用户名: 密码: 验证码:
频率域激发极化斩波去耦关键技术与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁耦合效应在频率域激发极化测量中是一种很强的干扰因素,尤其是在低电阻率覆盖区以及大极距测量时,影响了探测深度、勘探精度,阻碍了激电法的推广应用。时至今日,电磁耦合效应的压制和消除仍然是频率域激电测量中的一个世界性研究课题。
     本文从物理学基本原理出发阐述电磁耦合效应产生机理,分析影响电磁耦合效应强弱的因素,对激发极化测量中的电磁耦合效应产生机理及其抑制对策进行了较系统的研究,认为可以减小、消除电磁耦合效应对激发极化测量影响的途径有四个方面:1软件校正;2工作装置的选择和布设;3电磁屏蔽;4斩波去耦法。国内外学者对软件校正的方法著述较多,该方法一般基于某种地电模型的电磁耦合效应的影响进行改正,难以适应电磁耦合较强和复杂的地电场工作环境:工作装置的选择和布设可以减小电磁耦合效应的影响,但是往往需要增加工作量,效果也很有限。
     本文针对可以减小、消除电磁耦合效应对激发极化测量影响途径的后三种情况,阐述了野外工作装置的选择和布置在减小电磁耦合效应方面的作用和不足;设计了一种低噪声屏蔽自举前置放大器,在提高仪器抗干扰能力的同时,部分地消除电磁耦合效应对激电测量的影响;重点论述”斩波去耦”方法在抑制、消除激发极化测量中存在的电磁耦合干扰方面的工作原理、斩波参数选择、同步方法的选择和实现。
     本文以双频信号的斩波去耦为例进行了理论分析,阐明斩波去耦方法对电磁耦合效应、激电效应的影响,并对斩波宽度及其影响进行了理论计算,说明了采用斩波方法消除激发极化测量中存在的电磁耦合效应的可行性。
     首次设计并实现了采用GPS同步的地电场精密同步斩波观测系统,该系统不仅具有高精度、高可靠性能,而且成本较低,携带、操作方便,设计巧妙,是一种既能满足本文高精度同步要求,又能很好适应野外工作环境的理想同步方法。
     仪器发送机所需双频驱动信号以及接收机所需同步斩波信号均由可编程器件实现,由此产生的波形十分理想,同时采用新型系统级单片机对可编程器件及外围电路进行管理,人机界面友好,仪器工作稳定可靠,操作十分简便,功能上也便于扩展升级。
     本文围绕精密同步斩波及双频激电仪微弱信号检测等问题,创新设计了一些可行电路,除了低噪声抗耦前置放大器之外,低压差限流稳压电源的研究用于提高仪器电源的转换效率,提高仪器电源的可靠性、安全性,减小电源噪声;检测双频激电仪性能的RC激电模拟网络为仪器性能的测试、斩波效果的验证带来方便,为本文的实验工作节省很多人力、物力和时间。
     本文实现的地电场精密同步斩波观测系统以同一星钟作为时钟参考,双频接收机、发送机各自独立同步,不需要人工干预,就能快速实现高精度同步,使用十分方便。由于采用恒温晶体守时,这样既使在长时间(如30分钟)丢失GPS信号的情况下,也能确保同步精度符合要求,同步可靠性很高。接收机的斩波脉冲非常稳定,斩波噪声非常小,在野外测量的同时就实现对激发极化测量中电磁耦合的斩波去耦,不需要额外增加野外工作量。该方法与国内外普遍采用的数据改正、软件校正进行去耦的方法相比,具有高效、方便、适用范围更加广泛等优点,具有重要的实际应用意义。
Electromagnetic (EM) effect is a strong interference in frequencydomain induced polarization (IP) survey, especially in the districtscovered with earth in lower resistivity and the electrodes configuration ingreat distance. It influences the depth of exploration, survey accuracy,and it is a great encumbrance to apply the IP method. Nowadays, tosuppress and remove the EM effect has become an important researchproject in frequency domain IP method in the world.
