用户名: 密码: 验证码:
过饱和铝酸钠溶液种分强化及添加剂分子设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝酸钠溶液种分过程是整个氧化铝生产过程最重要的工序之一。提高溶液的分解速率,获得粒度分布均匀、强度高的氢氧化铝产品是氧化铝生产工作者孜孜以求的目标。本文采用活化晶种、有机添加剂等方法强化铝酸钠溶液的晶种分解与附聚,着重探讨了氢氧化铝结晶过程的强化机制,为强化铝酸钠溶液的晶种分解研究提供了新的思路和方法。
     本文以研究铝酸钠溶液晶种分解过程为基础,结合激光粒度分析、红外(IR)、~(27)Al NMR、~(27)Al MAS NMR、XRD、SEM等分析测试手段以及量化计算方法,研究了活性晶种的效能及作用机制;考察了具有笼状结构的15-冠-5-醚的强化作用机制;系统研究了添加剂官能团电荷结构、空间结构对其强化铝酸钠溶液分解能力的影响;研究了油酸等油性添加剂强化附聚的效能与机制;提出了颗粒达到临界附聚条件的临界时间模型;从实验和计算两方面论证了使用添加剂控制氢氧化铝形貌的可行性;采用~(27)Al MAS NMR、分子探针方法对铝酸钠溶液的分解过程进行了跟踪和分析;主要依据本文研究结果,归纳了添加剂设计的一般规则。具体研究结果如下:
     1.采用蒸馏水蒸煮方法对工业级氢氧化铝晶种进行了活化。发现活化晶种能明显提高溶液的分解速率。在种分附聚实验中,溶液分解率在10 h内最高可提高5.0%左右;种分全过程中(60 h),提高分解率4.0%左右。晶种被活化的机理是封闭晶种活性点的有机物解吸,从而使显露的活性点增多。
     2.研究了笼状分子结构的15-冠-5-醚对铝酸钠溶液分解过程的影响。发现其促进了铝酸钠溶液的晶种分解,降低了铝酸钠溶液的稳定性,强化了成核过程。铝酸钠溶液的~(27)AlNMR峰宽随15-冠-5-醚的增大而增加。冠醚可能的作用机理:与钠离子配合,促进了铝酸根离子的缔合以及铝酸根离子的网状结构的形成。
     3.系统研究了添加剂官能团电荷结构、空间结构对其性能的影响。发现四碳链添加剂1-丁醇,1,4-二氧六环和四氢呋喃提高铝酸钠溶液晶种分解速率的能力与分子中官能团上氧原子净电荷数成负相关关系;浓度较高的乙二醇降低了溶液的分解速率,而空间位阻更大的乙二醇一乙醚则能提高分解速率。
     4.研究了一系列油性添加剂对附聚过程的影响。发现低浓度的油酸在较高温度下能极大地促进晶种附聚;中等浓度的塔尔油对附聚的强化作用明显;塔尔油与十二醇按一定的配比和浓度添加,可得到分解率高、附聚度好的产品。提出了临界附聚时间概念,并结合铝酸钠溶液种分动力学分形特征,得出晶体颗粒达到临界附聚状态所需时间的定积分模型如下:
     5.提出并证实了使用添加剂控制氢氧化铝晶体形貌的设想。种分实验结果显示,油酸使种分产品gibbsite晶体(001)面簇显露面积增大;均相成核实验结果表明,十八醇、油酸和十八酸均能明显影响晶体的形貌。油酸与gibbsite晶面相互作用的理论计算结果表明,油酸以一定的方式吸附在晶种(001)面,抑制了附聚,但是使(001)面顽强显露;油酸在(100)面以一定的方式吸附则促进了附聚。
     6.采用~(27)Al MAS NMR,分子探针方法、理论计算等方法对铝酸钠溶液的分解过程进行了跟踪和分析。首次发现、证明了某些醇类化合物(1,2-辛二醇)能够通过改变溶液结构的方式抑制铝酸钠溶液的分解;发现铝酸根离子的分解、构型转化过程主要在本体溶液(固-液界面)中完成;发现空间结构匹配、电荷结构适当的多元醇能够牢固地吸附在晶种表面,抑制生长基元在晶种表面的析出。
     7.主要依据本文的研究结果,分别归纳出了结晶强化型、附聚强化型添加剂分子设计一般规则,指出结晶强化型添加剂分子设计可从降低溶液的稳定性和改善固-液界面性质两个基本方面入手;附聚强化型添加剂分子设计则应该重点围绕高分子聚合物与油性添加剂这两类物质展开。
The crystallization of Al(OH)_3 from seeded sodium aluminate liquors plays a vital role in alumina production. To promote decomposition of sodium aluminate liquors and get high quality Al(OH)_3 are the eager goals of many alumina producers. In present study, seed activation and organic additives were applied to the enhancement of Al(OH)_3 crystallization, and the mechanisms were extremely emphasized. The results will impregnate some new ideas to the subsequent investigations for the enhancement of Al(OH)_3 crystallization.
