用户名: 密码: 验证码:
窄脉冲激光波长测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光电技术和信息技术的迅速发展,光电对抗武器以惊人的速度得到发展,成为世界各军事大国竞争的焦点之一。在“海湾战争”、“科索沃战争”和“伊拉克战争”中,各种激光设备以其精确测距,精确制导和精确打击能力已成为现代战场上重要的武器装备,给战场上各作战平台带来了严重威胁。为了对抗这些威胁,需要及时、准确探测来袭激光的方位、波长和威胁等级,根据探测结果,我方采取措施,对敌方作战的光电武器与装备实施有效干扰,使敌方光电武器装备失灵,削弱、压制、甚至摧毁其作战能力。本论文主要研究来袭窄脉冲激光波长测试技术。
    鉴于课题研究的重大意义,本项工作得到国家基金委、山西省留学基金委、山西省教育厅和山西长城微光夜视有限公司的高度重视,分别给与基金支持,希望研究能有所突破,将来列装到各种武器平台,提高我军的整体作战水平,实现“科技强军”的跨跃式发展。
    分析了目前激光技术在军用激光测距仪、激光指向器和可调谐激光器的特性参数和脉冲波长测试的发展,提出了基于光纤光谱仪的测试方案。
    本论文不仅给出了光纤光谱仪设计的光学结构,详细讨论了各种衍射光栅及探测器的工作原理,特别是CMOS图像的发展、原理和技术参数,还简单介绍了光纤束的基本知识。
    在详细分析了窄脉冲YAG激光在大气传输中的各种衰减的基础上,论文分析、计算到达探测器的功率密度和灵敏度,给出了强太阳背景噪声下,如何选择探测器的扫描频率,提高信噪比的计算式,最后还给出了光谱分辨率计算公式。
    为了验证光纤光谱仪能否对任意方向、任意时刻来袭的短脉冲激光波长进行探测,我们用激光测距仪和光纤光谱仪,进行了室内、外窄脉冲激光波长散射测试实验;室外近距窄脉冲激光波长直射、斜入射测试实验和基于望远光学系统的远距离短脉冲激光波长直射、斜入射测试实验。实验验证了光纤光谱方案的正确性,说明:光纤光谱仪完全可以在野外、强太阳光背景下对脉冲激光器发出的窄脉冲激光进行准确测试;信号幅度的大小跟入射窄脉冲激光的方向有直接的关系;背景噪声与光纤光谱仪积分时间有直接
With the rapid development of optoelectronics and information technology,optoelectronic countermeasures have been improved tremendously. They have become onecompetition focus of the world giant military countries for their precision ranging, precisionguidance and strike and been widely used in the modern wars such as Gulf War, Kosovo Warand Iraq War, etc. To confront these threats, the timely and exact detection of attacking laser'sorientation, wavelength and threatening degree are indispensable. According to these obtainedinformation we can take effective measures to interfere the optoelectronic weapons andequipments of the enemy, causing them malfunctioned, weakened, suppressed and evendestroyed.
     The present study is so meaningful that it is highly supported by National FundCommittee, Study-abroad Fund Committee of Shanxi Province, the Education Department ofShanxi Province, and Chang Cheng Night-vision Devices Equipment Company Limited ofShanxi Province. It is hoped that this study will be applied to the weapons and militaryequipments and raise the whole fighting level of our army, thus realizing a stride developmentof “strengthening the army with science and technology”.
    After analyzing the parameters of laser technology in military laser rangefinder, laserdirector and tunable laser, as well as the pulse laser wavelength measurement technology, anew method based on fiber optical spectrometer is put forward.
    First, the optical structure of fiber-optical spectrometer design is given. Then, theprinciple of diffractive grating and detectors, especially the development, principle andparameters of CMOS imaging devices, are discussed in detail. Finally, fiber-optical bundle issimply introduced.
