用户名: 密码: 验证码:
电离层对卫星信号传播及其性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以随机介质电波传播理论研究为出发点,围绕电离层对星—地链路卫星信号传播以及星载SAR等无线电系统性能的影响开展相关研究。由相关领域研究现状和存在问题的分析可见,背景电离层对于卫星信号的传播效应比较清楚,而主要问题和困难都集中在随机介质传播和双程传播的理论问题上。所以本文将工作重点放在随机介质波传播理论问题和与之相关的卫星信号传播的电离层效应研究上。由于星载SAR等系统的发展,这些问题成为电离层电波传播和雷达领域的热点问题之一,亟待解决。作为研究工作的基础,本文首先介绍了电离层介质特性和卫星信号电离层传播的基础理论。在此基础上,主要开展了如下工作:
     第一、利用时间矩方法和文献中由积分方程迭代方法求得的脉冲传播双频互相干函数,全面和系统地研究了卫星信号穿过电离层随机不规则体层传播的时间特性,包括平均到达时间、脉冲展宽、偏度和峰度(峭度)等。结果表明:①平均到达时间的决定项为载频上的群速传播时间。其它附加时延主要来自背景电离层的高阶色散和不规则体的散射效应,而电子密度不规则体色散引入的附加时延相对较小可以忽略。②脉冲穿过湍动电离层时的展宽效应主要来自电离层背景色散效应和电子密度不规则体的随机散射,而不规则体的色散效应贡献相对较小。③穿过电离层脉冲时间偏度数值为负,表明能量分布偏向上升沿。电子密度不规则体散射和色散效应起决定作用,大于电离层背景效应。④高斯脉冲信号穿过电离层后峰度为负值,即变得比原来平坦。
     第二、穿过随机电离层卫星信号二阶统计特性和电离层信道统计特性研究。①数值讨论了平面波脉冲双频、双点互相干函数的有关特性。②利用互相干函数,研究了卫星信号穿过随机电离层信道传播的二阶统计特性,包括相干距离和相干带宽等。结果表明,相干距离和相干带宽随着外尺度和内尺度的增加而增大,而且随着外尺度的变化更快;随着电子密度不规则性起伏的增强而迅速减小。③随后,还讨论了随机电离层信道的功率冲击响应和功率谱函数;引入时间依赖关系,将双频、双点互相干函数推广为双频双点双时互相干函数,用以研究信道的延迟—Doppler散射函数。
     第三、建立解析求解随机介质波传播强起伏条件下场的高阶对称矩方程的一般框架和方法。随机介质波传播强起伏理论的发展至今不尽人意,主要困难在于场的矩方程难以求解。本文通过在完全饱和情况高斯解的基础上添加修正项的方法,解析求解了强起伏情况场的(n+n)阶对称矩方程。高斯解部分可以由二阶矩求得;关键是求解非高斯修正项满足的方程,本文提供两种解法:格林函数方法和
On the basis of theoretical study on electromagnetic wave propagation in random media, ionospheric effects on radio propagation and the performance of satellite-based radio systems, such as synthetic aperture radar (SAR), have been studied in this dissertation. A thorough search of the relevant literature reveals that the effects of a deterministic ionosphere on satellite radio signal propagation are well known. However, there are many difficulties and issues unsolved in wave propagation in random media. Consequently, this dissertation focuses on stochastic waves and the related ionospheric effects on satellite radio signal propagation. Partly because of the development of satellite-based SAR, this field has become one of hot topics in both ionospheric radio propagation and radar techniques, and is in urgent need of further study. For background purpose a brief review is given on the characteristics of the ionosphere and the theory of satellite radio propagation firstly. The main topics and results of the study are as follows:First, the statistical temporal behavior of satellite signals propagating through the turbulent ionosphere with the slab of irregularities is investigated using the temporal moment and a two-frequency mutual coherence function (MCF), which was obtained by iteration of an integral function. The temporal characteristics include mean arrival time, pulse broadening, skewness and kurtosis. The results show that: 1) the mean arrival time is dominated by the term propagating at group velocity, and small corrections arise from the higher-order dispersion of the background ionosphere and random scattering of irregularities, but the correction from dispersion of irregularities is negligible. 2) Contributions to broadening of trans-ionospheric pulse are mainly from the dispersion of the background ionosphere and scattering of irregularities, while that of dispersion of irregularities is negligible. 3) The temporal skewness of trans-ionospheric pulse is negative, which means its energy is shifted to the leading edge. The contributions from scattering and dispersion of irregularities dominate over those of background. 4) The kurtosis of trans-ionospheric Gaussian pulse is negative and flattened.Second, the second-order statistical characteristics of satellite signals propagating through the turbulent ionosphere and properties of the ionospheric channel are also studied. 1) The property of two-frequency and two-position MCF for a plane wave is numerically studied. 2) Afterwards, the coherence distance and coherence bandwidth of trans-ionospheric pulse have been studied theoretically and numerically. It is found that they increase with both outer and inner scale, more quickly with the former, while they
