用户名: 密码: 验证码:
基于楔条形阳极探测器的单光子成像系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地球周围有一层厚度约为地球半径10倍的等离子体层,其主要由N_2、O、H_2及He等原子或分子的电离而形成。其中,对He~+粒子谐振散射形成的30.4 nm极紫外(EUV/Extreme Ultraviolet)进行成像观测是研究地球空间磁层空间暴的主要手段,我国“嫦娥探月二期工程”已确定将“月基地球等离子体层的成像观测”作为其科学目标之一。为此,本文提出并研制了拥有完全自主知识产权的“基于WSA(Wedge and Strip Anodes)探测器的单光子成像系统”的原理样机,主要研究内容、方法及成果如下:
     ①通过对光电导与光致发射型图像传感器的分析和比较,提出了适合于“月基地球等离子体层成像探测实验”的“基于MCP(Microchannel Plate)的阳极探测器”。
     ②通过对WSA、Resistive Anode、Delay-line以及Cross Strip等几种主要阳极探测器的研究分析,确定了“基于WSA探测器的单光子成像系统”的研制方案。
     ③通过分析和对比不同电极结构的WSA,确定了此次设计的电极结构为WSZ(Wedge-Strip-Zigzag)型。
     ④通过对单光子成像理论的相关研究,确定了总体设计方案。
     采用“低压汞灯+光阑+减光片+253.7 nm的窄带滤波片+光学输入窗+成像掩模板+MCP”的方法模拟30.4 nm的极紫外单光子源;探测器主体采用无窗结构;MCP采用“V”型级联;成像电荷读出采用电荷直接收集法;电子读出子系统的设计采用“CSA(Charge Sensitive Preamplifier)+高斯整形主放+DAQ(Data Acquisition)Card+微处理器”的方法。
     ⑤系统的研究了WSZ位敏阳极的相关理论和制作工艺。
     推导了WSZ的位置解码公式;研究了极间串扰的校正方法;分析了WSZ各参量对成像性能的影响;提出了用于测量成像电荷分布半径的两种简便方法;研究了圆形样式的WSZ设计方法,并优化了条纹宽度等差系数和楔形底宽两个参量;编制了WSZ辅助设计程序;通过对“先光刻腐蚀后电镀增厚”与“先电镀增厚后光刻腐蚀”两种工艺的分析和比较,确定了“先光刻腐蚀后电镀增厚”的工艺路线。
     设计并制作了两块圆形样式的阳极面板,电极厚度分别为1μm和2μm,其它各参量相同:电荷收集面积Φ48 mm;周期长度1.2 mm;绝缘沟道宽度30μm。
     ⑥在理论研究和模拟仿真的基础上,设计并制作了CSA和高斯整形主放。
     CSA的主体结构采用多路反馈无限增益高通滤波电路,输入级选用N沟道的结型场效应管:主放由极零相消电路、二级Sallen-Key低通滤波器以及幅度调节电路等构成。
     ⑦开发了基于PCI(Peripheral Component Interconnect)-DAQ Card的数据采集与处理软件。
     软件由数据采集、数据处理以及数字成像等模块构成;DAQ Card与主机之间的通信方式为PCI总线控制下的直接内存访问;在主机内存中设置四块乒乓缓存单元以流水线的方式实现高速的数据采集与处理;数据处理主要由平滑滤波、峰值检测、阈值鉴别、脉冲堆积拒绝、位置解码以及事件计数等子模块构成;数字成像负责输出256阶灰度的积分图像。
     ⑧根据总体设计方案,构建了相应的实验系统。利用该系统测试了空间分辨率、线性度、计数率以及暗计数率等主要技术指标,并对主要影响因素进行了研究分析。
     经过测试:有效成像面积达到了Φ38 mm;空间分辨率优于100μm;线性度优于1%;暗计数率低于0.67 Hz/cm~2。实验结果表明,研制出的原理样机已达到“探月二期工程有效载荷—EUV探测器”的技术指标要求。
     ⑨在全文总结的基础上,对今后的系统优化与正样研制提出了一些建议。
There is a plasmasphere around the Earth, whose thickness is~10 times of the Earth's radius. The plasmasphere is composed of the abundant ions such as N~+, O~+, H~+, He~+, etc. It is a main way for studying the geospatial magnetosphere explosion by imaging the distribution of the He~+ ion through its emission at 30.4 run. A Lunar Imaging Detection for the Earth's Plasmasphere will be carried out in the 2~(nd) project of Chinese Moon Program. Therefor, a prototype of "Single Photon Imaging System Based on Wedge and Strip Anodes Detector" has been proposed and developed with full independent intellectual property rights.
