用户名: 密码: 验证码:
GPS地面台网和掩星观测结合的时变三维电离层层析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电离层是日一地系统的重要组成,不仅保护了地球上的生物免受太阳紫外辐射和宇宙高能粒子的直接作用,而且对穿电离层传播的无线电波产生反射、散射、吸收和折射等效应。电离层与日一地系统的其它区域,包括太阳、行星际介质、磁层、热层和中层之间存在着强烈地耦合相互作用。由于太阳活动引起的地球空间环境扰动和各种等离子体不稳定性过程,电离层中存在不同尺度的不规则结构并常处于扰动状态之下,对短波通讯、卫星通讯和全球定位系统GPS的导航定位精度等产生严重影响。积极监测与研究电离层中的各种现象,从而揭示现象背后的物理机制,探索电离层对人类生存环境的影响,是空间天气研究的重要内容之一,对社会经济的发展十分重要。
     电离层层析成像技术是计算机层析成像技术在电离层探测中的应用,适合于监测电离层电子密度的大尺度空间分布及其扰动。结合GPS地面台网观测和GPS掩星技术的时变三维电离层层析是近年来发展起来的一种新技术,在电离层形态与扰动的监测研究方面有很大的科学意义和应用价值。尽管近年来针对结合地基GPS与掩星观测的时变三维电离层层析已经开展了模拟和实测数据的反演成像研究,但由于时变三维电离层层析问题的复杂性,还有许多问题尚待进行深入地研究。比如,结合地基GPS与掩星观测的时变三维电离层层析成像数学上的重建公式尚未建立,由GPS地面台网观测和低轨卫星获得的掩星观测数据实现时变三维电离层层析的反演算法和计算机程序有待发展等等。
     本论文研究工作的科学目标是,协同利用GPS地面台网和低轨卫星GPS掩星期间获得的GPS双频信标数据,重建待探测区域电离层电子密度的时变三维分布。文中着重在理论上探讨了时变三维电离层层析的数学基础,进而建立了结合地基GPS与掩星观测的时变三维电离层层析成像重建公式,然后提出了利用相对TEC数据实现时变三维电离层层析成像的方法。使用本文提出的方法,对实测数据进行了处理和反演成像,获得了一些有重要科学意义的结果。本文主要的研究工作在国内尚属首次,在国际上也是近几年才开展起来的。本文的研究表明,利用GPS地面台网和掩星观测结合的时变三维电离层层析成像技术可以对电离层大尺度结构的时空演变进行较为有效的监测。论文的主要研究工作和结果归纳如下:
     1.从傅立叶变换理论出发,推导得到了地基平行束投影定理和掩星平行束投影定理,结合地
    
     基平行束投影定理和掩星平行束投影定理,建立了结合地基GPS与掩星观测的时变三维
     电离层层析成像重建公式。这一创新性研究成果为进一步研究时变三维电离层层析成像技
     术提供了坚实的理论依据。
     》根据观测几何构形和傅立叶变换公式,首先推导得到了地基平行束投影定理,它建立
     了投影(电子密度的路径积分,即TEc)的时空三维Fourier谱与电子密度的时空四维
     Fourier谱之间的联系,是CIT重建的基础。利用地基平行束投影定理和傅立叶逆变
     换公式,推导得到了由地基投影数据重建电子密度分布的时变三维电离层层析成像重
     建公式。
     》根据地基平行束投影定理,不能由仰角为O或兀的地基GPS观测数据确定电子密度谱
     在Fourie:空间中相应超平面上的值。在实际应用中,考虑到地球曲率、电离层对低
     仰角射线的强折射效应后,满足反演条件的地基GPS射线大多在垂直或接近垂直方
     向上,有限扫描视角的问题非常严重。地基射线仰角范围的限制导致单独使用地基
     GPS观测数据重建电离层电子密度分布时电子密度谱信息丢失,其后果是反演得到
     的电子密度分布图像垂直方向上的分辨率很低。掩星平行束投影定理的建立表明,利
     用GPS掩星观测数据可以补充由于地基数据仰角范围限制而丢失的电子密度谱信
     息,从而改善电子密度分布图像的重建质量。
     》结合地基平行束投影定理和掩星平行束投影定理,推导得到了结合地基GPS与掩星
     观测的时变三维电离层层析成像重建公式,这为进一步研究时变三维电离层层析成像
     的具体实现算法提供了理论依据。
    2.从结合地基GPS与掩星观测的时变三维电离层层析成像重建公式出发,推导得到了时空
     四维脉冲源函数的重建公式。在理想条件和非理想条件下,根据本文推导的重建公式对脉
     冲源进行了重建。
    》在理想条件下(地基接收机和星载接收机连续分布,接收机在任何时刻都有观测数
     据),若地基GPS射线无仰角范围限制,由地基数据可以无畸变地重建时空四维脉冲
     源函数;若地基射线仰角受限,结合地基GPS数据和掩星数据亦可无畸变地重建时
     空四维脉冲源函数。
    》在接收机数量稀少、视角有限以及观测数据时间采样有限等非理想条件下,对脉冲源
    
    函数的重建必须根据重建公式利用数值方法进行。根据本文推导得到的重建公式分别
    对空间三维脉冲源和时空四维脉冲源进行了重建,其结果均能很好地重现源函数。通
    过与单独使用地基数据得到的重建结果比较后可以看到,添加掩星数据后,重建结果
    特别是其垂直结构的重建质量得到了明显改善,表明协同使用地基GPS与掩星观测
    数据
The Earth's ionosphere is one of the main regions in the solar-terrestrial system. The ionosphere not only protects creatures on the Earth from direct actions of solar UV (EUV) radiation and cosmic energetic particles, but also influences radio propagation through it by reflection, scattering, absorption and refraction. The ionosphere is strongly coupled with the other regions in the solar-terrestrial system, including the sun, the interplanetary medium, the magnetosphere, the thermosphere, and the mesosphere. Because of various disturbances of the Earth's space environment induced by solar activities and plasma instability processes, various irregular structures with widely different spatial scales exist in the ionosphere and the ionosphere is often in disturbed conditions, which influences seriously shortwave communication, satellite communication, navigation and positioning precision of GPS and so on. It's one of the main topics in space weather research to monitor and investigate ionospheric phenomena, r