     This dissertation expounds the principle of EM effect proceedingfrom physics fundament. Systemic study is done on the factors of EMeffect and methods to suppress it. The author consider that there are fourmethods to suppress the EM effect in frequency domain IP survey: 1.Emendate by software; 2. Applicable configuration; 3. Electromagneticshielding; 4. Chop-wave decoupling method. A lot of researches havebeen done by scholars both in and abroad on the 1st method. Commonlyspeaking, correcting based on EM effect of simple models is verydifficult to adapt the complex geo-electric fields. Good configuration cansuppress EM effect, but the efficiency is very limited.
     In allution to the latter 3 methods, the dissertation expounds thedefection of good collocation of electrodes configuration, and designed alow noise pre-amplifier with cable shield driver, with which can enhanceanti-jamming capability, partially suppress the EM effect in frequencydomain IP survey, especially expounds the principle for chop-wave inhow to suppress and remove the EM in IP survey, and parametersselection of chop-wave, choice and realize the synchronize methods.
     The author proved the chop-wave decoupling method in dual-freq.waveform, calculated the relative chop-width of the waveform and its EMeffect during frequency domain IP survey.
     The author lays out a plan to synchronize the transmitter andreceiver of DFIP instruments with the use of GPS receiver at the firsttime. GPS synchronization has many advantages not only high precision,high reliability, low cost, but also easy operation, easy to take and with art design. It is a perfect synchronization method with high precision as wellas suit for fieldwork.
     Signal for driver of transmitter and synchronizing chop-wavewaveform of receiver are realized by the use of field programmable gatearray (FPGA) devices. In the meantime, manage peripheral cells anddevice of FPGA by the use of system level chip of MCU. It has a verygood man-machine interface, credibility, operability and easy to upgrade.
     The author studied on several questions such as chop-wave withprecise synchronization and small signal detection, etc. and designed outsome feasible circuits. Except for the low noise pre-amplifier withfunction of suppress EM coupling, ultra-low drop out voltage regulatorwith current-limiting results lower noise, high conversion efficiency, highreliability and security. To simulate IP effect by the use of RC-network,we can make the test quickly and validate the chopping-wave decouplingdevice easily. It has economized a lot of manpower, material resourcesand money.
     The geo-electric survey system with precise synchronizing ofchop-wave used the satellite clock as the reference at the first time.Transmitter and receiver of DFIP instruments have self-synchronizingfunction, quick acquisition of GPS-time auto synchronously. It has highprecise synchronization even if lost GPS signal for more than 30 minuteswith the use of keeping-time clock of OCXO. The synchronizegeo-electric survey system results very high precision of synchronization,high stability and ultra-low noise in chop-wave. It decouples the EMeffect during the IP effect measurement, no need any extra field work andindoor calculation. Compared with the EM decoupling methods such asdata and software correcting methods, this method has many advantages:high efficiency, convenience and applied widely, which results a veryuseful application.
引文
[1] Wait J R, Ed. Overvoltage research and geophysical applications. New York: Pergammon Press, 1959
    [2] Wait J R. EM and IP response of a steel well casing for A Four-electrode surface array, Part Ⅰ. Theory Geophysical Prospecting, 1985, 33(5): 723~735
    [3] Coggon J H, New three point formulas for inductive coupling removal in induced polarization, Geophysics, 49. 1964,307~309
    [4] Dey, A, and Morrison H. F., Electromagnetic coupling in frequency and time domain induced polarization surveys over multilayered earth, Geophysics, 1973, 38. 380~405
    [5] Hallof p. g. (1974), The IP Phase Measurement and Inductive Coupling, Geophysics 39, 650~665
    [6] 何继善.双频激电法.北京:高等教育出版社,2006.1
    [7] 何继善等.双频道激电法研究.长沙:湖南科学技术出版社,1998
    [8] 中南矿冶学院物探教研室.金属矿电法勘探.冶金工业出版社,1980
    [9] Hohmann G W. (1973), Electromagnetic Coupling between Grounded Wires at the Surface of a Two-layer Earth, Geophysics 38, 854~863.