     The main contents, methods and achievements are presented as follows:
     1) Through the analysis and comparison between the Photoconductive and Photoemissive image sensors, the Anode Detector Based on MCP was proposed to the experiment of Lunar Imaging Detection for the Earth's Plasmasphere.
     2) A scheme of Single Photon Imaging System Based on WSA Detector was established by studying the WSA, Resistive Anode, Delay-line, Cross Strip, etc.
     3) A type of WSZ was chosen for the anode design through the analysis and comparison among the diverse electrode structures.
     4) A scheme for the overall system design was set up by studying the correlative theory of Single Photon Imaging. It was presented below:
     (a) A way of "Mercury Lamp + Diaphragm + Weakeners + Narrow-band Optical Filter of 253.7 nm + Optical Input Window + Imaging Mask + MCP" was used to simulate the single photon radiant source of 30.4 nm. (b) A windowless structure was chosen for the mainbody design. (c) Two MCPs were cascaded in a chevron mode. (d) The imaging charge was directly read out by the position-sensitive anode. (e) A way of "CSA + Gussian Shaping Amplifier + DAQ Card + MPU (Micro Processor Unit)" was applied for the electronic readout subsystem design.
     5) The correlative theory and technics were systematically studied.
     The formula of position decoding for the WSZ was deduced. The methods for revising the calculating errors caused by the interelectrode disturbances were studied. The effect of each parameter for WSZ on the imaging performance were analysed. Two simple and convenient methods of measuring the radius of imaging charge distribution were presented. A design method for the circular pattern of WSZ was studied. Two parameters for the circular pattern, the varation coefficient of strip width and the bottom wedge width, were optimized. An auxiliary program for the WSZ design was developed. Two technical ways, "Plating-incrassation after Photo-lithography" and "Photo-lithography after Plating-incrassation", were studied in detail and the former was chosen as the final technics.
     Two WSZ anodes have been fabricated with diverse electrode thickness: one was 1μm , and the other was 2μm. The rest parameters were same: the imaging charge collecting area wasΦ48 mm; the period width was 1.2 mm; the width of insulating gap was 30μm.
     6) On the bases of theoretical study and simulation, the CSA and Gaussian shaping amplifier were designed and fabricated.
     An architecture of multi-feedback infinite-gain high-pass filter was chosen for the CSA design and a N type JFET (Junction type Field Effect Transistor) was taken as the input stage of CSA. The shaping amplifier was composed of a pole-zero cancellation circuit, a two-stage Sallen-Key low-pass filter, and a pulse amplitude adjustment circuit.
     7) A software of data acquisition & processing based on the PCI-DAQ Card was developed.
     The software included a data acquisition module, a data processing module, and a digital image module. The communication mode between PCI-DAQ Card and host computer was of PCI bus-mastering DMA (Direct Memory Access). Four ping-pang buffers were configured in the host memory to answer for the continuous and high-speed data acquisition & processing by a pipelining mode. The data processing module carried out the main functions such as smoothing filter, peak detection, pulse amplitude discrimination, pulse pileup rejection, position decoding, event counting, and so on. The digital image module answered for exporting an integrated image with 256-level gray.
     8) An experimental system was set up in term of the scheme for the overall design and the primary technical indexes such as spatial resolution, linearity, counting rate, dark counting rate, and so on were tested. Additionally, the primary factors related to the imaging performance were analysed and studied.
     With proper evaluation, the system reveals an effective imaging area more thanΦ38 mm, a spatial resolution superior to 100μm, a nonlinear distortion less than 1% and a dark counting rate below 0.67 Hz/cm~2. It indicates that the developed prototype is up to the main technical requirements of the 2~(nd) Project of Chinese Moon Program for the EUV Detector.
     9) Some advices for the system optimization and the formal device development were presented by summarizing this thesis.
引文
[1]B.R.SANDEL,A.L.BROADFOOT,C.C.CURTIS,et al.THE EXTREME ULTRAVIOLET IMAGER INVESTIGATION FOR THE IMAGE MISSION.Space Sci.Rev.,2000,91:197-242.
    [2]B.R.SANDEL,et al.Space Sci.Rev.,2003,109:25.
    [3]Http://www.kxsj.com/artshow.asp?id=733.