    After analyzing the transmission attenuation of narrow-pulse Nd-YAG laser beam in theatmosphere, the power density of reached laser beam and sensitivity of detector are analyzed
    and calculated. The method for choosing scanning frequency and for increasing SNR underhigh sunlight background noise is discussed. The equation for calculating the spectrumresolution is indicated, too.To verify whether fiber-optical spectrometer can detect narrow-pulse laser in arbitrarydirection and at any time or not, indoor and outdoor experiments of narrow-pulse laserwavelength dispersion measurements, outdoor direct incidence and skewed incidenceexperiments at near distance and those at far distance based on an optical telescopic systemand fiber-optical spectrometer to measure the narrow-pulse laser beam from a laserrangefinder are made. These experiments indicate that: 1) The fiber-optical spectrometer canexactly measure the narrow-pulse laser wavelength under the high sunlight background;2)The signal amplitude has a close relation with the incidence direction of narrow-pulse laserbeam;3) The background noise has a direct relation with integral time of fiber-opticalspectrometer, especially for the visible light;4) With an optical telescopic system, theattacking short-pulse laser can be acquired precisely;5) The signal amplitude is increasedgreatly and the further signal can be detected. However, the limited receiving scope of theoptical telescopic system makes it impossible to detect the wavelength in wide view field.To increase the acceptance angle and incidence area, acquire the wavelength of thebroaden view field and detect the narrow-pulse laser beam at anytime, after the acceptanceangle of one fiber bundle is measured, the principle of reflective taper and optic fiber taper isanalyzed. The measurement method and the results by means of reflective taper and opticfiber taper coupled to the detector with fiber-optical bundle respectively, is presented. Thetransmittance rate of optic fiber taper is tested and analyzed, too. These results show that, ifthe decrease to half of the maximum power value is used as the judging standard, with theoptical taper antenna, the acceptance angle is 16° and optical gain is 10;acceptance angle ofoptic fiber taper is 32° and optical gain is 2. It is shown to be simpler and more effective totest the transmittance of optic fiber taper and fiber plate with the single integrating sphere thanthe double one.The acceptance angle of the fiber-optical spectrometer with a reflective taper at the front
    is small, so several reflective tapers are put together to form a combined detection area ofnearly 180°. There are a variety of interferences such as outdoor sunlight, battlefieldinterference light source, electromagnetism interference and cosmic rays. With time durationor spectrum width discrimination, the above firelight interferences can be eliminated. Theapplication of optical instruments and CCD or CMOS linear array imaging sensors willenhance the ability of counteracting electromagnetism, cosmic rays and nuclear radiationinterference.The innovations of the present study are as follows:1 The measurement method of narrow-pulse laser wavelength with fiber-opticalspectrometer is put forward and the technology feasibility is validated through a series ofexperiments.2 The method, in which the taper devices are used to increase the luminous flux,enhance the signal amplitude, broaden detection distance and improve SNR, is given. Thistechnology will lay a solid foundation for detecting the narrow-pulse laser wavelength infuture battlefield. The technical project of fiber-optical spectrometer with a reflective taper atthe front is given.3 To improve the optical gain of optic fiber taper, the method for measuring thetransmittance rate of optic fiber taper with single integrating sphere is presented, and therational testing results are indicated.Optoelectronic countermeasures are one of the most active research fields in electroniccountermeasures. This research makes an exploratory study on the measuring principle of thewavelength of narrow-pulse laser beam in the battlefield. Some basic experiments areperformed. The method of fiber-optical spectrometer with reflective taper is put forward andits feasibility is testified by the experiments. To confront the complicated internationalsituation, it is so urgent to perfect this method and put it into practice.
引文
[1] Joint Tactics, Techniques, and Procedures for Laser Designation Operations[R]. Joint Pub 3-09.1. 28 May 1999: 7-8.
    [2] 谭显裕. 脉冲激光测距仪光电探测器最佳工作状态下的接收灵敏度研究[J]. 红外与激光技术. 1995(24)3: 35-44.
    [3] 周立伟.目标探测与识别[M].北京:北京理工大学出版社. 2004:296-299.
    [4] Report to the Congress on Ballistic Missile Defense[R]. September 1995. Ballistic Missile Defense Organization.
    [5] 张承铨主编.国外军用激光仪器手册[M].北京:兵器工业出版社,1989.
    [6] 江月松, 李树楷. 机载激光扫描测距仪的性能分析[J]. 遥感学报. 1998(2) 3: 162-165.
    [7] 曾宪林 李翔.机载激光目标指示器发展综述[J].激光与红外,2002 (2).
    [8] 阎吉祥.激光武器与战争[M].北京:国防工业出版社,1997,45~49.