    decrease quickly with increasing of fluctuations of the electron density. 3) In addition, the power impulse response, power spectra and delay-Doppler scattering function of the random ionospheric channel are also derived and discussed by using generalized two-frequency, two-position and two-time MCF.Third, a general scheme and method for solving the symmetrical higher-order moment equation of wave propagation in random media is developed in this dissertation. The available theory for wave propagation in strong fluctuation cases is not satisfied, where the key issue is in solving the moment equation. By adding a non-Gaussian correction to the Gaussian solution to the n+nih order moment equation under complete saturation case, an analytical solution has been obtained for general strong scattering regime. The Gaussian term is the sum of products of the second order moment, while the equation for the non-Gaussian part can be treated by two methods proposed: Green function method and Rytov approximation. As comparison with the Gaussian term, the non-Gaussian term is so small that it can be reasonably treated by the Rytov approximation. The equation for higher-order moment has been treated without restrictions on both the scattering regimes and incident wave sources, thus the analytical solution is general.Fourth, an analytical solution to the fourth-order moment in general strong scattering regime is obtained, and the ionospheric scintillation and correlation of trans-ionospheric radio signals are treated. The solution is general for it is derived in general strong scattering regime and with arbitrary incident wave. Afterwards, the solution for plane wave is obtained and used to treat ionospheric scintillation and correlation of satellite radio signal with verification by experimental data. It is beneficial to solving fourth-order moment and ionospheric scintillation.Finally, ionospheric effects on signal propagation and the performance of imagery of satellite-based SAR are investigated. By using available model for analyzing ionospheric effects on SAR imaging and some results obtained in this dissertation, and the image point spread function, the ionospheric effects on the resolutions of satellite-based SAR are studied. These effects include image shift, geometric distortion, and degradations of resolutions in azimuth and range direction. In addition, the Faraday rotation effect is also discussed.
引文
[1] Yeh,K.C.,and Liu,C.H.,Theory of Ionospheric Waves,San Diego,Calif.:Academic,1972.(中译本:王椿年,尹元昭译,《电离层波理论》,科学出版社,1983。)
    [2] Rishbeth, H., and Garriott, O.K., Introduction to Ionospheric Physics, Academic Press, New York, 1969.
    [3] 熊年禄,唐存琛,李行健,电离层物理概论,武汉大学出版社,1999。
    [4] Lawrence, R.S., Little, C.G and Chivers, H.J., A survey of ionospheric effects upon earth-space radio propagation, Proc. IEEE, 1964, 52, 4-27.
    [5] Allnut, J.E., Satellite-to-Ground Radiowave Propagation: Theory, Practice, and System Impact at Frequencies Above Ⅰ GHz. London: Peter Peregrinus, 1989.
    [6] Knepp, D.L. and Reinking, J.T., Ionospheric environment and effects on space-based radar detection, Space-Based Radar Handbook, ed. L.J. Cantafio, Norwood: Artech House, 1989, 83-117.
    [7] Davies, K. and Smith, E.K., Ionospheric effects on satellite land mobile systems, IEEE Antennas Propag. Mag., 2002, 44, 24-31.
    [8] 朱太平,王椿年等,4GHz卫星电视信号低纬电离层闪烁特性,电波科学学报,1994,9(1),83~86。
    [9] Wan, Weixing, Yuan, H., Liu, L., et al., The GPS measured SITEC caused by the very intense solar flare on July 14, 2000, Adv. Space. Res., 2005, in press.
    [10] 张东和,萧佐,利用GPS计算TEC的方法及其对电离层扰动的观测,地球物理学报,43(4),451~458,2000。
    [11] Yeh,K.C.and Liu,C.H.,Radio wave scintillations in the ionosphere,Proc.IEEE, 1982,70,324-360.(译文:马淑英译,电离层中的电波闪烁,电波与天线,1984年第3期,87~151。)
    [12] Aarons, J., Global morphology of ionospheric scintillation, Proc. IEEE, 1982, 70, 360-379.
    [13] 龙其利,马健敏,海口VHF信号幅度闪烁观测结果,电波与天线,1996年第2期,1~4。
    [14] 袁运斌,基于GPS的电离层监测及延迟改正理论与方法的研究,中国科学院测量与地球物理研究所博士论文,2002。
    [15] Ishimaru, A., Kuga, Y., Liu, J., et al., Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz, Radio Sci., 1999, 34, 257-268.
    [16] Xu, Z.-W., Wu, J., and Wu, Z.-S., A survey of ionospheric effects on space-based radar, Waves Random Media, 2004, 14(2), S189-S273.
    [17] 赵万里,梁甸农,周智敏,VHF/UHF波段星载SAR电离层效应研究,电波科学学报,2001,16(2),189~195。
    [18] Liu, J., Kuga, Y., Ishimaru, A., et al., Ionospheric effects on SAR imaging: a numerical study, IEEE Trans. Geosci. Remote Sens., 2003, 41,939-947.
    [19] Liu, J., Ionospheric Effects on Synthetic Aperture Radar Imaging, Ph.D Thesis, University of Washington, 2003.
    [20] Budden, K.G., The Propagation of Radio Waves, Cambridge: Cambridge University Press, 1985.