    eveal physical mechanism of ionospheric phenomena, and analyze the influences of the ionosphere on living environment, which is very important for the development of economy.
    Computerized Ionospheric Tomography (CIT) is the application of computerized tomography to ionospheric sounding and is suitable for monitoring large-scale spatial structures and disturbances of ionospheric electron density. Time-dependent 3-D CIT with ground-based GPS network observations and GPS occupation measurements is a new technique just at beginning research in recent years, which is of high value to monitor and investigate ionospheric morphology and perturbations. Simulations and inversions based on observations for time-dependent 3-D CIT with ground-based GPS network and occultation observations have been performed in recent years. However, due to the complicated nature of time-dependent 3-D CIT, there still remains lots of questions needed to be studied further, such as the reconstruction formula of time-dependent 3-D CIT with ground-based GPS network and occultation observations should be established, inversion algorithm and computer program of time-dependent 3-D CIT with ground-based GPS network
    and occultation observations should be developed and so on.
    The research work discussed in this dissertation aims to image time-dependent 3-D distribution of ionospheric electron density, Ne, in the region to be recovered from the combination of ground-based GPS network measurements and GPS beacon observations obtained by a receiver on board of Low Earth Orbit (LEO) satellite when the GPS satellite is occulted by the surface of the Earth as seen by the receiver. After discussing theoretically the mathematical foundation of
    
    
    time-dependent 3-D CIT and deducing its reconstruction formula with ground-based GPS network and occultation observations, a new reconstruction method is proposed to perform time-dependent 3-D CIT with relative Total Electron Content (TEC) data. Observations have been processed with the above reconstruction method and some results with important geophysical implications have been obtained. The main research work in this dissertation is the first attempt in China, and also a topic just at beginning research all over the world in recent years. The studies in this dissertation demonstrate that time-dependent 3-D CIT with ground-based GPS network and occultation observations is rather effective to monitor the spatio-temporal evolution of large-scale ionospheric structures. The main results of this dissertation are summarized as follows.
    1. According to the Fourier transform theory, the projection theorem of ground-based parallel-beam rays and the projection theorem of occultation parallel-beam rays are deduced respectively. Based on the two projection theorems, the reconstruction formula of time-dependent 3-D CIT with ground-based GPS network and occultation observations is established. This research result is innovative and provides the theoretical basis to investigate time-dependent 3-D CIT further.