    [4]C.JOHNSON,C.M.HOLLOWAY,et al.The ESA/NASA SOHO mission interruption:Using the STAMP accident analysis technique for a software related 'Mishap'.
    [5]Http://heasarc.gsfc.nasa.gov/docs/euve/euve.html.
    [6]Http://fuse.pha.jhu.edu/.
    [7]S.A.FUSELIER,S.P.GARY,M.F.THOMSEN,et al.Generation of transient dayside subauroral proton precipitation.Journal of Geophysical Resrarch,2004,109(1029):A 12227.
    [8]T.V.KAZACHEVSKAYA,A.A.NUSINOV,and D.A.GONYUKH.Solar EUV Flux Variations in 11-Year Solar Activity Cycle According to Measurements On-Board PROGNOZ Satellite Series,INTERBALL-1 and ELECTRO Satellites during 1978-1997 Period.Studia Geophysica et Geodaetica,1998,42(2):92-100.
    [9]Http://news.xinhuanet.com/ziliao/2004-04/13/content_1415305.htm.
    [10]Http://www.cnsa.gov.cn/n615708/n620174/n620670/n761637/65701.htm.
    [11]Http://www.cas.cn/html/Dir/2006/08/07/14/26/63.htm.
    [12]Charles L.Joseph.UV Image Sensors and Associated Technologies.An Invited Review for Experimental Astrophysics.
    [13]J.V.Vallerga,G.C.Kaplan,and O.H.W.Siegmund,et al.Imaging characteristics of the Extreme Ultraviolet Explorermicrochannel plate detectors.IEEE Trans.Nuc.Sci.,1989,36(1):881-886.
    [14]J.Chris Blades.Ultraviolet and Visible Detectors for Future Space Astrophysics Missions.Ultraviolet and Visible Detectors Roadmap Report.
    [15]张建英,郝书顺.无线电通信技术,2002,28(4):62.
    [1]J.Chris Blades.Ultraviolet and Visible Detectors for Future Space Astrophysics Missions.Ultraviolet and Visible Detectors Roadmap Report.
    [2]于前洋.作为图像传感器的CCD、ICCD和IRCCD.光学精密工程,1994,2(5):8-16.
    [3]J.V.HATFIELD,S.BELL,P.I.NEAVES.A Wedge and Strip Particle Detector Based on a Current-Mode approach.Circuits & Systems,1995,1:193-196.
    [4]桂建宝,赵宝升,张小秋.用于软X射线光谱探测的双MCP近贴单幅相机.光子学报,2004,33(10):1261-1264.
    [5]Charles L.Joseph.UV Image Sensors and Associated Technologies.Experimental Astronomy,1995,6(1-2).
    [6]沈锋,张学军,饶长辉,等.像增强型CCD探测器的光学特性.光学学报,2002,22(5):601-606.
    [7]Malka Lindner,Shimon Elstein,Pinhas Lindner.Solar Blind and Bispectral Imaging with ICCD,BCCD and EBCCD Cameras.Proc.SPIE.,1998,3434:22-31.
    [8]Firooz A.Allahdadi,Michael Chrisp,Concetto R.Giuliano,et al.Range-gated laser and ICCD camera system for on-orbit detection of small space debris.Proc.SPIE,1994,2214:116-123.
    [9]Http://www.olympusmicro.com/primer/java/photomicrography/proximity/index.html.
    [10]Xiaowen Xu,Jin Guo.A new EBCCD with transferred electron photocathode for range-gated active imaging system.Proc.SPIE,2002,4919:536-544.
    [11]周立伟,刘广荣,高稚允,等.用于微光摄像的高灵敏度电子轰击电荷耦合器件.中国工程科学, 1999,1(3):.
    [12]C.CIANFARANI.A high resolution detector based on liquid-core scintillating fibers with readout via an EBCCD.Nucl.Instr.and Meth.,1994,A339:449-445.
    [13]Http://micro.magnet.fsu.edu/primer/digitalimaging/concepts/ebccd.html.
    [14]C.Martin,H.O.Anger,M.Lampton,et al.Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors.Rev.Sci.Instrum.,1981,52(7):1067-1074.
    [15]王光明.30.4nm极紫外成像探测器的研制.西安:西安光学精密机械研究所,2006,13.
    [16]张建英,郝书顺.无线电通信技术,2002,28(4):62.
    [17]D.F.OGLETREE,G.S.BLACKMAN,R.Q.HWANG,et al.A new pulse counting low-energy electron diffraction system based on a position sensitive detector.Rev.Sci.Instrum.,1992,63(1):104-113.