    [10] Nair R. M., Sanyal N. (1980), Electromagnetic Coupling in IP Measurements Using Common Electrode Arrays over a Uniform Half-space, Geoexploration 18, 97~99
    [11] 苏朱刘,吴信全,胡文宝等.复视电阻率(CR)法在油气预测中的应用.石油地球物理勘探.2005.8,40(4),467~471
    [12] Song L., 1964, A New IP Decoupling Scheme, Exploration Geophysics, 16. 99~112
    [13] Wait J. R., Gruszka T. P., 1966, On electromagnetic coupling "removal" from induced polarization surveys, Geoexploration, 24.21-27
    [14] Wynn J. C., Zonge K. L.,1977, Electromagnetic Coupling, Geophy. Prosp., 25.29~51
    [15] 白宜诚,左恒,罗维斌.双频激电在普查找矿工作中应注意的几个技术问题.矿产与地质,2003.8,17(97),451~454
    [16] Wen Peilin. Tentative research on deep Induced Polarization method. Journal of Central South University of Technology (English Edition), 1996. 4, 3(1), 17~19
    [17] Paul M. K., and Bannerjee B. (1970), Electrical Potential due to a Point Source upon Models of Continuously Varying Conductivity, Pure appl. Geophys. 80, 218~237
    [18] Wang J., Zhan K., Shien L., etc. Fundamental characteristics of an approximate correction method for electromagnetic coupling in frequency-domain induced polarization. Geophysics, 50(2), 235~241
    [19] 傅良魁,姚文斌.水平地层上的负激发极化效应及其物理解释.地球物理学报.1989,32(2):203-214
    [20] 王书民,雷达相位激电法(偶极—偶极)单频电磁耦合校正方法.物探与化探,26(1),2002.2
    [21] Sunde E. D. Earth conduction effects in transmission systems. New York: Dover, 1968
    [22] 傅良魁.激发极化理论研究.地球物理学报,1987,30(1):79-902
    [23] Kaufman A.A.,Keller G.V.频率域电磁测深.北京:地质出版社,1978
    [24] Wait J.R.大地电磁学.北京:地质出版社,1987
    [25] 何继善.提取和利用EM效应和IP效应的方波相干法.中国地球物理学会年刊,1994
    [26] 何继善,王绍武,汤井田.直接同同时提取激电效应的方波相干法.地球物理学报,1994,37(S1):516~523
    [27] Unsworth M. J., Travis B. J., Chave A. D. Electromagnetic induction by a finite electric dipole source over 2-D earth. Geophysics,1993, 58(2): 198~214
    [28] Lee K. H. Electromagnetic scattering by a two-dimensional inhomogeneity due to an oscillating magnetic dipole source [Ph.D. thesis]. Univ. of California, Berkeley, 1978
    [29] Lee K. H., Morrison H. F. A numerical solution for the electromagnetic scattering by a two-dimensional in homogenerty. Geophysics, 1985, 50(3): 466~472
    [30] Everett M. E.. Mid-ocean ridge electromagnetic [Ph.D. thesis]. University of Toronto, 1990
    [31] Gruszka, Thomas P., Wait J. R. Interaction of induced Polarization and electromagnetic effects in borehole probing. Geoexploration, 1989, 267~277
    [32] Williams J. T., Wait J. R. Electromagnetic and induced polarization response of a steel well casing for a four electrode dipole-dipole surface array
    [33] Major J., Silic J. Restrictions on the use of cole-cole dispersion models in complex resistivity interpretation. Geophysics, 1981, 46(6): 916-931
    [34] Sunde E. D. Earth conduction effects in transmission systems. New York: Dover Publications Inc., 1968
    [35] 罗延钟,张桂青.频率域激电法原理.北京:地质出版社,1988
    [36] 战克,朱宝汉.均匀大地上频率域中梯装置的电磁耦合.物探与化探,1981,5(1):11-16
    [37] Kaufman A.A.,Keller G.V.频率域电磁测深.北京:地质出版社,1987
    [38] Ward S.H.地球物理用电磁理论.北京:地质出版社,1978
    [39] Zhdanov M., Wannamaker P. Three-dimensional electromagnetic—the second international symposium on three-dimensional electromagnetics. Salt Lake City, Utah, USA, 1999:26~29
    [40] Newman G. A. Alumbaugh D. L., 1995, Frequency-domain modeling of airborne electromagnetic responses using staggered finite differences: Geophys. Prosp., 43, no. 08, 1021-1042.