    ? On the b
引文
[1]Austen, J. R., S. J. Franke, C. H. Liu, and K. C. Yeh, Application of computerized tomography technique to ionospheric research, URSI and COSPAR International Beacon Satellite Symposium on Radio Beacon Contribution to the Study of Ionization and Dynamics of the Ionosphere and to Corrections to Geodesy and Technical Workshop, Oulu, Finland, Proc. Part 1, 25, A.Tauriainen, Ed., University of Oulu, ISBN 951-42-2256-3, 1986.
    [2]Austen, J. R., S. J. Franke, and C. H. Liu, Ionospheric imaging using computerized tomography. Radio Sci., 1988, Vol. 23, No. 3, pp. 299-307.
    [3]Raymund, T. D., J. R. Austen, S. J. Franke, et al., Application of computerized tomography to the investigation of ionospheric structures, Radio Sci., 1990, Vol. 25, pp. 771-789.
    [4]Yeh, K. C., T. D. Raymund, Limitations of ionospheric imaging by tomography, Radio Sci., 1991, Vol. 26, No. 6, pp. 1361-1380.
    [5]Pryse, S. E., L. Kersley, A preliminary experimental test of ionospheric tomography, J. Atmos. Terr. Phys., 1992, Vol. 54, pp. 1007-1012.
    [6]Raymund, T. D., S. E. Pryse, L. Kersley, and J. A. T. Heaton, Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification, Radio Sci., 1993, Vol. 28, pp. 811-817.
    [7]Foster, J. C., M. J. Buonsanto, J. M. Holt, et ai, Russian-American tomography experiment, International Journal of Imaging Systems and Technology, 1994, Vol. 5, No. 2, pp. 148-159.
    [8]徐继生,马淑英,阳其罕等,东亚赤道异常区电离层CT诊断—实验及初步结果,地球物理学报,1995,38(5),553-562。
    [9]Raymund, T. D., Comparisons of several ionospheric tomography algorithms, Ann. Geophys., 1995, Vol. 13, No. 12, pp. 1254-1262.
    [10]Kunitsyn, V. E., E. D. Tereshchenko, E. S. Andreeva, et al, Radiotomographic investigations of ionospheric structures at auroral and middle latitudes, Ann. Geophys., 1995, Vol. 13, No. 12, pp. 1242-1253.
    [11]Pryse, S. E., L. Kersley, C. N. Mitchell, et al, A comparison of reconstruction techniques used in ionospheric tomography, Radio Sci., 1998, Vol. 33, pp. 1767-1779.
    [12]Yunck, T. P., G. F. Lindal, and C. H. Liu, The role of GPS in precise Earth observation, Proceedings of the IEEE Position, Location and Navigation Symposium, Orlando, Florida, 1988.
    [13]Hajj, G A., R. Ibanez-Meier, and E. R. Kursinski, Ionospheric imaging from a low earth orbiter tracking GPS, Proceedings of the ION-GPS 93 Conference, Institute of Navigation, Salt Lake City, Utah, 1993.
    
    
    [14]Hajj, G. A., R. Ibanez-Meier, E. R. Kursinski, and L. J. Romans, Imaging the ionosphere with the Global Positioning System, International Journal of Imaging Systems and Technology, 1994, Vol. 5, No. 2, pp. 174-184.
    [15]Kunitsyn, V. E., E. S. Andreeva, and O. G. Razinkov, Possibilities of the near-space environment radio tomography, Radio Sci., 1997, Vol.32, No. 5, pp.1953-1963.
    [16]Rius, A., G. Ruffini and L. cucuruil, Improving the vertical resolution of ionospheric tomography with GPS occultations, Geophys. Res. Lett, 1997, Vol. 24, No. 18, pp. 2291-2294.
    [17]Hajj, G. A. and L. J. Romans, Ionospheric electron density profiles obtained with the global positioning system: results from the GPS/MET experiment, Radio Sci., 1998, Vol. 33, No. 1, pp. 175-190.
    [18]Stolle, C., S. Schlüter, Ch. Jacobi, N. Jakowski, Ionospheric tomography and first interpretations of including space-based GPS, Rep. Inst. Meteorol. Univ. Leipzig, 2002.