    [18]J.S.Lapington,A.D.Smith,D.M.Walton,et al.MICROCHANNEL PLATE PORE SIZE LIMITED IMAGING WITH ULTRA-THIN WEDGE AND STRIP ANODES.IEEE Trans.Nucl.Sci.,1987,34(1):431-433.
    [19]Ottmar Jagutzki,Volker Mergel,Klaus Ullmann-Pfleger,et al.Fast position and time resolved read-out of miero-channelplates with the delay-line technique for single particle and photon detection.Proc.SPIE,1998,3438:322-333.
    [20]Anton S.Tremsin,Oswald H.W.Siegmund.The quantum efficiency and stability of UV and soft X-ray photocathodes.Proc.SPIE,2005,5920(01):1-13.
    [21]A.Breskin.CsI UV photocathodes:history and mystery.Nucl.Instr.and Meth.in Phys.Res.,1996,A(371):116-136.
    [22]O.H.W.Siegmund,J.Vallerga,and B.Wargelin.Background events in microchannel plates.IEEE Trans.Nucl.Sci.,1988,35(1):524-528.
    [23]G.W.Fraser,J.F.Pearson,and J.E.Lees.Dark noise in microchannel plate X-ray detectors.Nucl.Instr.Meth.,1987,A(254):447-462.
    [24]O.H.W.Siegmund.Microchannel plate detector technologies for next generation UV Instruments.Ultraviolet-Optical Space Astronomy Beyond HST,ASP Conference Series,1999,164:374-391.
    [25]O.Jagutzki,J.S.Lapington,L.B.C.Worth,et al.Position sensitive anodes for MCP read-out using induced charge measurement.Nucl.Instr.and Meth.in Phys.Res.,2002,A(477):256-261.
    [26]J.Barnstedta,M.Grewing.Development and characterisation of a visible light photon counting imaging detector system.Nucl.Instr.and Meth.in Phys.Res.,2002,A(477):268-272.
    [27]J.S.Lapington,S.Chakrabarti,T.Cook,et al.A position sensitive detector for SPIDR—a mission to map the cosmic web.Nucl.Instr.and Meth.in Phys.Res.,2003,A(513):159-162.
    [28]J.M.Maia,D.M(o|¨)rmann,A.Breskin.Single-UV-photon 2-D imaging with multi-GEM detectors.Nucl.Instr.and Meth.in Phys.Res.,2007,A(580):373-376.
    [29]单旭.高分辨(e,2e)谱仪的研制及氟里昂CF_xCl_(4-x)系列分子4a_l轨道电子动量分布的实验和理论研究.合肥:中国科学技术大学,1983,48-49.
    [30]A.Rasmussen,C.Martin.Development and Testing of a Prototype Mosaic Wedge-and-Strip Anode Detector.SPIE,1989,1159:538-550.
    [31]M.Lampteom,F.Paresce.The Ranicon:A resistive anode image converter.Rev.Sci.Instrum.,1974,45(9):1098-1105.
    [32]J.L.Wiza,P.R.Henkel,and R.L.Roy.Improved microchannel plate performance with a resistive anode encoder.Rev.Sci.Instrum.,1977,48(9):1217-1218.
    [33]C.Firmani,E.Ruiz,C.W.Carlson,et al.High-resolution imaging with a two-dimensional resistive anode photon counter.Rev.Sci.Instrum.,1982,53(5):570-574.
    [34]S.Charbonneau,L.B.Allard,Jeff F.Young,et al.Two-dimensional time-resolved imaging with 100-ps resolution using a resistive anode photomultiplier tube.Rev.Sci.Instrum.,1992,63(11):5315-5319.
    [35]Robert H.Brigham,Roger J.Bleiler,Paul J.McNitt,et al.Characterization of two resistive anode encoder position sensitive detectors for use in ion microscopy.Rev.Sci.Instrum.,1993,64(2):420-429.
    [36]宁传刚,任雪光,何垚,等.楔条形位置灵敏探测器的特性.清华大学学报(自然科学版),2004,44(9):1290-1292.
    [37]E.H.Silver,S.Kahn.UV and X-Ray Spectroscopy of Laboratory and Astrophysical Plasmas.Cambridge University Press,2004.
    [38]Erik Wilkinson,Steven V.Penton,John V.Vallerga,et al.Algorithms for correcting geometric distortions in delay line anodes.Proc.SPIE,2000,4498.