    [21] Davies, K., Ionospheric Radio, London: Peter Peregrinus, 1990.
    [22] Goodman, J.M. and Aarons, J., Ionospheric effects on modem electronic systems, Proc. IEEE, 1990, 78, 512-528.
    [23] Hey, J.S., Parsons, S.J., and Philips, J.W., Fluctuations in cosmic radiation at radio frequencies, Nature (Lodon), 1946, 158, p.247.
    [24] Fremouw, E.J., Leadabrand, R.L., Livingston, R.C., et al., Early results from the DNA wideband satellite experiment, Radio Sci., 1978, 13, 167-187.
    [25] Towle, D.M., VHF and UHF radar observations of equatorial F-region ionosphreic irregularities and background densities, Radio Sci., 1980, 15, 71-86.
    [26] Franke, S.J., Liu, C.H. and Fang, D.J., Multifrequency study of ionospheric scintillation at Ascension Island, Radio Sci., 1984, 19, 695-706.
    [27] Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic Press, 1978;New York: IEEE Press—Oxford University Press, 1997.
    [28] Tatarskii, V.I., The Effects of the Turbulent Atmosphere on Wave Propagation, Springfield, Va: US Department of Commerce, 1971.
    [29] Booker, H.G., The use of radio stars to study irregular refraction of radio waves in the ionosphere, Proc. IRE, 1958, 46, 298-314.
    [30] Liu, C.H., Wemik, A.W. and Yeh, K.C., Propagation of pulse trains through a random medium, IEEE Trans. Antennas Propag., 1974, 22, 152-155.
    [31] Crane, R.K., Spcetra of ionospheric scintillation, J. Geophys. Res., 1976, 81, pp.2041-2050.
    [32] Brown, W.P., Moment equations for waves propagated in random media, J. Opt. Soc. Am., 1972, 62, 45-54.
    [33] Rino, C.L., On the application of phase screen models to the interpretation of ionospheric scintillation data, Radio Sci., 1982, 17, 855-867.
    [34] Knepp, D.L., Multiple phase-screen calculation of the temporal behavior of stochastic waves, Proc. IEEE, 1983, 71,722-737.
    [35] Uscinski, B.J., Analytical solution of the fourth-moment equation and interpretation as a set of phase screens, J. Opt. Soc. Am. A, 1985, 2, 2077-2091.
    [36] Flatté, S.M., Wave propagation through random media: contribution from ocean acoustics, Proc. IEEE, 1983, 71, 1267-1294.
    [37] 吴振森,随机介质中波传播饱和状态的强度相关和闪烁,电波科学学报,1986,1(1),72~83。
    [38] Codona, J.L., Creamer, D.B., Flatté, S.M., et al., Solution for the fourth moment of waves propagating in random media, Radio Sci., 1986, 21,929-948.
    [39] Martin, J.M. and Flatté, S.M., Intensity images and statistics from numerical simulation of wave propagation in three-dimensional random media, Appl. Opt., 1988, 27, 2111-2126.
    [40] Filinov, V.S., Monte Carlo simulation in the theory of wave propagation in random media: Ⅱ. Scintillation index, second and fourth moments, Waves Random Media, 1995, 5, 277-287.
    [41] Uscinski, B.J., Numerical simulations and moments of the field from a point source in a random medium, J. Mod Opt., 1989, 36, 1631-1643.
    [42] Fante, R.L., Two-position, two-frequency mutual-coherence function in turbulence, J. Opt. Soc. Am., 1981, 71, 1446-1451.
    [43] Fante, R.L., Some physical insights into beam propagation in strong turbulence, Radio Sci., 1980, 15, 757-762.
    [44] Fujisaki, K. and Tateiba, M., Numerical analysis of distortion of chirp pulse waves propagated through turbulent media. IGARSS'93, 1993, pp. 255-257.
    [45] Knepp, D.L., Analytic solution for the two-frequency mutual coherence function for spherical wave propagation, Radio Sci., 1983, 18, 535-549.
    [46] Knepp, D.L. and Wittwer, L.A., Simulation of wide bandwidth signals that have propagated through random media, Radio Sci., 1984, 19, 303-318.
    [47] 张民,吴振森,张严冬,脉冲波在强起伏湍流介质中的传播特征分析,物理学报,2001,50,45~50。
    [48] 吴健,刘瑞源,前向多重散射矩方程的解及其在电离层闪烁中的应用,中国科学(A辑),1989,19(12),1322~1332。
    [49] Wang, Z.-S., Wave propagation in a random medium: The solution of the m-nth moment equation with different wavenumbers, Lett. Math. Phys., 1987, 13, 261-271.
    [50] Wang, Z.-S., Analytical solutions in differential form for the m-nth moment equations of waves in inhomogeneous random media, Phys. Scr, 1987, 36, 577-581.
    [51] 李桂珍,吴健,黄际英,彭素琴,适合随机电离层介质双频、双点互相干函数的解,电波科学学报,18(2),157~160,2003。
    [52] Wu, J., Analytic solutions of the two-frequency and two-position mutual coherence function for wave propagating through random media, Chin. J. Electron., 1999, 8(3), 313-316.
