., Fisher M., Sprecher A.F.In: Carlson J.D., Sprecher A.F.,
    
    Conrad H. eds., Electrorheol. Fluids, Loncaster: Technomic Publishing, 1990:63
    50 Tao R., Jiang Q. (a) Phys. Rev. Lett.,1994; 73(1): 205; (b) Polym. Prepr., 1994; 35(2): 333
    51 Filisko F.E., Frank E. Development in Electrorheological Fluids and Measurement Uncertainty. 1994 American Society of Mechanical Engineers, Fluids Engineering Division (publication) FED V205 1994, ASME, New York, NY, USA, 1-6
    52 Tamura H., Doi M.J.J. Phys. D: Appl. Phys., 1993:26
    53 Stangroom J.E. IEE Colloq. (Digest) n1985/14, Publ by IEE, London, Engl. 5.1-5.2
    54 Bug A.L.R., Safran S.A., Great G.S., et al. Phys. Rev. Lett., 1985; 55:1896
    55 Safran S.A., Webman I., Great G.S. Phys. Rev. Lett., 1985; 32:506
    56 Chiew Y.C., Stell G. J. Chem. Phys., 1989; 90:4956
    57 Lykov A.V., Shulman I.P., Corodkin R.G., Matsepuro A.D. Inzhenrno-Fizicheskiz Zhurnal, 1971; 18:979-986
    58 Bonnecaze R.T., Brady J.F.J. Rheol., 1992; 36(1): 73
    59 官建国.应用化学,1995;12(3):32-35
    60 Chiew Y.C., Glandt E.D.J. Colloid Interf. Sci., 1983; 94:90
    61 Stangroom J.E. UK Pat. Specif. 1501635, 1978
    62 Stangroom J.E. UK Pat. Specif. 1570234, 1980
    63 Sasada T., Kishi T., Kamijo K. Proc. 17th Jpn. Cong. Mater. Res., 1974:228
    64 Takeo K., Omura Y. US Pat. Specif. 3984339, 1976
    65 Martinek T.W. US Pat.397147, 1968
    66 Martinek T.W.,Klass D.L. US Pat. 12031, 1968
    67 Winslow W.M. US Pat. Specif. 3047507, 1962
    68 Bondi A., Penther C.J.J. Phys. Chem., 1953; 57:72-79
    69 Jayasuriya D.S., Van de ven, T.G.M.J. Colloid Interf. Sci. 1987; 115:17-26
    70 Kimura H., Minaguwa, Koyama K. Polym. J., 1994; 26(12): 1402
    71 Yatsuzuka K., Ahn Young-soo. Conf. Record-IAS Annual Meet. (IEEE
    
    Industry Application Society), 1995,2, IEEE, Piscataway, N.J., USA, 95CB 5862:1223-1228
    72 Winslow W.M. US Pat. Specif. 2661596,1953
    73 Petrzhik G.G., Chertkove O.A., Trapeznikov A.A. Russ. Pat. Specif. 715596, 1980
    74 Wu, Shuizhu, Shen, Jiayui. J. Appl.Polym. Sci. 1996; 60(12): 2159-2164
    75 Kovganich N.Ya, Deinega Yu F., Popko K.K. Ukr. Khomi Zh. 44209, 1978
    76 Sugimoto N. Bull JSME, 1977; 20:1476
    77 Deinega Yu F., Popko K.K., Kovganich N.Ya. Dopov. Akad Nauk. Ukr. PSR, Ser. B, 1975; 9:807
    78 官建国,赵素玲,谢洪泉.物理化学学报,1997;13(3):242-246
    79 朱清仁,苏杰,王建利等.功能高分子学报,1997;10(1):61-66
    80 Deinega Y.F., et al. Rheol. Acta, 1984; 2,3(6): 63
    81 Westhaver J.W. US Pat. 3970573, 1976
    82 Xie H.Q., Guan J.G., Guo J.S.J. Appl. Polym. Sci., 1995; 58:951-956
    83 官建国,谢洪泉等.高等学校化学学报,1995;16(9):1457-1461
    83 Deinega Yu F., Popko K.K., Kovganich N.Ya. Dopov. Heat Transfer—Sov. Res., 1978; 10:50
    84 Pollack R.A. Polym. Prepr., 1994; 35(2): 273-274
    85 Otsubo Y., Sekine M., Katayama S. J.Rheol., 1992; 36:441
    86 Evan L.F., Harness I., Kermode P.R., et al. Tao R.ed. Electrorheol. Fluids Proc. Int. Conf., Singapore: World Sci. Publ., 1992:154
    87 Conrad H., Chen Y., Sprecher A.F.Int. J. Mod. Phys. B, 1992;6:2575
    88 Pialet J.W., Clark D.R. Polym. Prepr., 1994; 35(2): 367-368
    89 Petrzhik G.G., Chertkove O.A., Trapeznikov A.A. Dokl. Akad Nauk SSSR, 1980; 253:173
    90 Otsubo Y., Sekine M., Kalayama S. J. Colloid Interf. Sci., 1991;146(2): 395
    91 Otsubo Y., Sekine M., Kalayama S. J. Colloid Interf. Sci., 1992; 150(2): 324
    92 Chertkove O.A., Petrzhik G.G., Trapeznikov A. A. Kolloidn. Zh., 1982; 44:83
    