    [39]O.H.W.Siegmund,J.M.Stock,D.R.Marsh,et al.Delay line detectors for the UVCS and SMMER Instruments on the SOHO satellite.SPIE,1994,2280:89-100.
    [40]John Vallerga,and Jason McPhate.Optimization of the Readout Electronics for Microchannel Plate Delay Line Anodes. Proc. SPIE, 2000,4139:4-43.
    [41] Oswald H. W. Siegmund, Mark Gummin, Geoffrey Gaines, et al. Performance of the double delay line microchannel late detectors for the Far Ultraviolet Spectroscopic Explorer. Proc. SPIE, 1997, 3114:283-294.
    [42] M. Lampton, O. Siegmund, and R. Raffanti. Delay line anodes for microchannel-plate spectrometers. Rev. Sci. Instrum., 1987,58(12):2298-2305.
    [43] David J. Sahnow, Mark A. Gummin, Geoffrey A. Gaines, et al. On-orbit performance of the double delay line detectors for the Far Ultraviolet Spectroscopic Explorer. Proc. SPIE, 2000,4139:149-162.
    [44] G. Da Costa, F. Vurpillot, A. Bostel, et al. Design of a delay-line position-sensitive detector with improved performance. Rev. Sci. Instrum., 2005, 76(1):0133041-0133048.
    [45] Axel Bergmann, Hans-Joachim Eichler, Hann-Jorg Eckert, et al. Picosecond laser-fluorometer with simultaneous time and wavelength resolution for monitoring decay spectra of photoinhibited Photosystem II particles at 277K and 10K. Photosynthesis Research, 1998,58:303-310.
    [46] JOSEPH LADISLAS WIZA. MICROCHANNEL PLATE DETECTORS. Nucl. Instr. and Meth., 1979,162:587-601.
    [47] O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, et al. Cross strip imaging anodes for microchannel plate detectors. IEEE, 2001,48(3):430-434.
    [48] O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, et al. High resolution cross strip anodes for photon counting detectors. Nucl. Instr. and Meth. in Phys. Res., 2003, A504:177-181.
    [49] A. S. Tremsin, O. H. W. Siegmund. Charge cloud asymmetry in detectors with biased MCPS. SPIE, 2002,4497:127-138.
    
    [50] O. H. W. Siegmund, J. Zaninovich, A. Tremsin, et al. Cross strip anodes for microchannel plate imaging detectors. SPIE, 1998,3445:397-406.
    [1]Charles Santori,David Fattal,Jelena Vuckovic,et al.Indistinguishable photons from a single-photon device.Nature,2002,419(101):594-597.
    [2]P.Michler,A.Kiraz,C.Becher,et al.A Quantum Dot Single-Photon Turnstile Device.Science,2000,290(22):2282-2285.
    [3]E.Moreau,I.Robert,J.M.Gérard,et al.Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities.Appl.Phys.Lett.,2001,79(18):2865-2867.
    [4]MARC LARUELLE,ANISSA ABI-DARGHAM,CHRISTOPHER H.VAN DYCK,et al.Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects.Proc.Natl.Acad.Sci.USA,1996,93:9235-9240.
    [5]A.M.Steinberg,P.G.Kwiat,and R.Y.Chiao.Measurement of the Single-Photon Tunneling Time.Physical Review Letters,1993,71(5):708-711.
    [6]张鹏飞,周金运.单光子探测器极其发展.传感器世界,2003.10.
    [7]张建英,郝书顺.单光子计数系统的研制.无线电通信技术,2002,28(4):63-64.
    [8]Shigeki Takeuchi,Jungsang Kim,Henry H.Hogue,et al.Development of a high-quantum-efficiency single-photon counting system.Appl.Phys.Lett.,1999,74(8):1063-1065.
    [9]B.Gompf,R.Günther,G.Nick,et al.Resolving Sonoluminescence Pulse Width with Time-Correlated Single Photon Counting.Physical Review Letters,1997,79(7):1405-1408.
    [10]W.Becker,C.Zander,M.Sauer,et al.Time-resolved detection and identification of single analyte molecules in microcapillaries by time-correlated single-photon counting(TCSPC).Rev.Sci.Instrum., 1999,70(3):1835-1841.
    [11]Philip A.Hiskett,Gerald S.Buller,Alison Y.Loudon,et al.Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55μm.APPLIED OPTICS,2000,39(36):6818-6829.
    [12]John G.Rarity,Thomas E.Wall,Kevin D.Ridley,et al.Single-photon counting for the 1300-1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes.APPLIED OPTICS,2000,39(36):6746-6753.