    [19]Liang, P. H., F_2 ionization and geomagnetic latitudes, Nature, 1947, Vol. 160, pp. 642-644.
    [20]Baron, M. J., The CHATANIC Radar System, Radio probing of the auroral plasma (Eds: Asgeir Brekke), 103, Universitetsforlaget, ISBN 82-00-02421-0, 1977.
    [21]Hargreaves, J. K., The Solar-terrestrial Environment, Cambridge University Press, London, 1992.
    [22]Garriott, O. K., A. V. Darosa, and W. J. Ross, Electron content obtained from Faraday rotation and phase path length variations, J. Atmos. Terr. Phys., 1970, Vol. 32, pp. 705-727.
    [23]Hardy, K. R., D. P. Hinson, G, L. Tyler, and E. R. Kursinski, Atmospheric profiles from active space-based radio measurements, Proceedings of the 6th Conference on Satellite Meteorology and Oceanography, American Meteorological Society, Boston, 1992.
    [24]Hajj, G A., E. R. Kursinski, W. I. Bertiger, and L. J. Romans, Assessment of GPS occultations for atmospheric profiling, Proceedings of the 7th Conference on Satellite Meteorology and Oceanography, American Meteorological Society, Monterey, California,1994.
    [25]Leitinger, R., Tomography, Modern Ionospheric Science, Eds: H. Kohl, R. Ruster and K. Schlegel, European Geophys, ISBN 3-9804862-1-4, 1996.
    [26]Ware, R., M. Exner, D. Feng, et al., GPS sounding of the atmosphere from low earth orbit: Preliminary results, Bulletin of American Meteorological Society, 1996, Vol.77, No. 1, pp. 19-40.
    [27]吴雄斌,低纬电离层CT实验与算法,武汉大学博士学位论文,1999。
    [28]Lewitt, R. M., Reconstruction algorithms: transform methods, Proc. IEEE, 1983, Vol. 71, pp. 390-408.
    [29]Censor, Y., Finite series-expansion reconstruction methods, Proc. IEEE, 1983, Vol. 71, pp. 409-419.
    [30]Menke, W., Geophysical data analysis: Discrete inverse theory, 45 of International geophysics
    
    series, Academic Press, San Diego, 1989.
    [31]Kunitsyn, V. E., E. S. Andreeva, O. G. Razinkov and E. D. Tereshchenko, Phase and Phase-difference ionospheric radio tomography, International Journal of Imaging Systems and Technology, 1994, Vol. 5, No. 2, pp. 128-140.
    [32]Deans, S. R., the Radon Transform and Some of its Applications, John Wiley, New York, 1983.
    [33]Howe, B. M., K. Runciman, and J. A. Secan, Tomography of the ionosphere: Four-dimensional simulations, Radio Sci., 1998, Vol. 33, No. 1, pp. 109-128.
    [34]M. Garcia-Fernandez, M. Hernandez-Pajares, J. M. Juan, et al, Combining ionosonde with ground GPS data for electron density, estimation, J. Atmoso Terr. Phys., 2003, Vol. 65, pp. 683-691.
    [35]Tsai, L. C., W. H. Tsai, W. S. Schreiner, et al, Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data, Earth Planets Space, 2001, Vol. 53, pp. 193-205.
    [36]Jakowski, N., A. Wehrenpfenning, S. Heise, et al, GPS radio occultation measurements of the ionosphere from CHAMP: Early results, Geophys. Res. Lett., 2002, Vol. 29, No. 10, 10.1029 /2001GL014364.
    [37]Schreiner, W. S., S. V. Sokolovskiy, et al., Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 1999, Vol. 34, No. 4, pp. 949-966.
    [38]Kak, A. C., M. Slaney, Principles of Computerized Tomographic Imaging, IEEE press, New York, ISBN 0-87942-198-3, 1988.
    [39]康克军,毛希平,基于Radon变换导数的精确三维CT图像重建理论与改进方法介绍,核电子学与探测技术,1997,第17卷,第5期,321-324。
    [40]Chiu, M-Y., H. H. Barrett and R. G. Simpson, Three-dimensional reconstruction from planar projections, J. Opt. Soc. Am., 1980, Vol. 70, pp. 755-762.