    [53] Wu, J., Mean arrival time of a plane pulse wave through a random medium, Chin. J. Electron., 1998, 7, 275-278.
    [54] Xu, Z.-W., Wu, J. and Wu, Z.-S., Statistical temporal behaviour of pulse wave propagation through continuous random media, Waves Random Media, 2003, 13, 59-73.
    [55] 许正文,吴健,霍文平,吴振森,湍流介质中传播的脉冲时间展宽特性,中国科学(G辑),2003,33(2),139~147。
    [56] 霍文平,随机电离层脉冲传播四阶矩的解及到达时间统计特性的理论研究,硕士学位论文,中国电波传播研究所,河南新乡,2002。
    [57] Wu, J., Huo, W.-P., and Xu, Z.-W., A Solution of the four-frequency and four-position mutual coherence function of wave propagating through a turbulent medium slab. Progress In Electromagnetics Research Symposium (PIERS2003), Singapore, January 7-10, 2003, p.23.
    [58] Bronshtein, A., Lu, I.T., and Mazar, R., Reference-wave solution for the two-frequency propagator in a statistically homogeneous random medium, Phys. Rev. E, 2004, 69, 016607.
    [59] Samelsohn, G. and Freilikher, V., Two-frequency mutual coherence function and pulse propagation in random media, Phys. Rev. E, 2002, 65, 046617.
    [60] Andrews, L.C., Phillips, R.L., et al., Theory of optical scintillation, J. Opt. Soc. Am. A., 1999, 16(6), 1417-1429.
    [61] Guo, Lixin, Luo Z., and Wu Z., A study of optical scintillation in the atmospheric turbulence by using modification of the Rytov method, Chin. J. Electron., 2001, 10(3), 300-304.
    [62] Dana, R.A. and Knepp, D.L., The impact of strong scintillation on space based radar design, Ⅰ: coherent detection, IEEE Trans. Aerospace Electro. Syst., 1983, 19, 539-549.
    [63] Dana, R.A. and Knepp, D.L., The impact of strong scintillation on space based radar design, Ⅱ. Noncoherent detection, IEEE Trans. Aerospace Electro. Syst., 1986, 22, 34-46.
    [64] Freeman, A. and Saatchi, S., The effects of Faraday rotation on backscatter signatures in SAR image data, Proc. SPIE, 1997, 3120, 37-44.
    [65] Knepp, D.L. and Brown, W.A., Average received signal power after two-way propagation through ionized trubulence, Radio Sci., 1997, 32, 1575-1596.
    [66] Knepp, D.L. and Houpis, H.L.F., ALTAIR VHF/UHF observations of multipath and backscatter enhancement, IEEE Trans. Antennas Propag., 1991, 39, 528-534.
    [67] Rino, C.L., Double-passage radar cross section enhancements, Radio Sci., 1994, 27, 495-501.
    [68] Fremouw, E.J. and Ishimaru, A., Intensity scintillation index and mean apparent radar cross section on monostatic and bistatic paths, Radio Sci., 1992a, 27, 539-543.
    [69] Kravtsov, Yu.A., Propagation of electromagnetic waves through a turbulent atmosphere, Rep. Prog. Phys., 1992, 55, 39-112.
    [70] Kravtsov, Yu.A. and Saichev, A.I., Effects of double passage of waves in randomly inhomogeneous media, Sov. Phys. Usp., 1982, 25, 494-508.
    [71] Beaujardiére, O. de La, the C/NOFS Science Definition Team, C/NOFS: a mission to forecase scintillations, J. Atmos. Solar-Terr. Phys., 2004, 66, 1573-1591.
    [72] Yeh, K.C. and Liu, C.H., Ionospheric effects on radio communication and ranging pulses, IEEE Trans. Antennas Propag., 1979, 27, 747-751.
    [73] Bogusch, R.L., Guigliano, F.W., et al., Frequency selective propagation effects on spread-spectrum receiver tracking, Proc. IEEE, 1981, 69, 787-796.
    [74] Dabas, R.S., He, Y.W., and Zhang, M.G, Ionospheric effects on space communication systems, in: Handbook on Radiopropagation Related to Satellite Communications in Tropical and Subtropical Countries, Ed. by: Ajayi, G.O., et al., ICTP&URSI, 1996.
    [75] Gheorghisor, Ⅰ., Dissanayake, A., Allnutt, J., et al., Prediction of Faraday rotation impairments in C-band satellite links, Proc. 2000 IEEE Antennas and Propagation Society Int. Symp., 2000, pp. 554-557.
    [76] 甄卫民,吴健,曹冲,电离层不均匀性对GPS系统的误差分析,电波科学学报,1998,13(2),123~126。
    [77] 刘经南,陈俊勇等,广域差分GPS原理和方法,测绘出版社,1999年1月第1版。
    [78] 吴健,刘瑞源,穿过电离层电子密度不均匀体的脉冲平均到达时间,电子学报,1996,24(12),1~5。
    [79] Ashmanets, V.I., Vodyannikov, V.V. and Troitsky, B.V., Exact calculation of errors at transionospheric propagation, J. Atmos. Terr Phys., 1996, 58, 1161-1163.