    [13]王光明.30.4nm极紫外成像探测器的研制.西安:西安光学精密机械研究所,2006,13.
    [14]Doran J.Baker.Rayleigh,the Unit for Light Radiance.APPLIED OPTICS,1974,13(9):2160-2163.
    [15]SOUTHWEST RESEARCH INSTITUTE.IMAGE INSTRUMENT SPECIFICATION FOR THE EXTREME ULTRAVIOLET IMAGER(EUV).1998.
    [16]B.R.SANDEL,R.H.HILL,O.H.W.SIEGMUND,et al.THE EXTREME ULTRAVIOLET IMAGER INVESTIGATION FOR THE IMAGE MISSION.Space Science Reviews,2000,91:197-242.
    [17]J.V.HATFIELD,S.BELL,P.I.NEAVES.A Wedge and Strip Particle Detector Based on a Current-Mode approach.Circuits & Systems,1995,1:193-196.
    [18]D.F.OGLETREE,G.S.BLACKMAN,R.Q.HWANG,et al.A new pulse counting low-energy electron diffraction system based on a position sensitive detector.Rev.Sci.Instrum.,1992,63(1):104-113.
    [19]JOSEPH LADISLAS WIZA.MICROCHANNEL PLATE DETECTORS.Nucl.Instr.and Meth.,1979,162:587-601.
    [20]桂建宝,赵宝升,张小秋.用于软X射线光谱探测的双MCP近贴单幅相机.光子学报,2004,33(10):1261-1264.
    [21]Ottmar Jagutzki,Jürgen Barnstedt,Uwe Spillmann,et al.Fast position and time sensitive read-out of image intensifiers for single photon detection.Proc.SPIE,1999,3764:61-69.
    [22]H.Kume,K.Koyama,K.Nakatsugawa,et al.Ultrafast microchannel plate photomultipliers.APPLIED OPTICS,1988,27(6):1170-1178.
    [23]I.Yamazaki,N.Tamai.Microchannel-plate photomultiplier applicability to the time-correlated photon-counting method.Rev.Sci.Instrum.,1985,56(6):1187-1193.
    [24]B.R.Sandel,A.Lyle Broadfoot,and D.E.Shemansky.Microcharmel plate life tests.APPLIED OPTICS,1977,16(5):1435-1437.
    [25]M.Saito,Y.Saito,T.Mukai,et al.Spatial charge cloud size of microchannel plates.Rev.Sci. Instrum.,2007,78(2):023302-1-023302-7.
    [26]O.H.W.Siegmund,P.Lammert,and J.V.Vallerga.High amplitude events in microchannel plates.IEEE Trans.Nucl.Sci.,1989,36(1):830-835.
    [27]Oswald Siegmund,John Vallerga,and Anton Tremsin.Characterization of Microchannel Plate Quantum Efficiency.Proc.SPIE,5898(0H):1-11.
    [28]O.H.W.Siegmund,J.Vallerga,and B.Wargelin.BACKGROUND EVENTS IN MICROCHANNEL PLATES.IEEE Trans.Nucl.Sci.,1988,35(1):524-528.
    [29]R.S.Gao,P.S.Gibneraito,J.H.Newman,et al.Absolute and angular efficiencies of a microchannel-plate position-sensitive detector.Rev.Sci.Instrum.,1984,55(11):1756-1759.
    [30]刘术林,邓广绪,张继胜,等.微通道板及其发展趋势.应用光学,2003,24(B08):61-64.
    [31]Martin V.Zombeck.Dead-time effects in microchannel-plate imaging detectors.SPIE,1549:90-100.
    [32]O.Jagutzki,J.S.Lapington,L.B.C.Worth,et al.Position sensitive anodes for MCP read-out using induced charge measurement.Nucl.Instr.and Meth.in Phys.Res.,2002,A(477):256-261.
    [33]O.Jagutzki,J.S.Lapington,L.B.C.Worth,et al.Position sensitive anodes for MCP read-out using induced charge measurement.Opt.Soc.Am.A,1986,3(12):2139-2145.
    [34]O.H.W.Siegmund.Microchannel plate detector technologies for next generation UV Instruments.Ultraviolet-Optical Space Astronomy Beyond HST,ASP Conference Series,1999,164:374-391.
    [1]Jonathan S.Lapington,and Hugo E.Schwarz.THE DESIGN AND MANUFACTURE OF WEDGE AND STRIP ANODES.IEEE Trans.Nucl.Sci.,1986,33(1):288-292.