    [41]Natterer, F., The Mathematics of Computerized Tomography. New York: Wiley, 1986.
    [42]Smith, B. D., Cone-beam convolution formula, Comput. Bio. Med., 1983, Vol. 13, pp. 81-87.
    [43]Tuy, H. K., An inversion formula for cone-beam reconstruction, SIAM J. Appl. Math, 1983, Vol. 43, pp. 546-552.
    [44]Smith, B. D., Image reconstruction from cone-beam projections: necessary and sufficient conditions and reconstruction methods, IEEE Trans. Med Imag., 1985, Vol. 4, No. 1, pp. 14-28.
    [45]Smith, B. D., Cone-beam tomography: recent advances and a tutorial review, Optical Engineering, 1990, Vol. 29, No. 5, pp. 524-534.
    [46]Defrise, M. and R. Clack, A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection, IEEE Trans. Med. Imag., 1994, Vol. 13, No. 1, pp. 186-195.
    
    
    [47]Kudo, H. and T. Saito, Fast and stable cone-beam filtered backprojection method for non-planar orbits, Phys. Med. Biol., 1998, Vol. 43, pp. 747-760.
    [48]Grangeat, P., Mathematical framework of cone-beam 3D reconstruction via the first derivative of the Radon transform, Lecture Notes in Mathematics 1497, G. T. Herman, A. K. Louis, F. Natterer, Eds., Berlin: Springer-Verlag, 1991, pp. 66-67.
    [49]Gordon, R., R. Bender and G. T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography, J Theor. Biol., 1970, Vol. 29, pp. 471-481.
    [50]Alejandro Flores, Atmospheric Tomography Using Satellite Radio Signals, Ph.D. thesis, Institut d'Estudis Espacials de Catalunya (IEEC), CSIC Research Unit, Barcelona, Spain, 1999.
    [51]徐绍铨,张华海等,GPS测量原理及应用,武汉测绘科技大学出版社,ISBN7-81030-660-X,1998。
    [52]Budden, K. G., The propagation in radio astronomy, Cambridge University Press, 1985.
    [53]周忠谟,易杰军,GPS卫星测量原理与应用,测绘出版社,ISBN 7-5030-0540-8/P207,1992。
    [54]Jakowski, N., TEC monitoring by using satellite positioning systems, Modern Ionospheric Science, Eds: H. Kohl, R. Ruster and K. Schlegel, European Geophys, ISBN 3-9804862-1-4, 1996.
    [55]Sardon, E., N. Zarraoa, Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases? Radio Sci., 1997, Vol. 32, No. 5, pp. 1899-1910.
    [56]Sardon, E., A. Rius and N. Zarraoa, Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Position System Observations. Radio Sci., 1994, Vol. 29, No. 3. pp. 577-586.
    [57]Mannucci, A. J., B. D. Wilson, D. N. Yuan, et al, A global mapping technique for GPS-defived ionospheric total electron content measurements, Radio Sci., 1998, Vol. 33, pp. 565-582.
    [58]Otsuka, Y., T. Ogawa, A. Saito, et al, A new technique for mapping of total electron content using OPS network in Japan, Earth Planets Space, 2002, Vol. 54, No. 1, pp. 63-70.
    [59]Kaplan, E. D., Understanding GPS: Principles and Applications, Norwood, MA: Artech House. 1996.
    [60]Blewitt, G, An automatic editing algorithm for GPS data, Geophys. Res. Lett., 1990, Vol. 17, No. 3, pp. 199-202.
    [61]Hajj, G. A., E. IL Kursinski, L. J. Romans, W. I. Bertiger and S. S. Leroy, A technical description of atmospheric sounding by GPS occultation, J Atmos. Terr. Phys., 2002, Vol. 64, pp. 451-469.
    
    
    [62]Todd Mori Kawakami, Validation of Ionospheric Electron Density Profiles Inferred from GPS Occultation Observations of the GPS/MET Experiment, Ph.D. thesis, University of Texas, Austin, USA, 2001.
    [63]Fjeldbo, G., Bistatic-radar methods for studying planetary ionospheres and surfaces, Science Report No. 2, NsG-377, SU-SEL-64-025, Stanford Electronics Laboratories, Stanford, California, 1964.
