用户名: 密码: 验证码:
基于混沌理论的GPS电离层预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球上的大气是环境的重要组成要素,其中的电离层作为近地空间环境的重要组成部分,对于涉及电磁波信号传播的导航、大地测量、通信等工程领域有着重要的影响。随着GPS卫星导航系统的迅速发展及其导航定位精度的不断提高,电离层延迟对电磁波信号的影响越来越成为人们关注的热点,利用GPS系统对电离层进行现报和预报的需求也越来越强烈。
     自然科学和社会经济各个领域对时间序列预测理论和方法有着广阔的需求,学者们提出了基于统计理论的各种各样的线性和非线性方法。然而,看似随机的系统可能有着确定性的动力学机制,看似无规则的时间序列数据可能是规则轨迹的一个侧面,20世纪末发现的这一混沌现象及其理论为非线性时间序列分析和预测提供了一个崭新的思路。
     本文基于混沌理论,重点研究了电离层TEC时间序列,从定性和定量的角度分析了电离层的混沌特性。在此基础上,利用相空间重构恢复电离层TEC系统的动力学特征,进而在时间序列的噪声去除、预测方法方面进行了系统和深入的研究。
     首先,论述了利用GPS技术计算并提取电离层TEC的方法和流程。针对汶川地震,利用重庆GPS-CORS站计算并探测地震之前TEC数据异常变化。利用我国境内的IGS站观测数据分析了日食前电离层的异常变化,验证了前人的结论。
     其次,利用混沌分析的理论和方法,对电离层TEC进行了相空间重构,从重构的相图和重构后轨迹的最大Laypunov指数等可以判断出电离层TEC序列的混沌特性。分析不同纬度处的最大Laypunov指数变化规律,初步得出了可预测的时间尺度。不同时间采样率的TEC数据重构后相空间的比较可以看出它们所包含的系统动力学信息不完全相同。
     第三,对电离层TEC数据进行了时频分析和多尺度分析,结合了TEC的主要影响因素进行了电离层的相关分析,为后续进行时间序列分析和预测提供了一些基础信息。利用电离层TEC时间序列的相空间重构,结合小波分解进行了消噪方法的研究,TEC数据本身的混沌特性的充分应用提高了消噪效果。
     第四,根据混沌相空间轨迹的局部相似特性理论,采用一阶局域法进行了预测,和常用的方法进行比较,认为混沌局域法时间序列预测并没有明显优势。进一步借助神经网络方法,充分利用TEC时间序列的混沌特性,构造了一个混沌神经网络模型进行TEC预测分析,解决了神经网络结构确定的问题,并改善了训练的学习算法。
     最后,基于多变量时间序列分析的理论,将电离层TEC与其相关的变量进行了组合预测,一定程度上改善了预测精度。
     本文是混沌理论在电离层TEC分析中的一次全面而深入的实践,所得到的时间序列的混沌特征参数又充分地应用到了数据的分析和预测方法中。针对电离层TEC时间序列,在数据的消噪、构建神经网络预测模型以及神经网络的学习方法三个方面引入混沌思想后得到了较为理想的结果。本文的研究成果对于时间序列数据的处理、预测等方面的工作具有重要的参考意义和实用价值。
The earth atmosphere is an important component of the close-earth spatial environment. Among it, the ionosphere is greatly influencing the electromagnetic wave signal transmission related engineerig applications, such as navigation, geodetic and telecommunications, etc. With the fast development of the GPS satellite navigation system and the continuous improvement of its positioning and navigation accuracy, the impact of the ionospheric time delay on electromagnetic wave signal has increasingly become a hot topic concerned by human being. The requirement on the ionospheric real-time broadcast and forecast has also become more and more forceful, with the help of GPS.
     The time series prediction theory and methods are widely applied to every field of the natural science and social economy. For them, many scholars have put forwards various linear and nonlinear methods. Afterwards, some scholars found that there is perhaps a fixed dynamic mechanism for the seemingly random system, and there is perhaps a regular track profile in the seemingly irregular time series data. At the end of the 20s century, the finding of chaotic phenomena and its theory provided a fully innovative thinking way for the analysis and prediction on the nonlinear time series.
     This thesis mainly studies the chaotic characteristics of ionospheric TEC time series. Its chaotic characteristics are analyzed from both qualitative and quantitative angles. On this basis, the systematically dynamic characteristic of ionospheric TEC is renewed by means of phase space reconstruction. Moreover, the systematic and deep research is performed on the denoising and prediction of the time series.