    [2]A.Rasmussen,C.Martin.Development and Testing of a Prototype Mosaic Wedge-and-Strip Anode Detector.SPIE,1989,1159:538-550.
    [3]C.Martin,H.O.Anger,M.Lampton,et al.Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors.Rev.Sci.Instrum.,1981,52(7):1067-1074.
    [4]D.F.OGLETREE,G.S.BLACKMAN,R.Q.HWANG,et al.A new pulse counting low-energy electron diffraction system based on a position sensitive detector.Rev.Sci.Instrum.,1992,63(1):104-113.
    [5]Paolo Soffitta,Philip Kaaret,Seppo Nenonen,et al.Proportional counters for the Stellar X-Ray Polarimeter with a wedge and strip cathode pattern readout system.Nucl.Instr.and Meth.in Phys.Res.,1998,A414:218-232.
    [6]O.H.W.Siegmund,M.Lampton,J.Bixier,et al.Wedge and strip image readout systems for photon-counting detectors in space astronomy.J.Opt.Soc.Am.A,1986,3(12):2139-2145.
    [7]J.S.Lapington,A.D.Smith,D.M.Walton,et al.MICROCHANNEL PLATE PORE SIZE LIMITED IMAGING WITH ULTRA-THIN WEDGE AND STRIP ANODES.IEEE Trans.Nucl.Sci.,1987,NS-34(1):431-433.
    [8]Andy Smith,Robert Kessel,J.S.Lapington,et al.Modulation effects in wedge and strip anodes.Rev.Sci.Instrum.,1989,66(11):3509-3518.
    [9]J.M.Maia,D.M(o|)rmann,A.Breskin.Single-UV-photon 2-D imaging with multi-GEM detectors.Nucl.Instr.and Meth.in Phys.Res.,2007,A(580):373-376.
    [10]J.V.HATFIELD,S.BELL,P.I.NEAVES.A Wedge and Strip Particle Detector Based on a Current-Mode approach.Circuits & Systems,1995,1:193-196.
    [11]CHRIS A.Mack.Absorption and exposure in positive photoresist.Applied Optics,1988,27(23):4913-4919.
    [12]Emile F.Nuwaysir,Wei Huang,Thomas J.Albert,et al.Gene Expression Analysis Using Oligonucleotide Arrays Produced by Maskless Photolithography.Genome Research,2002,(12):1749-1755.
    [13]L.P.Ghislain,V.B.Elings,K.B.Crozier,et al.Near-field photolithography with a solid immersion lens.Appl.Phys.Lett.,1999,74(4):501-503.
    [14]Ruoping Wang,Warren Grobman,Alfred Reich,et al.Polarized Phase Shift Mask:Concept,Design,and Potential Advantages to Photolithography Process and Physical Design.Proc.SPIE,2002,4562:406-417.
    [15]Zhao Xiao-Wei,Jiang Peng,Gao Yan,et al.Three-dimensional micron- and nanometre composite aluminium patterns.Chinese Physics,2005,14(7):1471-1476.
    [16]John A.Rogers,Kateri E.Paul,Rebecca J.Jackman,et al.Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field.Appl.Phys.Lett.,1997,70(20):2658-2660.
    [17]陈永祚,史孔玉,谷健.S1818光刻胶工艺实验研究.集成电路通讯,2003,21(1):14-15.
    [18]藏甲鹏.正性光致抗蚀剂的吸收与感光显影特性.北光通讯,1991,(3):48-52.
    [19]金庆辉,陈继锋,翁建华,等.微全分析系统中电泳芯片的一种制作方法.化学通报,2001,64.
    [20]刘军山,罗怡,杜艳,等.集成铜电极的聚甲基丙烯酸甲脂电泳芯片的制作.仪器装置与实验技术,2005,33(3):584-587.
    [1]郑君里,应启珩,杨为理.信号与系统:上册(第二版).北京:高等教育出版社,2000.
    [2]康光华,陈大钦.电子计数基础:模拟部分(第四版).北京:高等教育出版社,1999.
    [3]童诗白,华成英.模拟电子技术基础(第三版).北京:高等教育出版社,2002.
    [4]王芝英,楼滨乔,朱俊杰,等.核电子技术原理.北京:原子能出版社,1989.
    [5]B.J.Pichler,W.Pimpl,W.Buttler,et al.Integrated low-noise low-power fast charge-sensitive preamplifierfor avalanche photodiodes in JFET-CMOS technology.IEEE Trans.Nucl.Sci.,2001,48(6):2370-2374.