    [41] Wynn J. C., Zonge K. L., Electromagnetic Coupling, its intrinsic value, its removal and the cultural coupling problem. Geophysics, 1975, 40(5): 831-851
    [42] Zonge K. L., Wynn J. C. Recent advances and applications in complex resistibity measurements. Geophysics, 1975, 40(5): 851~864
    [43] Wyrm J. C., Zonge K. L. Electromagnetic coupling. Geophys. Prosp., 1977, 25(1): 29~51
    [44] Brown R. J. EM coupling in multifrequency IP and a generalization of the cole-cole impedance model
    [45] Xiang Jianping, Cheng Daizhan, Jones N. B. A new method to discriminate between a balid IP response and EM coupling effects. Geophysical Prospecting, 2002, 50(6)
    [46] Pelton W. H., Ward S. H., Hallof P. G., etc. Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics. 1978, 43(3): 588~609
    [47] Smith R. S., West G. F. Inductive interaction between polarizable conductors: an explanation of a negative coincident-loop transient electromagnetic response. Geophysics, 1988, 53(5)
    [48] Geological Survey of Finland, Finl. Resistivity and IP modeling of an anisotropic body located in an isotropic environment. Geophys Prospect, 1997, 45(1): 127-139
    [49] Freedman R., Vogiatzis J. P. Theory of induced-polarization logging in a borehole. Geophysics, 1986, 51(9): 1830~1849
    [50] Xiang J., Jones N. B., Schlindwein F. S. Theretic analysis and experimental investigation of induced polarization effect of rocks/minerals. Conference on Electrical Insulation and Dielectic Phenomena(CEIDP), Annual Report. 2001, 58~62
    [51] Partha S. R., and Douglas W. O. Electromagnetic coupling in frequency domain IP data: A method for removal. SEG2000 Expanded Abstracts.
    [52] Newman G. A. Alumbaugh D. L., 1995, Frequency-domain modeling of airborne electromagnetic responses using staggered finite differences: Geophys. Prosp., 43, no. 08, 1021~1042
    [53] Ward S. H., Hohmann, G. W., Electromagnetic methods in applied geophysics. Investigations in Geophysics, SEG1988, Vol. 1
    [54] Ilyas Caglar. A method to remove electromagnetic coupling from Induced polarization data for an "exponential" earth model
    [55] Pal B. P., Dasgupta, S. P. Electrical potential due to a point source upon models of continuously varying conductivity. Geophysics. Prospect. 1984, 32, 943~954
    [56] Spies B. R. Recent developments in the use of surface electrical methods for oil and gas exploration in the soviet union, Geophysics, 1983, 48, 1102~1112
    [57] Trofimenkoff F. N., Johnson R. H., Haslett J. W. Electromagnetic coupling between parallel lines on a uniform earth. 1982, IEEE Trans., GRS 20, 197~200
    [58] 何继善,鲍光淑,张友山.双频道数字激电仪.中南工业大学出版社,1988
    [59] 何继善.激电测深中旁测影响的一些认识.矿冶科技,1976(2):29~33
    [60] 何继善,鲍光淑.双频道幅频观测的异常.中南矿冶学院学报,1982,(2):49~54