     Firstly, some methods and workflows are described on the ionospheric TEC to be calculated and extracted by GPS technology. Regarding the Wenchuan Earthquake, the abnormal variation on TEC data ahead of the disaster is calculated and detected by means of Chongqing GPS-CORS stations. The ionospheric abnormal variation before solar eclipse is analyzed by means of the IGS station observations in China and the past conclusion is proved.
     Secondly, based on the theory and method of chaotic analysis, we re-construct the phase space for the ionospheric TEC. Its chaotic characteristic can be judged through the re-constructed phase diagram and trajectory Laypunov index and so on. By analyzing the variation rule of the maximum Laypunov index at different latitudes, we preliminarily get the time scale for prediction. The comparison of phase space after TEC data reconstrucation with different time sampling rates shows that their included systematic dynamics information is not wholly the same.
     Thirdly, we do the time-frequency analysis and multi-scale analysis on the ionospheric TEC data. Combining with some major influencing factors on TEC, we also do the relevant ionospheric analysis. These provide some fundamental information for the next time series analysis and prediction. By utilizing the phase space reconstruction on the ionospheric TEC time series as well as combing the wavelet decompostion in denoising methods research, the denoising result is improved through the full applicaion of the chaotic characteristic of the TEC data itself.
     Fourthly, according to the local similarity feature theory of the chaotic time series prediction, we use the one-rank local-region method to predict. Comparing with the common methods, we think there is not obvious advantage on time series prediction by chaotic local-region method. Moreover, by means of the neural networks method, we fully use the chaotic characteristic of the time series and set up a chaotic artificial nerual networks for TEC prediction and analysis. The issue related to determining the neural networks structure is solved. And the learning algorithm for training is improved.
     Finally, based on the multi-variable time series analysis theory, we put the ionospheric TEC and its related variables together for combined prediction. Therefore, the prediction result is improved to some extent.
     This thesis is a full and deep practice of the chaos theory to the ionospheric TEC analysis. The parameters of the chaotic characeristic being acquired in the time series have also been applied to the data analysis and prediction methods. As far as the ionospheric TEC time series are concerned, some faily good results have been found through three respective aspects, namely data denoising, neural networks prediction model construction and nerual networks learning method. Its research results have an important reference meaning and a practical value for time series data processsing and prediction related work.
引文
A. García-Rigo, E. Monte,et,al. Prediction of Global Ionospheric TEC Maps: First results on a UPC forecast product[J]. in proceedings of European General Assembly (EGU), 2009.
    A. Krankowski, W. Kosek, L.W. Baran, W. Popinski. Wavelet analysis and forecasting of VTEC obtained with GPS observations over European latitudes[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2005 (67): 1147-1156.
    A. W. Wernik, K. C. Yeh. Chaotic behavior of ionospheric scintillation: Modeling and observations[J]. RADIO SCIENCE, 1994, 29(1):135-144.
    Bilitza, D. International Reference Ionosphere 2000[J]. Radio Science, 2001, 36 (2): 261-275.
    Brown, L.D. et al. Evaluation of six ionospheric models as predictors of total electron content[J]. Radio scienct,1991: 1007-1031.
    Dan-Dan Liu, Tao Yu, Jing-Song Wang, Cong Huang, Wei-Xing Wan. Using the radial basis function neural network to predict ionospheric critical frequency of F2 layer over Wuhan[J]. Advances in Space Research, 2009(43):1780-1785.
    De Franceschi, G., De Santis, A., Pau, S. Ionospheric mapping by regional Spherical Harmonic Analysis: new developments[J]. Advances in Space Research, 1994, 14 (12): 61-64.
    Erisin Tulunay, Erdem T. Senalp, et al. Development of algorithms and software for forecasting, nowcasting and variability of TEC[J]. Annals of Geophysics, 2004,47(SUPPLEMENT): 1201-1214.
    Habarulema, J.B., McKinnell, L-A., and Opperman, B.D.L. Towards a GPS-based TEC prediction model for Southern Africa with feed forward networks[J]. Advances in Space Research, 2009(44): 82-92.
    Hernández-Pajares M.. IGS Ionosphere WG Status Report: Performance of IGS Ionosphere TEC Maps (Position paper), IGS Workshop, Bern, 2004.
    Kaplan D T, Glass L. Direct test for determinism in a time series Phys[J]. Rev. Lett. 1992, (68): 427-457.
    Klobuchar, J.A. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(3):325-331.
    Komjathy, A. Global Ionospheric Total Electron Content Mapping Using the Global PositioningSystem[D]. Ph.D. dissertation, University of New Brunswick, Canada. 1997.