    
    93 Gina Goldstein. Mech. Eng., 1990; 112(10): 48-52
    94 Bloind, Raymond L.et al., US Pat. 5149 454, 1992
    95 Bloind, Raymond L. et al., US Pat. 5130 029, 1992
    96 李秀错,张留成.河北工业大学学报,1996;25(3):25
    97 Sugimoto N. Bull. Jpn. J. Appl. Phys., 1972; 11:319
    98 Stangroom J.E., Harness I. Br. Pat. 1570234,1977
    99 Stangroom J.E., Harness I. Eur. Pat. 150994,1985
    100 Bullough W.A. Adv. Mater. Opt. Electron., 1992; 1:159
    101 Yen W.S., Achorn P.J.J. Rheol., 1991; 35(7):1357
    102 James E.S., et al.GB 1570234, 1980
    103 Blackwood K.M., ,Block H. TRIP, 1993,1(4):1074
    104 David S., Jack Y. Autom. Eng., 1985, 93(11): 75-79
    105 Kathleen O.H. Polym. Prints, 1994; 35(2): 315-316
    106 Block H., Chapples J., Watson T. EP 0394005A,1990
    107 Kelly J.P.M.Sc. Thesis, Univ. Liverpool, 1986
    108 Qin A. Ph.D. Thesis, Univ. Liverpool, 1987
    109 Pialet J.W., Lal.K., Bryant C.P. WO 9307244A1; US Pat. 5108639, 1992
    110 Honda T., Sasada T., Kurosawa K. Jpn. J. Appl.Phys.,1978; 17:1525
    111 Honda T., Kurosawa K., Sasada T. Jpn. J. Appl.Phys., 1979; 18:1015
    112 Wissbrum. Electrorheological(ER) Fluids: A Research Needs Assessment, Final Reports, U.S. Depatment of Energy, 1993
    113 Tanaka K., Fuji A., Koyama K. Polym. J., 1992; 24(9): 995
    114 Kimura H., Minaguwa.,Koyama K. Polym. J., 1994; 26(12): 1402
    115 Katsufumi, Tanaka, Akiyama R., Takada K. Polym. J., 1996; 28(6): 419
    116 Inoue A., Maniwa S. J. Appl. Polym. Sci., 1995; 55(1): 113
    117 Inoue A., Maniwa S. J. Appl. Polym. Sci. 1996; 59(5): 797
    118 Fukumasa M., Yoshida, Ohkubo S., Yoskizawa A. Ferroelect., 1993; 147:395
    119 Yang I.K., Shine A.D.J. Rheol., 1992; 36:1079
    120 Throughton, Barritt E., et al.. EP 0394049, 1990
    121 Ahmed, Syed M. EP 0393692, 1990
    