    [61] 傅良魁,张虎豹.频谱激电若干理论研究.物探与化探,1985,19(6):410~420
    [62] 何继善.伪随机三频电法研究.中国有色金属学报,1994,4(1):1~7
    [63] 何继善等.频谱激电非线性效应的理论模型.地球物理学报,1995,38(5):662~669
    [64] 何继善,柳建新.伪随机多频相位法及其应用简介.中国有色金属学报,2001,32(6):551~554
    [65] 罗延钟.利用多频测量作”变频法”电磁耦合校正.地质与勘探,1980,16(10):43~52
    [66] 罗延钟,陈超,谭立刚.几种变频法电磁耦合校正方法的对比应用.勘查地球物理勘查地球化学文集(第3集).北京:地质出版社,1985
    [67] 陈儒军,何继善,白宜诚.多频激电相对相位谱研究.中南工业大学学报(自然科学版),2004.2,35(1):106~111
    [68] 崔燕丽,白宜诚,罗维斌.多频去耦在双频激电数据去耦中的应用.物探与化探.2006.2,30(1)
    [69] Wang J., Zhan K., Shien L. Fundamental characteristics of an approximate correction method for electromagnetic coupling in frequency-domain induced polarization. Geophysics, 1985, 50(2): 235~241
    [70] 战克,王继论.变频法中电磁耦合的近似校正方法.地质与勘探,1981,17(4):40~46
    [71] 战克,朱宝汉.均匀大地上频率域中梯装置的电磁耦合.物探与化探,1981,5(1):11~16
    [72] 向建平.多频IP地球物理系统分析.中南大学博士学位论文,2000.8
    [73] Xiang Jianping, et al. A new method between a valid IP response and EM coupling effects. Geophysical Prospecting, 2002, 50(6): 565~576
    [74] 李金铭.地电场与电法勘探.地质出版社,2005.7
    [75] 何继善等.多频双道幅频法应用经验.湖南省地质学会1982年度学术论文集.1982:22~23
    [76] 何继善,鲍光淑.频率域激发极化法中的双频道幅频观测.物探与化探,1983,(4):182~192
    [77] 何继善,电法勘探中的电化学研究译文集.长沙:中南工业大学出版社,1987
    [78] 浦慧如,何继善.双频道双通道微机激电仪.物探与化探,1996,20(5):331~334
    [79] 张友山,何继善.多频组合波激电法的去耦研究.中南矿冶学院学报,1994,25(5):113~115
    [80] 张振浩,罗延钟.变频法电磁耦合的一种非线性近似校正方法.物探与化探,1981,5(2):78~81
    [81] Hoheisel Andreas, Hordt Andreas, Hanstein Tilman. The influence of induced polarization on long-offset transient electromagnetic data. Geophysical Prospecting, 2004, 52(5): 417-426
    [82] Foster R M. Mutual impedance of grounded wires lying on or above the surface of the earth. Bell System Tech. J., 1933, 5(10), 264-271
    [83] Miller F B. Electromagnetic coupling of collinear dipoles on a uniform half-space. Mining geophysics, 1967, 5(2): 401-419
    [84] Liu S. A new IP decoupling scheme. Exploration Geophysics, 1984, 15(2): 99-112
    [85] 湖南继善高科技有限责任公司.SQ-3B双频道轻便型激电仪使用说明书.长沙:2002
    [86] 湖南继善高科技有限公司.SQ-3C双频道轻便型激电仪使用说明书.长沙:2006
    [87] 梁灿彬,秦光戎,梁竹健.电磁学.高等教育出版社,1980
    [88] 陶安利,顾骏梁,干耀国等.一种计算两不相邻导线间电容的方法.科技通报.1996.5,12(3):157~161
    [89] 许碧惠,王建成,苏武浔.各向异性磁介质中三维同轴电缆的自感.华侨大学学报(自然科学版),2001.10,22(4):419~421
    [90] 何继善,可控源音频大地电磁法,长沙:中南工业大学出版社,1990
    [91] 朴化荣,电磁测深法原理,北京:地质出版社,1990
    [92] 米萨克.N.纳比吉安.勘察地球物理电磁法第一卷理论.地质出版社 1992.1
    [93] 《数学手册》编写组.数学手册.北京:高等教育出版社,1979
    [94] 何继善,熊彬,鲍力知,付国红.直接消除电磁耦合的斩波去耦方法.地球物理学报.2006,49(26):1843~1850
    [95] BB公司,UAF42 datasheet,1998
    [96] (美)阿瑟.B.威廉斯,电子滤波器设计手册.北京:电子工业出版社,1986
    [97] 康华光.电子技术基础(上、下).北京:高等教育出版社,1983
    [98] 史仪凯.电子技术.科学出版社,2005
    [99] BB公司,VCA810 datasheet,1998
    [100] 刘绍汉,林灶生,刘新民.VHDL芯片设计.清华大学出版社,2004
    [101] 潘松,黄继业.EDA技术使用教程.科学出版社,2003
    [102] Altera Corpotation. 2002. Altera Digital Library. Altera
    [103] 黄正谨,徐坚等.CPLD系统设计技术入门与应用.北京:电子工业出版社,2002.