     A series analysis techniques, laser particle size analyzer, IR, ~(27)Al NMR, ~(27)Al MAS NMR, XRD, SEM and quantum chemical calculation were assembled to investigate the crystallization process of seeded sodium aluminate liquors. The effect of activated seed on Al(OH)_3 crystallization were studied. The intensification effect of 15-crown-5-ether was proved to be related to its caged structure. The effects of steric configuration and electronic structure of functional group in the additive molecules was investigated systematically. The effect of oily additives on Al(OH)_3 agglomeration was evaluated and their action mechanism was also probed. A model of critical agglomeration time was established to interpret periodic agglomeration of Al(OH)_3. The control of Al(OH)_3 morphology by additive was proved to be feasible both from experimental results and quantum calculation. Probe molecules were initially applied to investigate the Al(OH)_3 crystallization mechanism. Finally, general rules for additive design are proposed on the basis of present investigations. The main inclusions were drawn as follows:
     1. Industrial grade Al(OH)_3 was activated by boiling in the distilled water. Either in agglomeration experiment or whole Al(OH)_3 crystallization try, activated seed can accelerate the precipitation rate of Al(OH)_3 significantly. The precipitation ratio was found to be promoted for about 5.0% in the agglomeration process, and for about 4.0% in the whole process of Al(OH)_3 crystallization. It is proposed that the poisonous organic impurities desorb from the active site of seed surface during the actvation process, which leads to the increase of seed activity.
     2. The effect of 15-crown-5-ether on Al(OH)_3 crystallization was investigated. The stability of sodium aluminate liquors decreases with the addition of 15-crown-5-ether and the Al(OH)_3 crystallization is intensified. The peak width of ~(27)Al NMR of sodium aluminate liquor broadens as the 15-crown-5-ether is introduced. The enhancement mechanism is visualized as follow: the presence of 15-crown-5-ether in the sodium aluminate liquor favors the combination of aluminate ions and the formation of network, and the crystallization is enhanced subsequently.
     3. The influence of steric configuration and electronic structure of functional group in the additive molecules on the enhancement were evaluated systematically. The enhancement of 1-butanol, 1,4-dioxane, tetrahydrofurane are strongerly correlated with the net charge of oxygen atom in the molecules. High concentration of ethylene glycol inhibits Al(OH)_3 precipitation slightly, while ethylene glycol monoethylether acetate, which has more steric hindrance effect, can enhance Al(OH)_3 crystallization.
     4. A series of oily additives on Al(OH)_3 agglomeration were studied. Low concentrations of oleic acid and moderate concentrations of tall oil can greatly enhance the agglomeration of Al(OH)_3 . High agglomeration degree Al(OH)_3 can be achieved without the decrease of crystallization rate when tall oil and 1-Dodecanol are mixed and introduced at a certain proportion. The concept of critical agglomeration time was proposed. Taking the fractal characteristic of Al(OH)_3 crystallization kinetics into account, an integral model critical agglomeration time is established as follow:
     5. Using addtives to control Al(OH)_3 morphology was invented and verified. The SEM observation of seeded crystallization product shows that the (001) surface area of gibbsite under the influence of oleic acid is larger than that of the blank. The homogeneous crystallization results suggest that oleic acid, 1-octadecanol and stearic acid can significantly influence the gibbsite morphology. Result of theoretical calculation indicates that the (001) surfaces appear stubbornly when oleic acid molecules are adsorbed by a reasonable mode.
     6. The techniques of ~(27)AlMAS NMR and probe molecules were applied to unveil the mechanism of Al(OH)_3 crystallization. Some alcohol compounds were verified to inhibit crystallization by disturbing the structure of sodium aluminate solution. The configuration inversion of tetra-coordinated aluminate is completed in the bulk solutions. The crystallization process is susceptible to some organics, for the attachment energy of growth unit on lattice is relatively small. The crystallization of Al(OH)_3 on seed surface would be severely inhibited by the polyols, which characterized with a matching configuration of functional group to crystal lattice and an electronic structure of charge donor.
     7. General rules for additive design are proposed on the basis of present investigations. The additive molecule design for crystallization enhancement should emphasize on the decrease of stability of sodium aluminate solutions and the improvement of the nature of interface of solid-solution. While the ones for agglomeration enhancement should pay more attention to the soluble polymers and oily organics.
引文
[1] Richens D T, The Chemistry of Aqua Ions (Wiley, New York, 1997), pp 143-146.