    
    122 Yasufumi O., et al. J. Rheol., 1994; 38(6):1721-33
    123 天野 博,佐佐木康顺.JP 02206692, 1990
    124 Kuramoto N., Yamazaki M., Nagai K., et al. Thin Solid Films, 1994; 239:169
    125 Conrad H., Chen Y., Sprecher A.F.In: Tao R., ed Proc. Int. Conf. Electrorheol. Fluids, Singapore : World Sci. Publ., 1992:195
    126 Webb N, Chem. in Br., 1990; 4:338
    127 Mukund P., Daniel K. J. Mater.. Sci. Eng. R: Reports ,1996; 17(2): 57-103
    128 David S., Jack Y. Autom. Eng.,1983; 91(11): 61-66
    129 Gina G. Proc. Jt. Hung Br. Int. Mechatron. Conf. 1994, Computational Mechanic Publ., 391-396
    130 Lee F. N.J. Smart Materials: New Route to Advanced Hydrautic Systems/Devices, Technical Insights Inc.
    131 Wang K.W., Kim Y.S., Shea D.B.J. Sound Vib., 1994; 177(2): 227-237
    132 Wong J.Y., Wu X.M., Sturk M., Bortolotto C. Trans. Can. Soc. Mech. Eng., 1993; 17(4B): 789-800
    133 Tichy J. A. STLE Tribol. Trans., 1993; 36(1): 127-133
    134 Shin M. Tamaki U. J.. Intell. Mater. Sys. Struct., 1993; 4(3): 366-372
    135 Stanway R., Sproston J.L., EI-Wahed A.K. Smart Mater. Struct., 1996; 5(4): 464-482
    136 Masami N., Takuya Y. Trans. Jpn. Soc. Mech. Eng., Part C, 1996; 62(593): 33-40
    137 Kenichi M., Hisaya N. Trans. Jpn. Soc. Mech. Eng., Part C, 1995; 61(589): 3462-3466
    138 魏宸官.中国自然科学基金,1994;1:34
    139 Sproston J.L., Stanway R., Williams E.W., Rigby S.G. J. Electrostat., 1994; 32(3): 253-259
    140 Zhang Guoguang, Furusho Junji, Sakaguchi Masamichi. Trans. Jpn. Soc. Mech. Eng., Part C, 1996; 62(594): 562-569
    141 Akella P.N., Cutkosky M.R. IEEE Trans. Robotics Autom., 1995; 11(6): 859-867
    
    
    142 Sproston J.L., Stanway R., Prendergast M.J., Case J.R., Wilne C.E. J. Intell. Mater. Sys. Struct., 1993;4(3):418-419
    143 Williams E.W., Rigby S.G., Sproston J.L., Stanway R. J. Non-Newtonian Fluid Mech., 1993; 47:221-238
    144 何长安.第二届全国电磁流变学术会议,西安,1998年9月
    145 赵晓鹏.第二届全国电磁流变学术会议,西安,1998年9月
    146 肖宇.第二届全国电磁流变学术会议,西安,1998年9月
    147 陆坤权.第二届全国电磁流变学术会议,西安,1998年9月
    148 周鲁卫.叶聚丰,唐颐.物理,1994;23(4):212-218
    149 孟永钢.摩擦学进展.1993;3:18
    150 江体乾.Symp. First National Conf.Electrorheol. Fluids, Shanghai, 1995,11(首届全国电流变体学术会议论文集)
    151 吴水珠,沈家瑞等.高分子材料科学与工程,1998;14(2):97
    152 吴水珠,曾钫,沈家瑞.功能材料,1998;29(5)
    153 陶德华.中国发明专利.ZL 92102731.1
    154 [美]L.E.尼尔生著,范庆荣,朱家琪译.聚合物流变学.北京:科学出版社,1983
    155 [德]D.克拉曼著,张溥译.润滑剂及其有关产品.北京:烃加工出版社.1990
    156 [英]R.S.伦克编著,朱家琪,徐支祥等译.聚合物流变学.北京:国防工业出版社,1983
    157 官建国.用聚合物作为悬浮粒子的电流变液的设计、性能和机理的研究.博士学位论文.武汉:华中理工大学
    158 Strandrud H.T. Hydraul. Pneum., 1966:139
    159 唐颐,彭菊芳,高滋等.物理化学学报,1995;11(1):61
    160 Jordan T.C. Electrorheological fluids: an investigation of structural mechanism. Ph. D. Thesis: University of Connecticut, 1989
    161 Kita Y., Ohshima T., Takase H., et al. Nippon kikao gakkai ronbunshu.
    