    [80] Bandyopadhayay, T., Guha, A., DasGupta, A., et al., Degradation of navigational accuracy with Global Positioning System during periods of scintillation at equatorial latitudes, Electron. Lett., 1997, 33, 1010-1011.
    [81] Groves, P.D. and Harding, S.J., Ionosphere Propagation Error Correction for Galileo, The dournal of Navigation, 2003, 56, 45-50.
    [82] Porcello, L.J., Turbulence-induced phase errors in synthetic-aperture radars, IEEE Trans. Aerospace Electro. Syst., 1970, 6, 636-644.
    [83] Shteinshleiger, V.B., Dzenkevich, A.V., et al., On the possibility of designing a high-resolution spacebome VHF-band SAR for remote sensing of the Earth Proc. of EUSAR 96, Berlin, March 26-28, 1996, pp.321-324.
    [84] Quegan, S. and Lamont, J., Ionospheric and tropospheric effects on synthetic aperture radar performance, Int..J. Remote Sens., 1986, 7, 525-539.
    [85] Kretov, N.V., Ryshkina, T.Y. and Fedorova, L.V., Effect of earth's atmosphere on spatial resolution of space-based synthetic-aperture radars, Soviet J. Communications Technology & Electronics, 1992, 37, 34-39.
    [86] Rignot, E.J.M., Effect of Faraday rotation on L-band interferometric and poladmetric synthetic-aperture radar data, IEEE Trans. Geosci. Remote Sens., 2000, 38, 383-390.
    [87] Bilow, H.J., Propagation and scattering considerations for the 0.2-3.0 GHz frequency range for a spaced-based radar, NRL Report 5434, Naval Research Laboratory, Washington, DC, 1984.
    [88] Kim, Y. and van Zyl, J., Ionospheric effects on polarimetric and interfermotric space-based radar, IGARSS'98, Seattle, WA, USA, July 6-10, 1998, pp.472-474.
    [89] Fitzgerald, T.J., Ionospheric effects on synthetic aperture radar at VHF, Proc. of the 1997 IEEE National Radar Conf., Syracuse, New York, USA, May 13-15, 1997, pp.237-239.
    [90] Rosen, P. A., Hensley, S., Joughin, Ⅰ. R., et al., Synthetic aperture radar interferometry, Proc. IEEE, 2000, 88, 333-382.
    [91] Gail, W.B., Effect of Faraday rotation on polarimetric SAR, IEEE Trans. on Aerospace Electro. Syst., 1998, 34, 301-307.
    [92] Brock, B.C., Ionospheric effects on a wide-bandwidth, polarimetric, space-based, synthetic-aperture radar, Report SAND92-1967, Sandia National Laboratories, Albuquerque, New Mexico, 1993.
    [93] K.retov, N.V., Ryshkina, T.Y. and Fedorova, L.V., Dispersive distortions of transionospheric broadband VHF signals, Radio Sci., 1992, 27, 491-495.
    [94] Bhattacharyya, A. and Rostogi, R.G., Faraday polarization fluctuations of VHF geostationary satellite signals near the geomagnetic equator, J. Geophys. Res., 1987, 92, 8821-8826.
    [95] Lee, M.C., Nghiem, S.V., and Yoo, C., Effects of irregularity anisotropy on Faraday polarization fluctuations, J. Geophys. Res., 1989, 94, 15421-15424.
    [96] Gray, A.L., Mattar, K.E. and Sofko, G., Influence of ionospheric electron density fluctuations on satellite radar interferometry, Geophys. Res. Lett., 2000, 27, 1451-1454.
    [97] Mokole, E.L. and Knepp, D.L., Ionospheric scintillation-induced integration losses for space-based radar, IEEE Trans. Aerospace Electro. Syst., 1993, 29, 636-650.
    [98] Dana, R.A., Effects of two-way decorrelation on radar detection in scintillation, IEEE Trans. Aerospace Electro. Syst., 1995, 31,795-804.
    [99] Knepp, D.L., Aperture antenna effects after propagation through strongly disturbed random media, IEEE Trans. Antennas Propag., 1985, 33, 1074-1084.
    [100] Knepp, D.L. and Mokole, E.L., Space-based radar coherent processing during scintillation: VHF through L band, Radio Sci., 1992, 27, 47-61.
    [101] Ulander, L.M.H. and Hellsten, H., A new formula for SAR spatial resolution, AEU Int. J. Electron. Commun., 1996, 50, 117-121.
    [102] Halpin, T.F., Urkowitz, H. and Maron, D.E., Propagation compensation by waveform predistortion. Record IEEE 1990 Int. Radar Conf., 1990, pp. 238-242.
    [103] Kim, Y.S. and Eng, R., Time-of-arrival prediction model for transionospheric EMP, IEEE Trans. Aerospace Electro. Syst., 1995, 31,409-413.
    [104] Anderson, S.J., Ionospheric Faraday rotation signatures in the space-time- frequency domain, Fifth Int. Conf on HF Radio Systems and Techniques, 1991, pp. 167-172.