    [2] Martin R B, Met. Ions Biol. Syst. 24,1 (1988).
    [3] Martin R B, J. Inorg. Biochem. 44, 141 (1991).
    [4] Swaddle T W, Rosenqvist J., Yu P, et al. ScienceJ, 2005, 308:1450-1453
    [5] Lippincott E R, Psellos J E, Tobin M C. J. Chemical Physics, 1952, 20: 536- 545
    [6] Carreira L A, M aroni V A , Swaine J W, et al. J. Chemical Physics, 1966,45: 2216-2220
    [7] Moolenaar R J, Evans J C, McKeever L D. J. Phys. Chem., 1970, 74: 3629-3636
    [8] Chen N Y, Liu M X, Cao Y L, et al. Science in China Series B, 1993, 36: 32-38
    [9] Chen N Y, L iu M X. Chin. J. Met. Sci. Techno 1., 1992, 2 (2): 28-31
    [10] Radnai T, May P M, Hefter G T, et al. Structure of Aqueous Sodium Aluminate Solutions: A Solution X-ray Diffraction Study. J. Phys. Chem. A 1998, 102: 7841-7850
    [11] Sipos P, Hefter G T, May P M. Aust. J. Chem., 1998, 51,445.
    [12] Gale J D, Rohl A L, Watling H R et al. Theoretical Investigation of the Nature of Aluminum-Containing Species Present in Alkaline Solution. J. Phys. Chem. B, 1998,102: 10372-10382
    [13] JUN ZHOU, QI Y. CHEN, JIE LI. Isopiestic measurement of the osmotic and activity coefficients for the NaOH-NaAl(OH)_4-H_2O system at 313.2 K. 2003, 67: 3459 -3472.
    [14] Sipos P, Maya P M, Hefter G. Quantitative determination of an aluminate dimer in concentrated alkaline aluminate solutions by Raman spectroscopy. Dalton Transactions. 2006, 368-375.
    [15] Prestidge C A, Ametov I. Cation effects during aggregation and agglomeration of gibbsite particles under synthetic Bayer crystallisation conditions. Journal of Crystal Growth. 2000, 209: 924-933
    [16] Jun Li, Clive A. Prestidge, and Jonas Addai-Mensah. The Influence of Alkali Metal Ions on Homogeneous Nucleation of A1(OH)_3 Crystals from Supersaturated Caustic Aluminate Solutions. Journal of Colloid and Interface Science. 2000, 224:317-324.
    [17] 李洁,陈启元,尹周澜等.过饱和铝酸钠溶液结构性质与分解机理研究现状.化学进展,2003,15(3):170-177.
    [18] Watling H R, Fleming S D, van Bronswijk W et al. Ionic structure in caustic aluminate solutions and the precipitation of gibbsite. J. Chem. Soc., Dalton Trans.,1998,3911-3917.
    [19] 孙素琴,陈念贻.铝酸钠溶液碳酸化过程的Raman光谱研究.光谱学与光谱分析,1994,14(5):35-37
    [20] 洪梅,曹益林,柳妙修等.铝酸钠溶液的~(27)Al核磁共振谱研究.轻金属,1994,5:26-27
    [21] 李洁,陈启元,张平民,等.中等浓度过饱和铝酸钠溶液自发分解过程Raman光谱研究.中国学术期刊文摘,2001,7(8):1008
    [22] 赵继华.超声场强化拜耳法种分过程的研究:[博士学位论文].长沙:中南大学,2001
    [23] 刘吉波,陈启元,尹周澜,等.用拉曼光谱研究超声波对铝酸钠溶液的影响.轻金属,2005,11:18-21
    [24] 尹建国.过饱和铝酸钠溶液种分附聚过程及其强化.[博士学位论文].长沙:中南大学,2007
    [25] Kopylova, E A, No J P Zakharova. J. Appl. Chem.(USSR),1974,47:2396
    [26] Kolesova V A, Lazarev A N, Guseva I V. Inorg. Mater. 1973,9:714
    [27] Bradley S M, Kydd R A, Howe R F. J. Colloid Interface Sci. 1993,159:405
    [28] Gerson A R, Ralston J, Smart R S C. An investigation of the mechanism of gibbsite nucleation using molecular modelling. Colloid and surfaces A:Physicochemical and Engineering Aspects. 1996,110:105-117
    [29] 仲维卓,华素坤.晶体生长形态学.科学出版社,1999.
    [30] Hartman P. Morphology of crystals, Ed, Sunagawa I. Terra, Tokyo, 1987.