    Kumar, K. S., C. V. A. Kumar, B. George, G. Renuka, and C. Venugopal, Analysis of the fluctuations of the total electron content (TEC) measured at Goose Bay using tools of nonlinear methods[J]. J. Geophys. Res., 2004, 109, A02308, doi:10.1029/2002JA009768.
    K. Davis and G. K. Hartmann. Studying the ionosphere with the Global Positioning System[J]. Radio Sci. 1997, 32(4): 1695-1703.
    K. Unnikrishnan, R. Balachandran Nair, Chandu Venugopal. Harmonic analysis and an empirical model for TEC over Palehua[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002(64) 1833-1840.
    Garcia, R., F. Crespon, V. Ducic, and P. Lognonn′e, Three-dimensional ionospheric tomography of post-seismic perturbations produced by the denali earthquake from gps data[J]. Geophys. J. Int., , 2005, 163:1049-1064.
    N.Goldovsky, M.Luria, Ionospheric delay contribution to the uncertainty of time and frequency measurement by one-way satellite time transfer method, Measurement, 2004, 35:353-362.
    G. Hochegger, B. Nava, S. Radicella and R. Leitinger. A Family of Ionospheric Models for Different Uses[J]. Phys. Chem .Eurth, 2000,25(4):307-310.
    Juan Blanch, Todd Walter, Per Enge. Application of Spatial Statistics to Ionosphere Estimation for WAAS[J]. in proceedings of ION NTM 2002, San Diego, NM, January 2002.
    Ljiljana R. Cander. Artificial neural network applications in ionospheric studies[J]. ANNALI DI GEOFISICA, 1998, 9(5-6):757-766.
    Ljiljana R. Cander. Ionospheric research and space weather services[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, (70): 1870-1878.
    Manucci A.J., Wilson B D, Yuan CH. A Global Mapping Technique for GPS-derived Ionospherie Total Electron Content Measurements[J].Radio seience, 1998, 33(3): 1676-1680.
    Mazzella Jr., A.J., Holland, E.A., et al. Autonomous estimation of plasmasphere content using GPS measurements[J]. Radio Science, 2002, 37 (6): 41-45.
    Norsuzila Ya’acob, Mardina Abdullah, and Mahamod Ismail. Determination of GPS Total Electron Content using Single Layer Model (SLM) Ionospheric Mapping Function[J]. International Journal ofComputer Science and Network Security, 2008, 8(9): 114-150.
    Paulo de Oliveria Camargo, Joao Francisco Galera Monico, Luiz Danilo Damasceno Ferreira. Application of ionospheric corrections in the equatorial region for L1 GPS users[J]. Earth Planets Spaces, 2000, 52:1083-1089.
    Philippe Lognonné, Raphael Garcia, Fran?ois Crespon, Giovanni Occhipinti, Alam Kherani and Juliette Artru-Lambin. Seismic waves in the ionosphere[J]. europhysics news, 2002, 37 (4):11-14.
    P. Wintoft and Lj. R. Cander. Ionospheric foF2 Storm Forecasting using Neural Networks[J]. Phys. Chem Xarth, 2000, 25(4): 267-273.
    Reinisch, B.W., Huang, X.-Q., Belehaki, A., Shi, J.-K., Zhang, M.-L., Ilma, R. Modeling the IRI topside profile using scale heights from ground-based ionosonde measurements[J]. Advances in Space Research, 2004, 34 (9): 2026-2031.
    R. G. Ezquer, N. Jakowski, C. A. Jadur. Predicted and measured total electron content over Havana[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59(5): 591-596.
    R. G. Ezquer, C. A. Jadur, M. Mosert de Gonzalez. IRI-95 TEC predictions for the South American peak of the equatorial anomaly[J]. Advances in Space Research, 1998, 22(6): 811-814.
    R.G. Ezquer, C. Brunini, A. Meza, F. Azpilicueta, M. Mosert, S. Radicella. VTEC behaviour in the American sector during high solar activity[J]. Advances in Space Research, 2004, (33): 855-861.
    R.G. Ezquer, C. Brunini, M. Mosert, A. Meza , R. del V. Oviedo, E. Kiorcheff , S.M. Radicella. GPS–VTEC measurements and IRI predictions in the South American sector[J]. Advances in Space Research 2004, 34: 2035-2043.
    Schaer S. CODE’s Global Ionospheric Maps. http://www.aiub.unibe.ch/ionosphere.html, automatically updated web site, 1998.
    S. Jain, S. K. Vijay, A. K. Gwal. An empirical model for IEC over Lunping[J]. Advances in Space Research, 1996,18(6): 263-266.
    Wilson, B. D., A. J. Mannucci, and C. D. Edwards. Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers[J]. Radio Sci., 1995, 30: 639–648.