    [105] Jakowatz, C.V., Eichel, P.H. and Ghiglia, D.C., Autofoeus of SAR imagery degraded by ionospheric-induced phase errors, SPIE Proc. 1989, vol. 1101, Millimeter Wave and Synthetic Aperture Radar, pp.46-52.
    [106] Wahl, D.E., et al., Phase gradient autofocus - a robust tool for high resolution SAR phase correction, IEEE Trans. Aerospace Electro. Syst., 1994, 30, 827-834.
    [107] Doser, A.B., A new time/frequency technique for detecting chirped signals, Record of 32nd Asilomar Conf on Signals, Systems & Computers, 1998, pp. 1650-1654.
    [108] Shteinshleiger, V.B., et al., Two-dimensional adaptive compression for ionosphere destructive effect on resolution of VHF spaeeborne SAR. Proc. EUSAR '98, Friedrichashafen, Germany, 25-27 March, 1998, pp. 157-161.
    [109] 江长荫,王被德,机载与星载雷达的电波传播大气折射修正,中国科学(E辑),2001,31,19~27.
    [110] 冯越,洪峻,王一丁,电离层对星载SAR矩形包络线性调频信号的影响,遥感学报,2004,8(5),385~388。
    [111] Recommendation ITU-R P.531-6, Ionospheric propagation data and prediction methods required for the design of satellite services and systems, 2001.
    [112] 萧佐,张东和,通过GPS测量数据研究电离层总电子含量的逐日变化,空间科学学报,2000,20(2),97~102。
    [113] 马健敏,龙其利,新乡上空电离层总电子含量的经验模式,空间科学学报,1992,12(1),76—80。
    [114] 田茂等,应用GPS信标监测电离层TEC,电波科学学报,1999,14(增刊),27~30。
    [115] 万卫星,宁百齐,袁洪等,电离层扰动的GPS探测,空间科学学报,1998,18(3),247~251。
    [116] Bilitza, D., Rawer, K., and Pallaschke, S., Study of Ionospheric Models for Satellite Orbit Determination, Radio Sci., 1988, 23, 223.
    [117] Coisson, P., Radicella, S.M., Leitinger, R. and Ciraolo, L., Are models predicting a realistic picture of vertical total electron content? Radio Sci., 2004, 39, RS 1S 14, doi: 10.1029/2002RS002823.
    [118] Wang, C., Hajj, G., Pi, X., et al., Development of the Global Assimilative Ionosphere Model, Radio Sci., 2004, 39, RS1S06, doi: 10.1029/2002RS002854.
    [119] Tsunoda, R.T., High-latitude F-region irregularities: A review and synthesis, Rev. Geophys., 1988, 26, 719-760.
    [120] Keskinen, M.J. and Ossakow, S.J., On the spatial power speetrurn of the E×B gradient drift instability in ionospheric plasma clouds, J Geophys. Res., 1981, 86, 6987.
    [121] Basu, Su. and Basu, S., Correlated measurements of scintillations and in-situ F-region irregularities from Ogo-6, Geophys. Res. Lett., 1976, 3, 681-684.
    [122] Beach, T.L. and Kintner, P.M., Development and use of a GPS ionospheric scintillation monitor, IEEE Trans. Geosci. Remote Sens., 2001, 39, 918-928.
    [123] 尚社平,史建魁,郭兼善等,海南地区电离层闪烁监测及初步统计分析,空间科学学报,2005,25(1),23~28。
    [124] Pryse, S.E., Radio Tomography: A new experimental technique, Surveys in Geophysics, 2003, 24, 1~38.
    [125] 萧佐,50年来的中国电离层物理研究,物理,1999,28(11),661~667。
    [126] 徐继生,吴雄斌,马淑英,叶公节。东亚赤道异常区电离层不规则结构的CT成象,中国科学(E辑),2000年第2期。
    [127] Yeh, K.C. and Liu, C.H., An investigation of temporal moments of stochastic waves, Radio Sci., 1977, 12, 671-680.
    [128] Shkarofsky I P. Generalized turbulence space-correlation and wave-number spectrum-function pairs. Can. J. Phys., 1968, 46, 2133~2153
    [129] Ratcliffe, J.A., The Magnetoionic Theory and its Applications to the Ionosphere, Cambridge: Cambridge University Press, 1959.
    [130] J. Klobuchar, Ionospheric effects on GPS, in Global PositioningSystem: Theory and Applications, vol. I, B. Parkinson, J. Spilker, P. and P. Enge, Eds. Washington, DC: American Ins. Aero. Astro., 1996, pp. 485-515.
    [131] De Wolf, D.A., Electromagnetic reflection from an extended turbulent medium: Cumulative forward-scatter single-backscatter approximation, IEEE Trans. Antennas Propag., 1971, 19, 254-262.
    [132] Dashen, R., Path integrals for waves in random media, J. Math. Phys., 1979, 20, 894-920.
    [133] Shishov, V.I., Theory of wave propagation in random media, Izvestia VUZ. Radiofizika, 1968, 11,866-875.