    [9] Thompson Loren. Directed-Energy Weapons Technologies, Applications and Implications[R]. Lexington Institute. February 2003.
    [10] 张国威著.调谐激光技术[M].北京:国防工业出版社.2002.1.
    [11] 姚建铨. 非线性光学频率变换及激光调谐技术[M].北京:科学出版社. 1995.5.
    [12] Yu, Yizhong;Yao, Jianquan;Ding, Xin;Lu, Wei, Ultra-broad band wavelength tuning from 400 nm to 1700 nm with near NCPM OPO and frequency doubling[C]. Nonlinear Optical Phenomena and Applications. Proceedings of SPIE v 5646 2005.
    [13] Peng, Xiaoyuan;Xu, Lei;Asundi, Anand. Highly efficient high-repetition-rate tunable all-solid-state optical parametric oscillator[J]. IEEE Journal of Quantum Electronics v 41 n1 January 2005. p 53-61.
    [14] Lee, Chao-Kuei;Zhang, Jing-Yuan. Theoretical and experimental studies of tunable ultraviolet-blue femtosecond pulses in a 405-nm pumped type I beta-BaB//2O //4 noncollinear optical parametric amplifier and cascading sum-frequency generation[J]. Journal of the Optical Society of America B: Optical Physics v 21 n 8 August 2004. p 1494-1499.
    [15] Hitz, Breck. Tunable femtosecond UV pulses produced by second-harmonic generation[J]. Photonics Spectra v 38 n 9 September 2004. p 104-107.
    [16] Rahm, M.Anstett, G.Bartschke, J.Bauer, T.Beigang, R.Wallenstein, R. Widely tunable narrow-linewidth nanosecond optical parametric generator with self-injection seeding[J]. Applied Physics B: Lasers and Optics v 79 n 5 September II 2004. p 535-538.
    [17] Lagatsky, A.A.Brown, C.T.A.Sibbett, W. Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser[J]. Optics Express v 12 n 17 August 2004. p 3928-3933.
    [18] Yu, Jirong Lee, Hyune R. Bai, Yingxin Barnes, Norman P. Tunable 4-10 mum infrared radiation for remote sensing applications European Space Agency[R] (Special Publication). ESA SP v 1 n 561 June 2004.
    [19] Isyanova, Yelena;Slobodtchikov, Evgueni;Flint, John;Moulton, Peter F.;Swim, Cynthia R.;Fox, Jay. Compact, tunable, all-solid-state LWIR source for standoff chemical detection[J]. Proceedings of SPIE.p52-68 2004.
    [20] 洪 伟 等 . 窄 脉 冲 宽 调 谐 调 QCr ∶ LiSAF 激 光 器 及 其 应 用 研 究 [J]. 中 国 激光,2000(27)4:293-296.
    [21] 陈金华等.一种新的波长可调谐光脉冲的生成方案[J].赣南师范学院学报.2004,6 35-36.
    [22] 冯瑜等 . 一种脉冲宽调谐 BBO 光参量振荡器的实验研究 [J]. 中国激光2004(21)8:444-447.
    [23] 朱 孟 等 . 脉 冲 可 调 谐 钛 宝 石 激 光 向 短 波 长 扩 展 的 研 究 [J]. 天 京 大 学 学报,2002(35)1:58-62.
    [24]曾宪林,郑仲明.机载激光告警系统述评[J].航天电子对抗:2001(2)21~25.
    [25] 12 FOI Swedish Defense Research Agency[R]. Annual Report. 2002 : 18-20.
    [26] NATIONAL DEFENSE AUTHORIZATION ACT FOR FISCAL YEAR 2000 REPORT[R]. U.S. GOVERNMENT COMMITTEE ON ARMED SERVICES[R]. UNITED STATES SENATE, WASHINGTON 106TH CONGRESS 1st Session REPORT. 1999:156–695.
    [27] 付 林,张记龙和王志斌. 光栅衍射法实时测量脉冲激光波长和方向[J]. 光电工程. 2005, 32. 7: 30-32.
    [28] LASER WARNING RECEIVER RALM 02/V2. www.marconiselenia.com.
    [29] AN/AAR-47 V2 Upgrade Missile / Laser Warning Receiver. FISCAL YEAR (FY) 2004 PRESIDENT'S BUDGET SUBMISSION FOR THE OPERATIONAL TEST AND EVALUATION, DEFENSE (OT&E,D) APPROPRIATION[R]. February, 2003.