    X. Yue, W. Wan, L. Liu, and T. Mao. Statistical analysis on spatial correlation of ionosphere[J]. Annales Geophysicae, 2007, 25: 1815–1825.
    Y. Gao, X. Liao and Z. Z. Liu. Ionosphere Modelling using carrier smoothed Ionosphere observations from a regional GPS network[J]., Geomatica, 2002, 56(2): 97-106.
    边静,李巴津,马杰.基于傅立叶和小波变换的非稳态谐波分析[J].内蒙古工业大学学报,2007,26(3):175-179.
    蔡昌盛,高井祥,李征航.利用GPS监测电离层总电子含量的季节性变化[J].武汉大学学报(信息科学版),2006,31(5):451-454.
    蔡昌盛,李征航,张小红.利用GPS载波相位观测值建立区域电离层模型研究[J].测绘通报,2002,(11):14-16.
    常青,张东和,萧佐等.GPS系统硬件延迟估计方法及其在TEC计算中的应用[J].地球物理学报,2001,44(5):596-601.
    陈斌.太阳耀斑电离层效应的统计分析与模拟研究[D].中国科学院研究生院硕士论文(武汉物理与数学研究所),2005年.
    陈春,吴振森,孙树计,丁宗华,赵振维,班盼盼.利用神经网络提前24小时预报电离层f0F2[J].电波科学学报,2009,24(1):152-156.
    陈坤,张靖,黄石红.从傅立叶变换到小波变换[J].汽轮机技术,2007,49(3):182-184.
    陈艳红,薛炳森,李利斌.利用神经网络预报电离层f0F2[J].空间科学学报,2005,25(2): 99-103.
    电离层文件.CDDIS网站:ftp://cddis.gsfc.nasa.gov/pub/gps/products
    董来启,李峰,宋建军,张玲.基于混沌神经网络理论的城市深基坑沉降量预测模型[J].四川兵工学报,2008,29(2):94-96.
    杜晓勇,王景青,薛震刚,张训械.GNSS掩星电离层观测的模拟试验[J].解放军理工大学学报(自然科学版),2002,3(1):71-74.
    地磁AE指数的实时预报.http://www.astro.lu.se/‘hanrik/
    地磁Kp指数分布.ISGI网站:http://www.cetp.ipsl.fr/~isgi/homepag1.htm
    范国清,王威,郗晓宁,魏立栋.高精度的连续电离层延迟建模研究[J].空间科学学报,2009, 29(2):188-194.
    高玉芬,周荣茂.AE指数表现出的磁层的浑沌行为[J].空间科学学报,1994,14(2):101-108.
    韩敏.混沌时间序列预测理论与方法[M].中国水利水电出版社,2007年出版.
    韩敏,刘玉华,席剑辉,孙燕楠,基于小波多分辨率分析的混沌去噪研究[J] .仪器仪表学报, 2004,25(4):421-424.
    洪时中.非线性时间序列分析的最新进展及其在地球科学中的应用前景[J].地球科学进展,1999,14(6):559-565.
    蒋和荣,杨征宇,杨美华.电离层参数的混沌特性及可预报的时间尺度[J].空间科学学报, 1994,14(3):221-226.
    姜可宇,郑兆宁,陈敬军.基于局部几何投影法的信号分离技术[J].声学技术,2001,20(3):125-128.
    金双根,朱文耀.用地基GPS观测资料映射三维电离层剖面[J].大地测量与地球动力学,2007,27(5):49-53.
    柯璇,万卫星,宁百齐.120°E磁赤道上空电离层电子浓度总含量的混沌特性分析及非线性预测初探[J].地球物理学报,2006,49(5):1243-1249.
    匡正,季仲贞,林一骅.华北降水时间序列资料的小波分析[J].气候与环境研究,2000,5(3):312-317.
    李红霞,许士,范垂仁.月径流序列的混沌特征识别及Volterra自适应预测法的应用[J].水利学报,2007,38(6):760-766.
    李振涛,陈春盛.以适应修整法建立区域性GPS电离层延迟模式之研究[J].测量工程,1996,41(4):47-61.
    李征航,赵晓峰,蔡昌盛.利用双频GPS观测值建立电离层延迟模型[J].测绘信息与工程,2003,28(1):41-44.
    李志刚,程宗颐,冯初刚等.电离层预报模型研究[J].地球物理学报,2007,50(2):327-337.
    李志刚,李伟超,程宗颐,冯初刚.电离层TEC预报的直接法和间接法及其比较[J].天文学报,2008,49(1):29-45.
    
    林剑,吴云,周义炎,施顺英,邢乐林.利用GPS双频载波相位单历元解算电离层VTEC[J].大地测量与地球动力学,2007,127 (5):68-71.