    [31] Zambo J. Ligh t Metal, 1986,199-215
    [32] 杨重愚 氧化铝生产工艺学 (第二版).北京:冶金工业出版社,1993
    [33] Bradley S M, Hanna J V. ~(27)Al and ~(23)Na MAS NMR and Powder X-ray Diffraction Studies of Sodium Aluminate Speciation and the Mechanistics of Aluminum Hydroxide Precipitation upon Acid Hydrolysis. J. Am. Chem. SOC.1994,116,7771-7783
    [34] Alemany L B, Kirker G W. First Observation of 5-Coordinate Aluminum by MAS 27Al NMR in Well-Characterized Solids. J.Am.Chem.SOC. 1986, 108, 6158-6162
    [35] Cruickshank M C, Glasser L S D, Band S A 1. Pentacoordinated Aluminium: a Solid-state ~(27)A1 N.M.R. Study. J .CHEM. S O C ., CHEM. COMMUN., 1986,23-24
    [36] Akitt J W, Elders J M. Aluminium-27 nuclear magnetic resonance studies of the hydrolysis of aluminium (Ⅲ). Ⅶ. Spectroscopic evidence for the cation [AlO H]~(2+) from line-broadening studies at high dilution. J. Chem. Soc. Faraday Trans. 1985, 181: 1923-1930.
     [37] Akitt J W, Farnsworth J A, Letellier P. Nuclear magnetic resonance and molar-volume studies of the complex formed between aluminium(Ⅲ) and the sulphate anion. Journal of the Chemical Society Faraday Transactions. 1985,181:193-205
    [38] Rossiter D S, Fawell P D, Ilievski D et al. Investigation of the unseeded nucleation of gibbsite, A1(OH)_3, from synthetic bayer liquors. Journal of Crystal Growth, 1998 191: 525-536
    [39] Harris D R, Keir R I. Prestidge C A, et al. A dynamic light scattering investigation of nucleation and growth in supersaturated alkaline sodium aluminate solutions(synthetic Bayer liquors). Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999,154: 343-352
    [40] Freij S J, Parkinson G M, Reyhani M M. Direct observation of the growth of gibbsite crystals by atomic force microscopy. Journal of Crystal Growth. 2004, 260: 232-242
    [41] Addai-Mensah J, Dawe J, Hayes R. The Unusual Colloid Stability of Gibbsite at High pH. Journal of colloid and interface science. 1998, 203:115-121
    [42] Li J, Prestidge C A, Addai-Mensah J. The Influence of Alkali Metal Ions on Homogeneous Nucleation of A1(OH)_3 Crystals from Supersaturated Caustic Aluminate Solutions. Journal of Colloid and Interface Science. 2000, 224: 317-324
    [43] Andrea R. Gerson. The role of fuzzy interfaces in the nucleation, growth and agglomeration of aluminum hydroxide in concentrated caustic solutions. Progress in Crystal Growth and Characterization of Materials. 2001,43: 187-220
    [44] Seyssiecq I, Veesler S, Boistelle R, Lam(?)rant J M. Agglomeration of Gibbsite A1(OH)_3 crystals in Bayer liquors: Influence of the process parameters. Chemical Engineering Science, 1998, 53(12): 2177-2185.
    [45] Ilievski D, Livk I. An agglomeration efficiency model for gibbsite precipitation in a turbulently stirred vessel. Chemical Engineering Science, 2006, 61: 2010-2022
    [46] David R, Paulaime A M, Espitalier F. Modelling of multiple-mechanism agglomeration in a crystallization process. Powder Technology, 2003,130: 338-344
    [47] Veesler, S. and Boistelle, R. About supersaturation and growth rates of hydrargillite Al(OH)_3 in alumina caustic solutions. J. Crystal Growth, 1993, 130, 411-415.
    [48] Sakamoto K, Kanahara M, Matsushita K. Agglomeration of crystalline particles of gibbsite during the precipitation in sodium aluminate solution. Light Metals, 1976,2:149-162.
    [49] 高进升.对我国砂状氧化铝生产技术的初步探讨.轻金属,1989,6:21-24
    [50] 陈念贻.氧化铝生产的物理化学.上海:上海科学技术出版社.1962.
    [51] 上官正.高活性氢氧化铝晶种的制备.轻金属,1995,8:12-14
    [52] Qiyuan Chen, Jianguo Yin, Zhoulan Yin. Effect of mechanically-activated seeds on the seeded agglomeration process of sodium aluminate liquors. Light metals. 2007: 157-161
    [53] 谢雁丽,李尚明,毕诗文,等.强化铝酸钠溶液晶种分解过程的研究.轻金属,2000,7:18-19,24
    [54] Li Dianfeng, Bi Shiwen and Yang Hongyi, et al. A kind of activity seed used for the precipitation of the sodium-aluminate liquor. Light Metals, 1997: 97-100
    [55] 谢雁丽,毕诗文,杨毅宏,等.氢氧化铝晶种表面酸性及其对铝酸钠溶液分解过程的影响.中国有色金属学报,2000,10(6):896-898
    [56] Paramzi S M, Turkov V M, Turkov V M. Study of the nature of product of mechnochemical activation of hydragillite. Izv Sib Otd Akad Nauk SSSR, Ser Khim Nauk. 1988,2:47-51.