    [30] Advanced Threat Infrared Countermeasure/Common Missile Warning System DEFENSE INDUSTRIAL BASE CAPABILITIES STUDY:FORCE APPLICATION[R]. OCTOBER 2004. http://www.acq.osd.mil/ip.
    [31] G. J. Dixon. How to measure pulsed-laser wavelengths[J]. Laser Focus world. 1998 34 (2), 201-210.
    [32] J. J. Snyder, Algorithm for fast digital analysis of interference fringes[J]. Appl. Opt. 19, 1980:1223-1225.
    [33] James L. Gardner, Compact Fizeau Wavemeter[J]. Appl. Opt. 1985 24,3570-3573.
    [34]D.F. Gray, K. A. Smith, and F. B. Dunning. Simple Compact Fizeau Wavemeter[J]. Appl. Opt. 25 1986 1339-1343.
    [35] Boas, Gary. Surface Plasmon Resonance Nanosensors Help Identify Biomarkers for Alzheimer's Disease[J]. Biophotonics International, 2005 4 60-61.
    [36] Paleologos, E.K.;Prodromidis, M.I.;Giokas, D.L.;Pappas, A.C.;Karayannis, M.I. Highly selective spectrophotometric determination of trace cobalt and development of a reagentless fiber-optic sensor[J]. Analytica Chimica Acta 2002 467:205-215.
    [37] Nazarenko, Alexander Y.;Nazarenko, Natalie A. Analog Spectrophotometers in the Digital Age: Data Acquisition on a Budget[J]. Journal of Chemical Education, 2005 (82) 2:294-296.
    [38] Bernazzini, P.;Paquin, F. Modular Spectrometers in the Undergraduate Chemistry Laboratory[J]. Journal of Chemical Education, 2001(78) 6:796-798.
    [39] Lucchetta, D.E.;Criante, L.;Simoni, F. Optical Characterization of Polymer Dispersed Liquid Crystals for Holographic Recording[J]. Journal of Applied Physics, Vol. 91, No. 1, July 1, 2003.
    [40] Http:// www.avantes.com/Avantes Catalog -Spectrometers[EB/OL].
    [41] Http:// www.pimacs.com/spectrocopic.pdf [EB/OL].
    [42] Http:// snf.stanford.edu/About/Research/2002/P20.pdf -2003-09-17 [EB/OL].
    [43] H.L. Kung, et al., Standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector[J], IEEE J. Selected Topics in Quantum Electronics, 2002.8, 98-105.
    [44] S. R. Bhalotra, et al., Integrated standing-wave transform spectrometer for near infrared optical analysis[C]. IEEE Lasers and Electro-Optics Society 2002 Annual Meeting, Glasgow, Scotland 2002 10: 10-14.
    [45] S. R. Bhalotra, et al., Standing-wave microsensor for adaptive analysis of spectral coherence[C]. CLEO 2003, Baltimore, MD 2003 (June 1-6).
    [46]Http://www.photonics.com/spectra/newprods/XQ/ASP/newprodidta.488/QX/read.htm[EB/OL].
    [47] Http:// www.thorlabs.com/Images/PDF/v17_760.PDF[EB/OL].
    [48] PITTCON? 2002 Spectroscopy Review[EB/OL]. http://www.stellarnet.us/public/ download/StellarNetSpectros.pdf. [49 ] Stephen J. Dearden. A Comparative Review of some Commercial Spectrographs[EB/OL].http:// users.erols.com/njastro/faas/pages/paper001.htm.
    [50] Qun Li;C. H. Lin;Amy A. Au;E. R. Lyons;C. S. Tsai;H. P. Lee.Demonstration of an All-fiber Acousto-optic Tunable Filter based Spectrometer. Conference on Optical Devices for Fiber Communication IV[C]. SanJose, California, USA SPIE 2003 Vol.4989 Jan 27-28 p.155-160.
    [51]冯志庆,李福田.一种紫外光谱测量的微型光纤光栅光谱仪设计[J]. 测试技术学报.2004 (18)4:292-295.
    [52] 鞠挥.用于生化分析的光谱仪微小型化的研究[D].长春:长春光学精密机械与物理研究所 2002.