    Bhen, 1993; 56:1816
    162 Tao R., Sun J.M. Phys. Rev. Lett., 1991; 67:398
    163 Chen T.J., Zitter R.N., Tao R. Phys. Rev. Lett.,1992; 68(16): 2555
    164 刘立伟,邱志勇等.温度和剪切场对电流变液流变性质影响,第二届全国电磁流变学学术会议论文摘要集,西安,1998年9月
    165 吴忠,苑伟政.电流变微致动器专用电源的研究,第二届全国电磁流变学学术会议论文摘要集,西安,1998年9月
    166 Foulc J.N., Atten P.Electrorheol. Fluids [Proc. 4th Int. Conf.], 1993 (pub.1994): 358
    167 李秀错,金日光,张留成.功能高分子学报,1997;10(4):520-526
    168 Bailey P., Gillies D.G., Smethurst B.F., Sutchiffe L.H., Hoyes T.J. Meas. Sci.Technol.1991; 2:735-739
    169 Akatsuka T., Yoshimura R.,Toyarna J. Nihon Reoroji Gakkaishi, 1992; 20(2):91
    170 李春州.电流变液及其机理研究.华东理工大学博士学位论文.导师:江体乾.上海:华东理工大学,1995年9月.
    171 陈盛,黄智欣,刘艳如.生物化学与生物物理进展,1996;23(8):250
    172 蒋挺大编著.甲壳素.北京:中国环境科学出版社,1996
    173 莫秀梅,王鹏等.高等学校化学学报,1998;16(6):989-993
    174 严俊.化学通报,1984;11:26
    175 赵国骏,姜涌明等.功能高分子学报,1998;11(3):403-407
    176 Sannan T., Kurita K., Ogurak, et al. Polym., 1978; 19:458
    177 Miya M., Iwamoto R., Yoshikawa S. Int. J. Biol. Macromol., 1980; (2):323
    178 Bezruk V.I., Lazarev A.N., Malov V.A., et al.Coll. J., 1972; 34:142
    179 Klingenberg D.J., Wol F.r. S., Zukoski C.F.J. Chem. Phys., 1989; 91:7888
    180 Muzzarelli R.A.A. Chitin, Oxford: Pergamon,1977
    181 Stangroom J.E.J. Stat. Phys., 1991; 64(5/6): 1059
    
    
    182 Zukoski C.F. Annu. Rev. Mater. Sci., 1993; 23:45
    183 Block H. Polymer Prepr., 1994; 35(2): 313
    184 Jordan T.C., Shaw M.T. IEEE Trans. Electr. Insul.,1989; 24(5): 849
    185 Kim Y.D., Kingenberg D.J. Electrorheol. Fluids, 1993; (4): 84
    186 黄金明,金鑫荣.高等学校化学学报,1992;13(4):535
    187 Ishizuki N., Torigoe K., Esumi K., et al. Colloids Surf, 1991; 55:15
    188 陈天,汪士新.应用化学,1997;14(5):86-88
    189 王爱勤,李洪启,俞贤达.应用化学,1999;16(1):77-79
    190 邓云辉,刘振兴,冯开才.高分子化学、物理和应用基础,北京:高等教育出版社,1997
    191 Hebeish A., Guthrie J.T. The Chemistry and Technology of Cellulosic Copolymers, New York: Springer-Verlag,, 1981: 1-30
    192 王福元,吴正严.粉煤灰利用手册,北京:中国电力出版社,1997
    193 F.P.鲍登,D.泰伯著,陈绍澧等译.固体的摩擦与润滑.北京:机械工业出版社,1982
    194 Adriani P.M., Gast A.P. Phys. Fluids, 1988; 31(10): 257
    195 Stangroom J.E. Eur.. Pat. 0284268A2, 1988
    196 Lingard S., Bullough W.A., Shek W.M. Phys. D: Appl. Phys., 1989; 22:1639-1645
    197 Coy R.C., Jones R.B. The thermal degradation and EP performance of ZDDP additives in white oil. ASLE Trans, 1981; 24(1): 77-90
    198 王汝霖主编.润滑剂摩擦化学.北京:中国石化出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700