    [57] 薛红,毕诗文,谢雁丽,等.晶种对拜耳法铝酸钠溶液分解的影响.有色金属(冶炼部分),1998,(2):26-28
    [58] 陈国辉,陈启元,尹周澜,等.铝酸钠溶液种分过程强化研究进展.湖南冶金,2003,31(1):3-6
    [59] 韩颜卿,姚静武,张学英.磁场对铝酸钠溶液种分分解的影响.矿产保护与利用,1999,2:26-28
    [60] LIU Ji-bo(刘吉波), CHEN Jin-qing(陈金清), YIN Zhou-lan(尹周澜) et al. Effect of Ultrasound Frequency on the Precipitation Process of Supersaturated Sodium Alumin- ate Solution. The Chinese Journal of Process Engineering, 2004, 4 (2):130-135
    [61] Jihua ZHAO, Qiyuan CHEN. Study on enhancement in gibbsite precipitation of bayer process under 33 kHz ultrasound. J. Mater. Sci. Technol., 2003,19(6):607-610.
    [62] 刘吉波,陈启元,尹周澜等.用拉曼光谱研究超声波对铝酸钠溶液的影响.轻金属,2005,(11):18-21.
    [63] 刘吉波,张牧群,尹周澜等.铝酸钠溶液性质对超声空化作用及种分过程超声强化的影响.中国有色金属学报,2004,14(6):1047-1052.
    [64] CHEN Guo-hui (陈国辉), CHEN Qi-yuan (陈启元), YIN Zhou-lan (尹周澜),Nucleation during gibbsites precipitation with seeds from sodium aluminate solution processed under ultrasound. Trans. Nonferrous Met. Soc. China, 2004, 14(2):401-405
    [65] 刘吉波,陈启元,张牧群等.铝酸钠溶液的鲁米诺增强声致发光研究.化学物理学报.2005,18(4):564-568.
    [66] 刘吉波.超声波强化铝酸钠溶液分解过程机理的研究.[博士学位论文].长沙:中南大学,2004
    [67] 刘吉波,陈启元,张牧群等.铝酸钠溶液声致自由基的测定.中国有色金属学报.2004,14(12):2120-2124
    [68] Peter A D, Anthony E G. Compositions and method for foam control and crystal modification in bayer process. US5275628,1994-01-04
    [69] 杨毅宏,毕诗文,谢雁丽.表面活性剂对铝酸钠溶液种子搅拌分解的影响.东北大学学报(自然科学版).2002,23(11):1076-1078.
    [70] 陈锋,张宝砚,毕诗文.非离子型油溶性添加剂对铝酸钠溶液晶种分解的影响.东北大学学报(自然科学版).2006,27(3):300-303.
    [71] 赵苏,毕诗文,杨毅宏等.阴离子表面活性剂对铝酸钠溶液种分过程的影响.东北大学学报(自然科学版).2004,25(2):139-141.
    [72] 张斌,陈国辉,陈启元.表面活性剂加强氧化铝种分分解粒度分布研究.有色金属(冶炼部分),2005,5:28-31
    [73] 张斌.添加剂强化拜耳法种分工艺与理论研究.[博士学位论文].长沙:中南大学,2003.