    [64]Kliore, A. J., T. W. Hamilton and D. L. Cain, Determination of some physical properties of the atmosphere of Mars from changes in the Doppler signal of a spacecraft on an Earth occultation trajectory Technical Report 32-674, Jet Propulsion Laboratory, Pasadena, California, 1964.
    [65]Fjeldbo, G., and V. R. Eshelman, The atmosphere of Mars analyzed by integral inversion of the Mariner Ⅳ occultation data, Planetary Space Science, 1968, Vol. 16, pp. 1035-1059.
    [66]Fjeldbo, G., A. J. Kliore, and V. R. Eshelman, The neutral atmosphere of Venus as studied with the Mariner Ⅴ radio occultation experiments, Astronomical Journal., 1971, Vol. 76, No. 2, pp. 123-140.
    [67]Fischbach, F. F, A satellite method for temperature and pressure below 24km, Bull. Am. Meteorol. Soc., 1965, Vol. 9, pp. 528-532.
    [68]Lusignan, B., G. Modrell, A. Morrison, J. Pomalaza and S. G, Ungar, Sensing the Earth's atmosphere with occultation satellites, Proc. IEEE, 1969, Vol. 4, pp. 458-467.
    [69]Gorbunov, M. E., Accuracy of the refractometric method in a horizontally nonuniform atmosphere, Izv., Atmos. and Oceanic Phys., 1988, Vol. 5, pp. 381-384.
    [70]R0eken, C., Y. H. Kuo, W. S. Schreiner, et al, COSMIC-System Description, Terrestrial, Atmospheric and Oceanic Sciences, 2000, Vol. 11, No. 1, pp. 21-52.
    [71]Hajj, G. A., L. C. Lee, X. Pi, et al., COSMIC GPS ionospheric sensing and space weather, Terrestrial, Atmospheric and Oceanic Sciences, 2000, Vol. 11, No. 1, pp. 235-272.
    [72]Leitinger, R., H. P. Ladreiter and G, Kirchengast, Ionosphere tomography with data from satellite reception of global navigation satellite system signals and ground reception of navy navigation satellite system signals, Radio Sci., 1997, Vol. 32, pp. 1657-1669.
    [73]Eshelman, V. R., the radio occultation method for the study of planetary atmospheres, Planetary Space Science, 1973, Vol. 21, pp. 1521-1531.
    [74]Kursinski, E. R,, G. A. Hajj, J. T. Schofieid et al, Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, Journal of Geophysical Research, 1997, Vol. 102, No. D19, pp. 23429-23465.
    [75]Melbourne W. G., E. S. Davis, C. B. Duncan et al, The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL PubliCation 94-18, Pasadena, Ca, 1994.
    
    
    [76]Kursinski, E. R., G. A. Hajj, S. S. Leroy, B. Herman, the GPS Radio Occultation Technique, Terrestrial, Atmospheric and Oceanic Sciences, 2000, Vol. 11, No. 1, pp. 53-114.
    [77]Rius, A., G. Ruffini, A. Romeo, Analysis of ionospheric electron density distribution from GPS/MET occultations, IEEE Transactions on Geoscience and Remote Sensing, 1998, Vol. 36, No. 2, pp. 383-394.
    [78]Escudero, A., A. C. Schlesier, A. Rius, et al., Ionospheric tomography using Orsted GPS measurements--Preliminary results, Physics and Chemistry of Earth, 2001, Vol. A26, No. 3, pp. 173-176,
    [79]Batiata, I. S., E. R. DE Paula, N. B. Trivedei, and M. E. Greenspan, Ionospheric effects of the March 13, 1989 Magnetic storm at low and Equatorial latitudes, J. Geophys. Res., 1991, Vol. 96, pp. 13943-13952.
    [80]Yeh, C. C., S. Y. Ma, and K. H. Lin, Global ionospheric effects of the October 1989 geomagnetic storm, J. Geophys. Res., 1994, Vol. 99, pp. 6201-6218.
    [81]Tanaka, T., Severe ionospheric disturbance caused by the sudden response of evening subequatorial ionosphere to geomagnetic storms, J. Geophys. Res., 1981, Vol. 86, pp. 11335-11349.