    [134] Lee, L.C., Wave propagation in a random medium: A complete set of the moment equations with different wave numbers, J. Math. Phys., 1974, 15, 1431-1435.
    [135] Gurvich, A.S. and Tatarskii, V.I., Coherence and intensity fluctuations of light in the turbulent atmosphere, Radio Sci., 1975, 10, 3-14.
    [136] Sreenivasiah, I., Ishimaru, A. and Hong, S.T., Two-frequency mutual coherence function and pulse propagation in a random medium: An analytic solution to the plane wave case, Radio Sci., 1976, 11,775-778.
    [137] Prokhorov, A.M., Bunkin, F.V., Gochelashvily, K.S., et al., Laser irradiance propagation in turbulent media, Proc. IEEE, 1975, 63, 790-811.
    [138] Fante, R.L., Mutual coherence function and frequency spectrum of a laser beam propagating through atmospheric turbulence, J. Opt. Soc. Am., 1974, 64, 592-598.
    [139] Fante, R.L., Electromagnetic beam propagation in turbulent media: An update, Proc. IEEE, 1980, 68, 1424-1443.
    [140] Hung, S.T. and Ishimaru, A., Two-frequency mutual coherence function, coherence bandwidth, and coherence time of millimeter and optical waves in rain, fog, and turbulence, Radio Sci., 1976, 11,551-559.
    [141] Hong, S.T., Sreenivasiah, Ⅰ. and Ishimaru, A., Plane wave pulse propagation through random media, IEEE Trans. Antennas Propag., 1977, 25, 822-828.
    [142] Ishimaru, A. and Hong, S.T., Multiple scattering effects on coherence bandwidth and pulse distortion of a wave propagating in a random distribution of particles, Radio Sci., 1975, 10, 637-644.
    [143] Liu, C.H. and Yeh, K.C., Propagation of pulsed beam waves through turbulence, cloud, rain, or fog, J. Opt. Soc. Am., 1977, 67, 1261-1266.
    [144] Liu, C.H. and Yeh, K.C., Pulse distortion in a random medium, Research Topics in Electromagnetic Wave Theory, ed. J.A. Kong, New York: John Wiley & Sons, ch1, 1981.
    [145] Sreenivasiah, Ⅰ. and Ishimaru, A., Beam wave two-frequency mutual coherence function and pulse propagation in random media: An analytic solution, Appl. Opt., 1979, 18, 1613-1618.
    [146] Andrews, L.C. and Miller, W.B., The mutual coherence function and the backscatter amplification effect for a reflected Gaussian-beam wave in atmospheric turbulence, Waves Random Media, 1995, 5, 167-182.
    [147] Oz, J. and Heyman, E., Modal solution to the two-frequency mutual coherence function in random media, Radio Sci., 1996, 31, 1907-1918.
    [148] Staelin, D.H., and Sutton, J.M., Nature, 1970, 226, 69.
    [149] Rankin, J.M., Comella, J.M., Craft, H.D., et al., Astrophys. J., 1970, 162, 707.
    [150] Yeh, K.C. and Yang, C.C., Mean arrival time and mean pulsewidth of signals propagating through a dispersive and random medium, IEEE Trans. Antennas Propag., 1977, 25, 710-713.
    [151] Lee, L.C., Jokipii J.R. Strong scintillations in astrophysics, 2. A theory of temporal broadening of pulses. Astrophys J., 1975, 201, 532~543.
    [152] Rand, T.W., and Yeh, K.C., Transfer functions and pulse distortion for an ionospheric reflection channel with embedded random irregularities, Radio Sci., 1991, 26, 1-14.
    [153] Ishimaru, A., Backscattering enhancement: from radar cross sections to electron and light localizations to rough surface scattering, IEEE Antennas Propag. Mag., 1991,33, 7-11.
    [154] Liu, C.H. and Yeh, K.C., Pulse spreading and wandering in random media, Radio Sci., 1979, 14, 925-931.
    [155] Rino, C.L. and Owen, J., On the temporal coherence loss of strongly scintillating signals, Radio Sci., 1981, 16, 31-33.
    [156] Nickisch, L.J., Non-uniform motion and extended media effects on the mutual coherence function: An analytic solution for spaced frequency, position, and time. Radio Sci., 1992, 27(1), 9-22.
    [157] Gherm, V.E., Zemov, N.N., et al., Propagation model for signal fluctuations on transionospheric radio links. Radio Sci., 2000, 35(5), 1221-1232.
    [158] Gherm, V.E., Zernov, N.N., et al., Wideband scattering functions for HF ionospheric propagation channels. J. Atmos. Solar-Terr. Phys., 2001, 63(14), 1489-1897.
    [159] Dana, R.A. and Wittwer, L.A., A general channel model for RF propagation through structured ionization, Radio Sci., 1991, 26, 1059-1068.
    [160] Majumdar, A. K., Higher-order skewness and excess coefficients of some probability distributions applicable to optical propagation phenomena, J. Opt. Am., 69(1), 1979, 199-202.