    [74] Sawsan J. Freij, Gordon M. Parkinson. Surface morphology and crystal growth mechanism of gibbsite in industrial Bayer liquors. Hydrometallurgy, 2005, 78 : 246-255
    [75] Jishu Zeng, Zhoulan Yin, Qiyuan Chen. Intensification of precipitation of gibbsite from seeded caustic sodium aluminate liquor by seed activation and addition of crown ether. Hydrometallurgy, 2007, 89:107-116
    [76] Eduardo L J, Quintero I. Evaluation of agglomeration stage conditions to control alumina and hydrate particle breakage. Light Metals, 1992,199-202
    [77] 谢雁丽.铝酸钠溶液晶种分解.北京:冶金工业出版社,2003.36-57
    [78] 张樵青.对拜耳法高浓度铝酸钠溶液两段分解细晶种附聚的研究.轻金属 1994,4:5-9,16
    [79] Roe W J, Perisho J L. Use of polymers in alumina precipitation in the Bayer process of bauxite beneficiation. US Patent, US4608237,1986-08-26
    [80] Moody, Gillian Mary. Production of Alumina. EP631985, 1995-01-04
    [81] 戴维欧.欧文,戴维斯.戴维丝.表面活性剂在拜耳法的氢氧化铝沉淀过程中的应用.中国专利,CN88101926A,1988-10-26
    [82] Owen D O, Davis D C. Use of surfactants in alumina precipitation in the Bayer process. US Patent, US4737352,1988-10-12
    [83] 陈锋,毕诗文,张宝砚等.阴离子油性添加剂对铝酸钠溶液晶种分解的影响.东北大学学报(自然科学版),2004,25(6):606-609
    [84] Johannes H, Reinhard B and Juergen F. Using polyglycerines in the Bayer process to increase crystal size of the product. US Patent, US5312603,1994-05-17
    [85] Roe, William J., Roswell, Ga.. Alumina crystal growth additive. US5106599, 1992-04-21
    [86] 李海普,陈启元,钟宏,等.聚丙烯酸钠在铝酸钠溶液种分过程中的作用.中南大学学报(自然科学版),2004,35(专辑1):138-142
    [87] Welton R, Mccoll P. Production of alumina. US Patent, US6168767,2001-01-02
    [88] Elimelech M. Particle Deposition and Aggregation, Measurement, Modelling and Simulation. Woburn : Butterworth-Heinemann, 1998.
    [89] 尹周澜,花书贵,陈启元等.氢氧化铝晶粒的应力与强度分析.过程工程学报,2006,6(5):832-836
    [90] 谭军,尹周澜,陈启元等.氧化铝强度与显微结构研究.铝-21世纪基础研究与技术发展研讨会议文集,2002.242-244
    [91] 王志,毕诗文,杨毅宏等.铝酸钠溶液碳酸化分解过程中氢氧化铝粒度和强度的变化.现代化工,2004,24(3):28-31
    [92] 赵苏,毕诗文,杨毅宏等.添加剂作用下铝酸钠溶液物化性质的变化对产品性能的影响.材料与冶金学报,2004,3(3):189-192
    [93] 王志,毕诗文,杨毅宏.添加剂对铝酸钠溶液碳酸化分解产物粒度和强度的影响.金属学报,2004,40(9):1005-1008
    [94] Bronswijk W V, Watling H R, Yu Z. A study of the adsorption of acyclicpolyols on hydrated alumina. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999,157: 85-99.
    [95] Smith P G, Watling H R, Crew P. The effects of model organic compounds on gibbsite crystallization from alkaline aluminate solutions: polyols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 111: 119-130.
    [96] Kubota N, Yokota M, Mullin J W. Supersaturation dependence of crystal growth in solutions in the presence of impurity. Journal of Crystal Growth ,1997,182: 86-94.
    [97] Sang J V, Gagnon R Y and Bernier J L, et al. Fines digestion and agglomeration at high ratio in Bayer precipitation. Light Metals, 1989: 33-39
    [98] Sang J V. Factor affecting the attrition strength of alumina products. Light Metals, 1987: 121-127
    [99] 彭少方,张昭.线性和非线性非平衡态热力学进展和应用.北京:化学工业出版社,2006.
    [100] Bolahoph Y A.铝酸钠溶液中氢氧化铝二次结晶形成机理.轻金属,1990(4):16-18.
    [101] Sweegers C, de Coninck H C, Meekes H. Morphology, evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions. Journal of Crystal Growth, 2001, 233: 567-582
    [102] Steemson M L, White E T and Marshall R J. Mathmatical model for the precipitation section of a Bayer plant. Light Metals, 1984: 237
    [103] Watling H., Loh J., Gatter H. Gibbsite crystallization inhibition 1. Effects of sodium gluconate on nucleation, agglomeration and growth. Hydrometallurgy, 2000. 55:275-288
    [104] Watling H. Gibbsite crystallization inhibition 2. Comparative effects of selected alditols and hydroxycarboxylic acids. Hydrometallurgy, 2000, 55: 289-309
    [105] Akitt J W, Gessner W, Weinberger M. High-Field Aluminium-27 Nuclear Magnetic Resonance Investigations of Sodium Aluminate Solutions. Magnetic resonance in chemistry, 1988, 26:1047-1050
    [106] Hemstra T, Han Y, Van riemsdijk W. H. Interfacial Charging Phenomena of Aluminum (Hydr)oxides. Langmuir, 1999,15: 5942-5955
    [107] Rodney G H, John D W, Bruce B J. Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001, 180: 131-140.