    [6]V.Radeka,P.Rehak,S.Rescia,et al.Design of a charge sensitive preamplifier on high resistivity silicon.IEEE Trans.Nucl.Sci.,1988,35(1):155-159.
    [7]D.Schmitt,R.Lecomte,M.Lapointe,et al.Ultra-low noise charge sensitive preamplifier for scintillation detection with avalanche photodiodcs in PET applications.IEEE Trans.Nucl.Sci.,1987,NS-34(1):91-96.
    [8]C.G.Jakobson,Y.Nemirovsky.CMOS low-noise switched charge sensitive preamplifier for CdTe and CdZnTe X-ray detectors.IEEE Trans.Nucl.Sci.,1997,44(1):20-25.
    [9]W.W.Moscs,I.Kipnis,M.H.Ho.A 16-channel charge sensitive amplifier IC for a PIN photodiodcarray based PET detector module.IEEE Trans.Nucl.Sci.,1994,41(4):1469-1472.
    [10]苏弘,周波,李小刚,等.一种低噪声快电荷灵敏前置放大器的研制.核电子学与探测技术,2003,23(2):105-107.
    [11]魏海鹏,廖西征,王浩,等.小尺寸电荷灵敏前置放大器.核技术,2003,26(1):86-88.
    [12]董成富,苏弘,李小刚,等.一种新型的8路电荷灵敏前置放大器.核技术,2005,28(7):554-556.
    [13]耿波,方方.用于硅半导体探测器的电荷灵敏前置放大器的研制.中国测试技术,2006,32(4):71-75.
    [14]蔡建新,闫华文,刘洪涛,等.A250电荷灵敏放大器的性能和设计制作.核电子学与探测技术,2003,23(1):65-68.
    [15]Http://www.semiconductors.philips.com.
    [16]Http://www.vishay.com.
    [17]Http://www.analog.com.
    [18]N.Bingefors,S.Bouvier,S.Gidomski,et al.A novel technique for fast pulse-shaping using a slow amplifier at LHC.Nucl.Instr.and Meth.in Phys.Res.,1993,A326:112-119.
    [19]B.W.Leo,F.S.Goulding,D.Gao.Ballistic deficits in pulse shaping amplifiers.IEEE Trans.Nucl.Sci.,1988,35(1):114-118.
    [20]J.Lu,P.Figuera,F.Amorini.Pulse shape discrimination of charged particles with a silicon strip detector.IEEE Trans.Nucl.Sci.,2001,A471(3):374-379.
    [21]S.OHKAWA,M.YOSHIZAWA,K.HUSIMI.DIRECT SYNTHESIS OF THE GAUSSIAN FILTER FOR NUCLEAR PULSE AMPLIFIERS.Nucl.Instr.and Meth.,1976,138:85-92.
    [22]V.I.Ivanov,V.A.Garbusin,P.G.Dorogov,et al.Spectrometric characteristic improvement of CdTe detectors.IEEE Trans.Nucl.Sci.,1995,42(4):258-262.
    [23]周波,苏弘,杨平先.小型化主放的研制.四川理工学院学报(自然科学版),2005,18(1):42-45.
    [24]张子斌,翟利华.用于激光电离质谱的低噪声脉冲放大器.四川理工学院学报(自然科学版),2005,18(1):42-45.
    [25]李东仓,杨勇,田磊,等.基于Sallen-Key滤波器的核脉冲成形电路研究.中国科技论文在线.
    [26]李小刚,苏弘,张殿胜,等.线性脉冲放大器.核电子学与探测技术,1999,119(13):224-226.
    [27]LI Qiang,YI Jun,LI Zhao-ji,et al.A Novel Frequency Compensation Technique for Three-Stage Amplifier.Journal of Electronic Science and Technology of China,2005,3(2):148-152.
    [28]董欣.传递函数的零极点相消与电网络的动态特性.电气电子教学学报,2004,26(1):23-26.
    [29]A.Fabre,J.L.Houle.Voltage-mode and current-mode Sallen-Key implementations based ontranslinear conveyors.Circuits,Devices and Systems,IEE Proceedings G,1992,139(4):491-497.
    [30]H.Gaunholt,B.Guldbrandsen.The design of high-Q Sallen-Key biquads with unity-gain buffer amplifiers.International Journal of Circuit Theory and Applications,1998,25(4):307-316.
    [31]Http://www.national.com.
    [32]Http://www.adlinktech.com.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700