    [53] 陈刚,温志渝,温中泉 混合集成微型光纤光谱仪的实验测定[J]. 光谱学与光谱分析 2003(23)6:1232-1236.
    [54] Muhammed P. Basheer, Kenneth T. Grattan, Tong Sun, Adrian E. Long, Daniel McPolin. Fiber optic chemical sensor systems for monitoring pH changes in concrete[C]. Proc. SPIE 2004 Vol. 5586, p. 144-153, Advanced Environmental, Chemical, and Biological Sensing Technologies II.
    [55]Vidhu S. Tiwari, Sunil K. Khijwania, Fang-Yu Yueh, Jagdish P. Singh. Optical fiber Raman sensor for monitoring hydrocarbon in fuel and industrial chemical processing[C]. Proc. 2004 SPIE Vol. 5589. p. 8-13. Fiber Optic Sensor Technology and Applications III.
    [56] Natalja Skrebova Eikje, Yukihiro Ozaki, Katsuo Aizawa, Seiji Arase,. Fiber optic near-infrared Raman spectroscopy for clinical noninvasive determination of water content in diseased skin and assessment of cutaneous edema[J]. Journal of Biomedical Optics. 2005 10(01), p. 1-13.
    [57] Petr Hlubina;Igor Gurov. Measuring distances and displacements by an interferometric technique using alow-resolution miniature fiber optic spectrometer[C].Optical techniques for environmental sensing, workplace safety, and healthminitoring. Proceeding of SPIE.2002 v.4887. 77-88.
    [58] Andrea A. Mencaglia, Anna G. Mignani.Optical fiber instrumentation for online absorption and reflection spectroscopy[C]. Proc. SPIE 2003 Vol. 4763, p. 248-251, European Workshop on Smart Structures in Engineering and Technology.
    [59]李全臣 蒋月娟.光谱仪原理[M] . 北京:北京理工大学出版社,1999.6,47~100.
    [60]吴国安.光谱仪的设计[M].北京:科学出版社,1978.6.
    [61]高稚允,高岳等编著.军用光电系统[M]. 北京:北京理工大学出版社 1996.9,12-13.
    [62]王高. CMOS 图像传感器的发展现状[C].2002 国际新型传感器技术应用与产业发展论坛, p108-112.
    [63]王高,周汉昌.CMOS 图像传感器的商业化发展[J]传感器世界,2004, 10(2):13-16.
    [64] James Janesick . CCD or CMOS [J] . OE Magazine . 2002 2: 30-33.
    [65]El Gamal A , Fowler B , Min H , et al . Modeling and estimation of FPN components in CMOS image sensors[C] . Proc of SPIE. 1998 ,3301 : 168 -177.
    [66] Smith S.T. , Bednarek D.R. , Wobschall D.C. . Evaluation of a CMOS image detector for low cost and power medical x-ray imaging applications[C]. Proc. SPIE. 1999, 3659 : 952-961.
    [67]Andre M.P. , Spivey B , Martin P . An integrated CMOS-Selenium x-ray detector for digital mammography[C]. Proc. SPIE .1998 , 3336 : 204-209.
    [68] Stuart Klein felder , Lim SukHwan , Liu Xinqiao . A 10 000 Frames/s CMOS Digital Pixel Sensor[J] . IEEE JOURNAL OF SOLID-STATE CIRCUITS. 2001, 36. 12: 2049-2058.
    [69] Bai Y. Hybrid CMOS Focal Plane Array with Extended UV and NIR Response for Space Applications[C]. San Diego, California: SPIE's 48th Annual Meeting, 2003.
    [70] Uthe, E. E. Particle size evaluations using multi-wavelength extinction measurements [J]. Applied Optics. 1982, 21.3:454-45.
    [71]Nagashima T, et al. Optimization of sensitivity characteristics of photoelectric smoke detector to various smokes[C]. Proceedings of the Third Asia-Oceania Symposium on Fire Science and Technology. June 10-12,1998,Singapore:319-331.
    [72]Jones, M. R., Curry, B. P., Brewster, M. Q.,et al. Inversion of light-scattering measurements for particle size and optical constants: theoretical study[J]. Applied Optics, 1994,33.18: 4025-4034.
    [73]安毓英.光电子技术[M]. 北京:电子工业出版社,2002.5.