    [108] 郭阳.γ-Al(OH)_3对有机物小分子顶位吸附行为的理论研究.[硕士学位论文].长沙:中南大学,2007
    [109] Kubota N, Yokota M, Mullin J W. The combined influence of supersaturation and impurity concentration on crystal growth. Journal of Crystal Growth, 2000, 212: 480-488
    [110] 董楠娅.五元杂环类添加剂对铝酸钠溶液种分过程的影响.[硕士学位论文].长沙:中南大学,2008
    [111] Prestidge C A, Ametov I, Addai-mensah J. Rheological investigations of gibbsite particles in synthetic Bayer liquors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 157 : 137-145.
    [112] Angyal S J, Greeves D, Mills J A. Complexes of carbohydrates with metal cations. Ⅲ. Conformations of alditols in aqueous solutions. Aust J Chem 1974, 27: 1447-1456.
    [113] Coyne J F. Wainwright M S, Cant Nl W. et al. Adsorption of hydroxy organic compounds on alumina trihydrate. Light Metals, 1994, 39-45
    [114] Seyssiecq I, Veesler S and Mangin D, et al. Modelling gibbsite agglomeration in a constant supersaturation crystallizer. Chemical Engineering Science, 2000, 55: 5565-5578
    [115] Low G C. Agglomeration effects in aluminium trihydroxide precipitation: [Ph. D. thesis]. Australia: University of Queensland, 1975
    [116] Misa C, White E T. Crystallization of Bayer aluminum trihydroxide. J. Crystal Growth, 1971,8: 172-178
    [117] Harvey R L, Keeney M E. Simple reagent techniques to improve alumina processing. Light metals, 1990,141-145
    [118] 张国范,冯其明,卢毅屏等.油酸钠对一水硬铝石和高岭石的捕收机理.中国有色金属学报,2001,11(2):298-301
    [119] Yin Jianguo, Li Jie, Zhang Yanli, et al. Effects of monohydroxy-alcohol additives on the seeded agglomeration of sodium aluminate liquors. Light Metals,2006: 153-157
    [120] 符岩,翟秀静,储刚等.塔尔油对铝土矿溶出过程的影响.有色矿冶.2004,20(5):22-25
    [121] Xie Yanly, Bi Shi wen, Wu Jianqiang et al. Study on the Application and Mechanism of Cationic Surfactant on the Precipitation of Sodium Aluminate Liquor. Light Metals, 2001, 135-137.
    [122] Xie Yanly, Zhao Qun, Bi Shiwen. Research on the Application and Mechanism of Crystal Growth Modifier on the Precipitation Process in Sodium Aluminate Liquors, Light Metals, 2002, 157-160.
    [123] XieYanly, Zhao Qun, Bi Shiwen et al. Research on the Mechanism and Optimum Adding Method of Additives in Seed Precipitation, Light Metals, 2003, 87-91.
    [124] Counter J A, Botany A St. Crystal Growth Modifying Reagents; Nucleation Control Additives or Agglomeration Aids? Light Metals, 2006,131-137
    [125] 张志杰.材料物理化学.北京:化学工业出版社.2006.
    [126] Kanzmann, W.. Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 1959, 14:1-63
    [127] Sarma T S, Ahluwalia J C. Experimental studies on the structures of aqueous solutions of hydrophobic solutes. Chem. Soc. Rev., 1973,2,203 - 232
    [128] Mezei M, Beveridge D L, Theoretical Studies of Hydrogen Bonding in Liquid Water and Dilute Aqueous Solutions. J. Chem. Phys., 1981, 74, 622-632.
    [129] Mezei M, Beveridge D L. Monte Carlo Studies of the Structure of Dilute Aqueous Solution of Li~+, Na~+, K~+, F~-, Cl~- Ions. J. Chem. Phys., 1981, 74: 6902-6910
    [130] Israelachvili J N, Pashley R M. Measurement of the Hydrophobic Interaction between Two Hydrophobic Surfaces in Aqueous Electrolyte Solutions. Journal of Colloid and Interface Science, 1984, 98( 2) 500-514
    [131] 张艾民.二元醇添加剂对铝酸钠溶液种分过程的影响.[硕士学位论文].长沙:中南大学,2007
    [132] Yin Jianguo, Chen Qiyuan, Yin Zhoulan, et al. Study on the oscillation phenomena of particle size distribution during the seeded agglomeration of sodium aluminate liquors. Light Metals, 2006: 173-176
    [133] 李洁,陈启元,王龙章,等.铝酸钠溶液种分反应界面分维数的估算.中国稀土学报,1998,16(16):605-609
    [134] 陈国辉,陈启元,尹周澜,等.铝酸钠溶液晶种分解过程中的分形动力学.中南工业大学学报(自然科学版),2002,2:857-859
    [135] 周辉放,杨重愚,等.铝酸钠溶液中晶体附聚机理的研究.有色金属,1994,46(6):54-58
    [136] Halfon A, Kaliaguine S. Aluminina trihydrate crystallization. Part Ⅱ: a model of agglomeration. Can. J. Chem. Engng, 1976, 54: 168-172
    [137] 陈国辉.超声波强化铝酸钠溶液分解成核与分形动力学研究.[博士学位论文].长沙:中南大学,2002
    [138] Wijnhoven J E G J. Seeded growth of monodisperse gibbsite platelets to adjustable sizes. Journal of Colloid and Interface Science, 2005,292:403-409
    [139] Kim M J, wong P L M, Tran T. A study on the precipitation of radial alumina trihydrate. Journal of Crystal Growth, 1997,178: 360-366
    [140] Gregory L, Vincent P, Michel F. Controlling Particle Morphology during Growth of Bayerite in Aluminate Solutions. Chem. Mater, 2003,15: 2584-2592.