    [82]Forbes, J. M., M. Codrescu, and T. J. Hall, On the utilization of ionosonde data to analyze the latitude penetration of ionospheric storm effects, Geophys. Res. Lett., 1988, Vol. 15. pp. 249-252.
    [83]Forbes, J. M., Evidence for the equatorward penetration of electric field, winds, and compositional effects in the Asia/Pacific sector during the September 17-24, 1984, ETS Interval, J. Geophys. Res., 1989, Vol. 94, pp. 16999-17007.
    [84]Moffett, R. J., and S. Quegan, The mid-latitude trough in the electron concentration of the ionospheric F layer: a review of observations and modelling, J. Atmos. Terr. Phys., 1983, Vol. 45, pp. 315-343.
    [85]Rodger, A. S., R. J. Moffett, and S. Quegan, The role of ion drift in the formation of ionization troughs in the mid-and high-latitude ionosphere - a review, J. Atmos. Terr. Phys., 1992, Vol. 54, pp. 1-30.
    [86]Collia, P. N., and I.Hggstrm, Plasma convection and auroral precipitation processes associated with the main ionospheric trough at high latitudes, J. Atmos. Terr. Phys., 1988. Vol. 50, pp. 389-404.
    [87]Smith A. J., A. S. Rodger, and D. W. P. Thomas, Simultaneous ground-based observation of the plasmapause and the F-region mid-latitude trough, J. Atmos. Terr.Phys., 1987, Vol. 49, pp. 43-48.
    [88]Anderson, P. C., W. B. Hanson, R. A. Heelis, et al., A proposed production model of rapid subauroral ion drifts and their relationship tO substorrn evolution, J. Geophys. Res., 1993, Vol. 98, pp. 6069-6078.
    
    
    [89]Senior, C., J. R. Sharber, de la Beaujardiere O., et al., E and F region study of the evening sector auroral oval: a Chatanika/Dynamics explorer/NOAA 6 comparison, J. Geophys. Res., 1987, Vol. 92, pp. 2477-2494.
    [90]Rodger, A. S., Spread-F ionospheric irregularities and their relationship to stable auroral red arcs at magnetic mid-latitudes, J. Atmos. Terr Phys., 1984, Vol. 46, pp. 335-342.
    [91]Knudsen, W. C., Magnetic convection and the high-latitude F_2 ionosphere, J. Geophys. Res., 1974, Vol. 79, pp. 1046-1055.
    [92]Valladares, C. E., S. Basu, J. Buchau, Frits-Christensen E., Experimental evidence for the formation and entry of patches into the polar cap, Radio Sci., 1994, Vol. 29, pp. 167-194.
    [93]Klobuchar, J. A., P. H. Doherty, G. J. Bailey, and K. Davies, Limitations in Determining Absolute Total Electron Content from Dual-Frequency GPS Group Delay Measurements, Proceedings of the International Beacon Satellite Symposium, University of Wales, Aberystwyth UK, 11-15 July 1994.
    [94]Balan, N., Y. Otsuka, T. Tsugawa, et al, Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet conditions at high solar activity, Earth Planets Space, 2002, Vol. 54, No. 1, pp. 71-79.
    [95]Mitchell, C. N. and P. S. J. Spencer, Ionospheric elctron concentration mapping using GPS over Europe and USA during the storm of July 2000, 27th General Assembly of the International Union of Radio Science, Maastricht, August 2002.
    [96]Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Oxford University Press, New York, 1962.
    [97]徐继生,邹玉华,时变三维电离层层析成像重建公式,地球物理学报,2003,46(4),438-445。
    [98]Pajares, M. H., J. M. Juan, J. Sanz, and J. G. Sole, Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data. J. Geophys. Res., 1998. Vol. 103, pp. 20789-20796.
    [99]Zumberge, J., R. Neilan, G. Beutler, and W. Gurtner, The International GPS service for Geodynamics-Benefits to Users, paper presented at GPS-94 Meeting, Inst. of Nav., Salt Lake City, Utah, Sept 20-23, 1994.
    [100]Wickert, J., C. Reigbe, Atmosphere sounding by GPS radio occultation: first results from CHAMP, Geophys. Res. Lett., 2001, Vol. 28, pp. 3263-3266.
    [101]Bilitza, D. (2003). International Reference Ionosphere. http://nssdc.gsfc.nasa.gov/space/model/ionos/iri.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700