    [74] Zweibacka J., Ditmireb T. Femto-second laser energy deposition in strongly absorbing cluster gases diagnosed by blast wave trajectory analysis. PHYSICS OF PLASMAS[J].2001,8.10:4545-4550.
    [75] Culshaw B,Stewart G,Dong F,et al. Fiber optic techniques for remote spectroscopic methane detection-from concepts to system realization[J]. Sensor & Actuators.1998,51:25-37.
    [76] Wu,Sh.Q.,Masusaki H, et al. Efficient reduction of fringe noise in trace gas detection with diode laser multi-pass absorption spectroscopy [J].Jpn.J.Phys.2000,39:4034-4040.
    [77] Curry, B. P.. Constrained eigen function method for the inversion of remote sensing data:application to particle size determination from light scattering measurements, Applied Optics[J]. 1989,28.7:1345-135.
    [78] Marcus Johannes van de Sande. Laser scattering on low temperature plasmas——High resolution and stray light rejection[R]. Eindhoven,Netherlands:CIP-DATA Library technique University of Eindhoven,2002:9-32.
    [79] Weidong Chen, Fabrice Cazier, Frank Tittel, Daniel Boucher. Measurements of benzene concentration by difference-frequency laser absorption spectroscopy[J]. APPLIED OPTICS.2000,39.33:6238-6242.
    [80] Ramez E. N. Vasilis Z.. Laser Induced Fluorescence Attenuation Spectroscopy: Detection of Hypoxia[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. 2000,47.3:301-312.
    [81] Mahulikar S. P., Sane S. K., Marathe A. G.. Numerical Studies of Infrared Signature Levels of Complete Aircraft [J], The Aeronautical Journal, 2001,105(1046): 185-192.
    [82] Ruffino G, Coppa P. Radiation thermometer with pyroelectric detector for non contact low temperature measurement[J]. The second Asian Thermo-physical Conference.1989:427-429.
    [83] Zhigilei,L.V.,Veugle E. Microscopic mechanisms of short pulse laser spallation of molecular solids[J]. Applied Physics A. 2004( 79): 753–756.
    [84]王晓耘,徐华盛和王全其.超高速光电探测器[J].光电子技术.2001,(21)1:67-71.
    [85]金锋,翟刚和李晶等.二极管泵浦声光调Q窄脉冲 Nd:YAG 激光器[J].光电子·激光.2004,(15)3:303-306.
    [86]包国玉,陆建和罗必凯等.同时测量重复频率激光脉宽和能量的实时测试系统[J].光电子·激光.1999,(10)5:434-436.
    [87]刘家洲,李爱珍和张永刚.光通信波段超高速 PIN 光电探测器的新进展[J].半导体光电.2001,(22)4:228-232.
    [88]任韧,陈长乐和徐进等.短脉宽 XeCl 激光器的实现及光脉冲参数的测量[J].中国激光.2004,(31)9:1036-1040.
    [89]谬家鼎,徐文娟和牟同升编著.光电技术[M].浙江:浙江大学出版社,1995:140-141.
    [90]王清正,胡渝和林崇杰.光电探测技术[M].北京:电子工业出版社,1994:101-103.
    [91]Walker D,Saxler A , Kung P, et al. Visible blind GaN PIN photodiodes[J]. Appl Phys Lett,1998 (25)72:3303.
    [92]Lin Chung Chieh, Allard Bruno, Morel Herve, etal.Technological parameter identification of pin diode using transient signal parameter fits [C]. Power Electronics and Applications Fifth European Conference. 1993. 29 —33.
    [93]Whitey J, Sons S. Dark-Current and Storage-Time Considerations in CCD. Physics of Semiconduct or for Devices, 1979: 169-178.
    [94]Opkinson G, Lumb D. Noise Reduction Techniques for CCD Image Sensors[J].Phys.E:Sci,Instrum,1999, 15(2):25-30.
    [95]Solheim,J.E.Whole Earth Telescope Observations of AM Canum Venaticorum-discoseismology at last. 1998, A&A, 332,939-957.
    [96]Saunders ,Will and McGrath, Andrew J.A Large Reflective Schmidt Telescope for the Antarctic Plateau. Fundamentals of Cosmic Physics.2000,20: 251-382.