    雷亚辉,宋春云,丁士圻.基于Volterra自适应滤波器的水中混响非线性预测[J].哈尔滨工程大学学报,2007,28(10):1127-1130.
    刘利,韩春好.常见电离层延迟模型投影函数的分析比较[J].全球定位系统,2001,26(1):43-45.
    柳景斌,王泽民,章红平等.几种地基GPS区域电离层TEC建模方法的比较及其一致性研究[J].武汉大学学报(信息科学版),2008,33(5):479-483.
    罗俊峰,郑君里,孙守宇.混沌与神经网络相结合的预测算法及其应用[J].电波科学学报,1999 (2):7-12.
    罗灵军,夏定辉,张黎,徐永书.重庆市GPS综合服务系统基准站选址分析研究[J].地理信息世界,2007,4(2):46-49.
    罗灵军,徐永书,夏定辉,张黎.重庆市连续运行卫星定位综合服务系统(CQGISS)建设[J].测绘科学,2007,32(6):164-167.
    毛田,万卫星,孙凌峰.用Kriging方法构建中纬度区域电层TEc地图[J].空间科学学报,2007,27(4):279-285.
    佘承莉,万卫星,徐桂荣.电离层全球电子总含量的气候学特性分析与经验模式构建[J].科学通报,2007,52(24):2876-2881.
    孙正明,王坚,高井祥.利用双频GPS数据研究区域电离层TEC变化规律[J].测绘科学技术学报,2008,25(3):199-201.
    太阳黑子数.NOAA/SEC网站:http://www.sec.noaa.gov/
    田旦,许才军,鲁铁定.基于Lyapunov指数与神经网络融合的预测模型研究[J].测绘通报,2008(10),17-20.
    万卫星,宁百齐,刘立波等.中国电离层TEC现报系统[J].地球物理学进展,2007,22(4):1040-1045.
    王洪超,李亚安.局部投影降噪算法邻域半径参数的选择研究[J] .系统仿真学报,2007,19(4):805-808.
    王军,党亚民,薛树强.NeQuick电离层模型在中国地区的应用[J].测绘科学,2007,32(4):38-41.
    王世凯,焦培南,柳文.改进的Kriging技术实时重构区域电离层foF2的分布[J].电波科学学报,2006,21(2) :166-171.
    武文俊,李志刚,杨旭海,程宗颐,王晓晗.利用时间序列模型预报电离层TEC时间频率学报[J].2008,31(2 ):141-146.
    向淑兰,何晓薇,牟奇锋. GPS电离层延迟Klobuchar与IRI模型研究[J].微计算机信息,2008,24(6-1),200-202.
    萧佐,张东和.通过GPS测量数据研究电离层电子总含量的逐日变化[J].空间科学学报,2000(2):97-102.
    伭炜,徐新盛.水声信号的一种非线性降噪方法[J].海洋通报,2008,27(1):17-21.
    杨铭仁.由台湾GPS追踪站2004年资料建构区域性电离层模式及其影响定位精度之研究[D].台湾国立成功大学硕士学位论文,2005.
    袁运斌,欧吉坤. GPS观测数据中的仪器偏差对确定电离层延迟的影响及处理方法[J].测绘学报,1999,28(2):110-114.
    袁运斌,欧吉坤.建立POD格网电离层模型的站际分区法[J].科学通报, 2002, 47(8):636-639.
    袁运斌,欧吉坤.基于POD数据确定电离层延迟的蚀因子法[J].自然科学进展, 2005, 15(3):363-366.
    章红平,朱文耀,彭军还,黄珹.利用GPS分析电离层波动现象[J].科学通报,2005,50(10):1032-1039.
    张东和,萧佐.太阳耀斑期间向日面电离层相关扰动现象与分析[J].科学通报,2002,47(2): 96-98.
    张健,欧吉坤.利用GPS计算的TEC变化率监测太阳耀斑[J].大地测量与地球动力学,2002,22(4):77-80.
    张强,吴云,林剑等.震前电离层TEC异常分析[J].大地测量与地球动力学,2007,27(3):91-96.
    张小红,李征航,蔡昌盛.用双频GPS观测值建立小区域电离层延迟模型研究[J].武汉大学学报(信息科学版)2001,26(2):140-144.
    郑永康,陈维荣,戴朝华,王维博.Gaussian小波SVM及其混沌时间序列预测[J].控制工程,2009,16(4):468-471.
    周义炎,吴云,乔学军,张训械.GPS掩星技术和电离层反演[J].大地测量与地球动力学,2005,25(2):29-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700