    [141] Sweegers C, van Enckevort W J P, Meekes H et al. The impact of twinning on the morphology of α-Al(OH)_3 crystals. Journal of Crystal Growth, 1999, 197 : 244 -253
    [142] Seyssiecq I, Veesler S, Pe(?)pe G. The influence of additives on the crystal habit of gibbsite. Journal of Crystal Growth, 1999, 196: 174-180
    [143] Fleming S, Rohl A, Lee M Y. Atomistic modelling of gibbsite: surface structure and morphology. Journal of Crystal Growth, 2000,209: 159-166
    [144] 沈钟,王果庭.胶体与表面化学.北京:化学工业出版社,1997.
    [145] 邵民象,于秉新.HLB值与有机概念图理论在乳膏剂处方设计中的互补应用.数理医药学杂志,1999,12(2):75-76
    [146] 李旺兴,花书贵,尹周澜,等.氢氧化铝晶粒强度的应力状态分析.中国有色金属学报,2005,15(5):775-781.
    [147] 吴争平.氢氧化铝结晶行为及其晶体微观叠合的理论研究[博士学位论文].长沙:中南大学,2007年
    [148] Li Jie, Chen Qiyuan et al. Investigation on the mode of the growth unit for alumina trihydrate crystals precipitation from supersaturated aluminate solution. Hydrometallurgy, ICHM'98, Kun Ming, International Academic Publishers, 1998: 67
    [149] CHEN Qi yuan, WU Zheng ping, YIN Zhou lan. Bond population analysis on combination of favorable growth unit of Al(OH)_3 crystals. Trans. Nonferrous Met. Soc. China, 2006, 16: 191-197
    [150] WU Zheng-ping, CHEN Qi-yuan, YIN Zhou-Ian. Effects of combination modes of favorable growth unit of Al(OH)_3 crystals precipitating on Van der Waals and chemical bond force. Trans. Nonferrous Met. Soc. China. 2005, 15(4): 913-921.
    [151] WU Zheng-ping, CHEN Qi-yuan, YIN Zhou-Ian. Structure and bonding orientation of favorable growth unit Al_6(OH)_(18)(H_2O)_6 of gibbsite. Trans. Nonferrous Met. Soc. China. 2005, 15(3): 671-679.
    [152] Paulaime A M, Seyssiecq I, Veesler S. The influence of organic additives on the crystallization and agglomeration of gibbsite. Powder Technology, 2003, 130: 345-351
    [153] Rosenqvist J, Axe K, Sjoberg S. Adsorption of dicarboxylates on nano-sized gibbsite particles: effects of ligand structure on bonding mechanisms. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2003, 220: 91 -104.
    [154] Wolska E, Szajda W. Use of infrared spectroscopy to identify crystalline aluminum hydroxides of the Al(OH)_3-Fe(OH)_3 system. Journal of Applied Spectroscopy, 1983, 38(1):137-140.
    [155] LI Hui-xin, Addai-Mensaha J, Thomas J C, Gerson A R. The crystallization mechanism of Al(OH)_3 from sodium aluminate solutions. Journal of Crystal Growth, 2005, 279:508-520.
    [156] Antunes M L P , Santos H S, Santos P S. Characterization of the aluminum hydroxide microcrystals formed in some alcohol-water solutions. Materials Chemistry and Physics, 2002 ,76: 243-249.
    [157] 李洁.过饱和铝酸钠溶液结构及分解机理的研究.[博士学位论文].长沙:中南大学,2001
    [158] Motekaitis R J, Martell A E. Complexes of aluminum (Ⅲ) with hydroxy carboxylic acids. Inorg. Chem. 1984,23:18-23.
    [159] Ma S, Zheng S, Xu H et al. . Spectra of sodium aluminate solutions. Transactions of Nonferrous Metals Society of China, 2007,17: 853-857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700