    [161] Majumdar, A.K., Higher-order statistics of laser-irradiance fluctuations due to turbulence, J. Opt. Am. A, 1(11), 1984, 1067-1074.
    [162] Ito, S., and Furutsu K., Theoretical analysis of the high-order irradiance moments of light waves observed in turbulent air, J. Opt. Soc. Am., 1982, 72(6), 760-764.
    [163] Lee, S.Y., Liu, C.H. and Yeh, K.C., Waves in random continuum described by path integrals, Research Topics in Electromagnetic Wave Theory, ed. J. A. Kong, New York: John Wiley & Sons, Chapter 2, 1981, 15-32.
    [164] Gurvich, A. et al., Four-point field coherence function in a turbulent medium, Opt. Acta., 1979, 26, 543-553.
    [165] Flatté, S.M., Bernstein, D.R. and Dashen, R., Intensity moments by path integral techniques for wave propagation through random media, with application to sound in the ocean, Phys. Fluids, 1983, 26, 1701-1713.
    [166] Tatarskii, V. et al., Space structure of strong intensity fluctuations of light in a turbulent medium, Opt. Acta., 1979, 26, 531-542.
    [167] Tatarskii, V.I., Ishimaru, A. and Zavorotny, V.U. (ed.), Wave Propagation in Random Media (Scintillation), SPIE Press and IOP Publishing, 1993.
    [168] Furutsu, K., Intensity correlation functions of lightwaves in a turbulent medium: an exact version of the two-scale method, Appl. Opt., 1988, 27, 2127-2144.
    [169] Mazar, R., Gozani, J. and Tur, M., Two-scale solution for the intensity fluctuations of two-frequency wave propagation in a random medium, J. Opt. Soc. Am. A, 1985, 2, 2152-2160.
    [170] Macaskill, C., An improved solution to the fourth moment equation for intensity fluctuations, Proc. R. Soc. Lond A, 1983, 386, 461-474.
    [171] Frankenthal, S., Whitman, A.M. and Beran, M.J., Two-scale solutions for intensity fluctuations in strong scattering, J. Opt. Soc. Am. A, 1984, 1, 585-597.
    [172] DiNapoli, F.R. and Deavenport, R.L., Numerical methods of underwater acoustic propagation, Topics in Current Physics, Ocean Acoustics, ed. J. A. DeSnato, Berlin: Springer-Verlag, 1979, pp. 79-185.
    [173] Bhattacharyya, A. and Yeh, K.C., Intensity correlation function for waves of different frequencies propagating through a random medium, Radio Sci., 1988, 23, 791-808.
    [174] Spivack, M. and Uscinski, B.J., The split step solution in random wave propagation, J. Comput. Appl. Math., 1989, 27, 349-361.
    [175] Tur, M., Numerical solutions for the fourth moment of a finite beam propagating in a random medium, J. Opt. Soc. Am. A, 1985, 2, 2161-2170.
    [176] Uscinski, B.J., Intensity fluctuations in a multiple scattering medium. Solution of the fourth moment equation, Proc. R. Soc. Lond. A, 1982, 380, 137-169.
    [177] Miller, S.J., Frequency cross-spectrum of intensity fluctuations produced by a deep-phase screen, Proc. R. Soc. Lond. A, 1987, 410, 229-248.
    [178] Miller, S.J. and Uscinski, B.J., Frequency cross-correlation of intensity fluctuations limitations of multiple-scattering solutions, Optica Acta, 1986, 33, 1341-1358.
    [179] Rumsey, V.H., Scintillations due to a concentrated layer with a power-law turbulence spectrum, Radio Sci., 1975, 10, 107-114.
    [180] Rastogi, R.G., and Koparkar, R.G., Multifrequeney studies of equatorial ionospheric scintillations at Ootaeamund, J. Atmos. Terr. Phys., 1990, 52, 69-76.
    [181] Yeh, K.C., Liu, C.H., Youakim, Y, A theoretical study of the ionospheric scintillation behavior caused by multiple scattering, Radio Sci., 1975, 10, 97-106.
    [182] Rino, C.L., Fremouw, E.J., The angle dependence of singly scattered wavefields, J. Atmos. Terr. Phys., 1977, 39, 859-868.
    [183] Fremouw, E.J. and Secan, J.A., Study of potential ionospheric effects on space-based radars. ADA219634, Northwest Research Associates, 1988.
    [184] McCandless, S.W., SAR in space—the theory, design engineering and application of a space-based SAR system Space-Based Radar Handbook, ed. L.J. Cantafio, Norwood: Artech House, 1989, pp. 121 - 166.
    [185] Curlander, J.C. and McDonough, R.N., Synthetic Aperture Radar: Systems and Signal Processing, New York: John Wiley & Sons, 1991.
    [186] Fante, R.L., Turbulence-induced distortion of synthetic aperture radar images, IEEE Trans. Geosci. Remote Sens., 1994, 32, 958-961.
    [187] Yeh, K.C., Mutual coherence functions and intensities of backscattered signals in a turbulent medium, Radio Sci., 1983, 18, 159-165.
    [188] 梁昆淼,数学物理方法,北京:高等教育出版社,第3版,1995。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700