    [97]王永仲著.现代军用光电技术[M]. 北京: 北京科学出版社 2004.
    [98]高稚允,高岳编著.光电检测技术[M]. 北京:国防工业出版社,1995:234.
    [99]汪丽,田维艰. 光锥 CCD 耦合器件对提高 CCD 成像分辨率的探讨[J]. 光电子技术与信息.2004, (17)3:21-25.
    [100]高应俊,姚胜利. 纤维光锥与 CCD 相机的耦合研究[J]. 光子学报,1999, (28)10: 947-950.
    [101]Padmore Howard A. Probing the dispersive and spatial properties of planar photonic crystal waveguide modes via highly efficient coupling from optical-fiber tapers[J]. Appl. Phys. Lett. 2004, (85)1:4–6.
    [102]Spillane S. M., Kippenberg T. J., Painter O. J., Vahala K. J.. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics[J]. Phys. Rev. Lett. 2003(91)4: 395-402.
    [103]Barclay P. E., Srinivasan K., Borselli M., Painter O.. Experimental demonstration of evanescent coupling from optical-fiber tapers to photonic crystal waveguides[J]. IEEE Electon. Lett.. 2003(39)11:842–844.
    [104]Cai M., Painter O., Vahala K. J.. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system[J]. Phys. Rev. Lett . 2000(85) 1: 74–77.
    [105]David A, Chang-Yen. A Monolithic PDMS Waveguide System Fabricated Using Soft-Lithography Techniques[J]. JOURNAL OF LIGHTWAVE TECHNOLOGY. 2005, (23)6: 2089-2092.
    [106] Dimmick T. E. , Kakarantzas G. , Birks T. A. , Russell J. . Carbon dioxide laser fabrication of fused-fiber couplers and taper[J]. Appl. Opt. 1999, (38) 33: 6845–6848.
    [107]Barclay P. E. , Srinivasan K. , Painter O. . Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper [J]. Opt. Express. 2005, (13)3: 801–820.
    [108]薛睿斌. 基于光锥耦合的医用射线成像技术研究[D].太原:中北大学,2005.
    [109]王玲玲. 光纤倒像器产品质量影响因素分析及改进技术研究[D].太原:中北大学,2005.
    [110]王玲玲.光纤光锥及其应用[J]. 科技情报开发与经济.2002 (12)6:87-88.
    [111]Simone Anders, Padmore Howard A. , et al.. Photoemission electron microscope for the study of magnetic materials[J]. REVIEW OF SCIENTIFIC INSTRUMENTS.1999(70)10: 3973-3981.
    [112]Ketcham Richard A, Carlson William D.. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applicationsto the geosciences[J]. Computers & Geosciences. 2001, 27 : 381–400.
    [113] 王耀祥 , 田维坚和章兴龙等 . 纤维光锥有效透过率的理论分析 [J]. 光子学报.2005(34)4:529-533.
    [114] 王耀祥 , 田维坚和黄琨等 . 光锥与 CCD 耦合效率的理论分析 [J]. 光子学报.2004(33)3:318-321.
    [115]陈洪滨,吕达仁,从空间探测闪电的综述[J].气象学报,2001,59(1):376-383.
    [116]张义军.雷暴中的反极性放电和电荷结构[J].科学通报,2002,47(15):1192~1195.
    [117]张义军,董万胜,张广庶等.空中引发雷电先导的物理过程研究[J].地球物理学报,2003,46(4):446~449.
    [118]袁萍等,高原地区云闪电首次回击的光谱研究[J].地球物理学报.2004 47(1):42-47.
    [119]Orville, R. E. Daylight Spectra of Individual Lightning Flashes in the 370-690 nm Region[R]. NTIS-AD-A092866. State Univ. of New York at Albany. Dept. of Atmospheric Science. 1979, 1-7.
    [120]Weidman, C. D.;Boye, A.;Crowell, L. Lightning Spectra in the Near Infrared[R]. Arizona Univ., Tucson. Inst. of Atmospheric Physics. 1987.
    [121]韩景平,王渝珠. 强电磁环境的防护包装概论[J]. 株洲工学院学报,1996,(10) 1: 17-22.
    [122]田棣华,马宝华和范宁军. 兵器科学技术总论[M].北京:北京理工大学出版社, 2003:301-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700