    [104] 胡诞康.石英晶体振荡器在通信产业中的应用.无线电工程,2001,31(12): 49~50
    [105] Block M.,Ho J.,McClelland T.,etc.军事星中的铷和石英频率标准的性能数据.空间电子技术.1999,(4):49~55
    [106] 刘涳,郑贤武,刘台.无人机远程检测中的高精度计时器.弹箭与制导学报,2005,25(1):83~87
    [107] TC-OCXO技术提供了灵活的性能.Electronic products china,2005.3
    [108] 北京七维航测科技发展有限公司.WWW.QIWEI.COM.CN
    [109] 李瑞涛,贾洪峰,崔绍辉.一种通用精确同步源的设计与实现.系统工程与电子技术,2005.2,27(2):381~383
    [110] 周忠谟,易杰军.GPS卫星测量原理与应用.北京:测绘出版社,1992
    [111] 林君,石磊.GPS在地球物理勘探中的应用展望.地学仪器,1996,(4):1~5
    [112] 刘基余.GPS卫星导航定位原理与方法.北京:科学出版社,2003
    [113] 张海雯,张鹏,王少荣等.高性能GPS时间同步装置研制,2003.4,23(4):37~40
    [114] 王丰,付建华,陈力刚等.采用同步计时提高GPS钟的时间脉冲输出精度.地震研究,2003.7,26(3):282~285
    [115] 左国青,罗维斌,李飞.基于GPS时间信号的电法发送机与接收机时间同步设计.物探与化探,2006.4,30(2):158~161
    [116] 胡成.双基地雷达同步技术研究与同步系统设计.电子科技大学出版社,2003
    [117] 曾祥君.GPS同步暂态录波仪的研制.高电压技术,2001,26(2):56
    [118] Crossley P. Future of the Global Positioning System in Power Systems. IEEE colloquium on developments in the use of Global Positioning Systems. London (UK): 1994.7, 1~5
    [119] Weiss M, Zhang V., Nelson L., etc. Delay Variations in some GPS timing recervers. Proceedings of the 1997
    [120] 兰洋,郑高群.利用OEM模板设计基于89C52的GPS同步时钟.现代电子技术,2001,(7):82~84
    [121] 曾祥君,尹项根,林干.晶振信号同步GPS信号产生高精度时钟的方法及实现.电力系统自动化,2003.4,27(8):49~53
    [122] 林理忠,送敏.检测学导论.北京:中国计量出版社,1996
    [123] 曾庆勇.微弱信号检测.杭州:浙江大学出版社,1994
    [124] 中国科学院物理研究所微弱信号研究小组.微弱信号检测(上)(下)1978
    [125] 戴逸松.电子系统噪声及低噪声设计方法.吉林人民出版社,1984
    [126] 杨生.大地电磁测深法环境噪声抑制研究及其应用.中南大学博士学位论文,2004
    [127] 杨生,鲍光淑,张全胜.远参考大地电磁测深法应用研究.物探与化探,2002,26(1):27~31
    [128] 杨世儒,杭柏林等.仪器仪表接地理论与实践.吉林化工学院学报,1995,12(4):38~42
    [129] 付国红.单道动态心电监测、监护及回放分析系统研究与开发.中南大学硕士学位论文,2004
    [130] 林君.浮点数据采集原理与实现技术.地学仪器,1996,(2):23~28
    [131] 董浩斌,王传雷等.分布式智能化高密度电法仪的特点及应用.中国地球物理学年会年刊(2000),武汉:中国地质大学出版社,2000
    [132] 董浩斌,谢瑞和.分布式智能化高密度电法测量系统.地学仪器,1997,(4):26~27
    [133] 林国荣.电磁干扰及控制.电子工业出版社,2003
    [134] 陈淑凤,马蔚宇,马晓庆.电子兼容试验技术.北京邮电大学出版社,2001
    [135] 何继善.集成电路与物探仪器.长沙:中南工业大学出版社,1987
    [136] 赵新民.智能仪器设计基础.哈尔滨:哈尔滨工业大学出版社,1999
    [137] 詹艳,汤吉等.GMS-06电磁测深系统及应用.中国地球物理学会年刊(2001).昆明:云南科技出版社,2001
    [138] 遥测电磁项目组.被动源电磁阵列系统及其在某铜矿区的应用试验.电子技术应用,2001
    [139] MAXIM公司数据资料全集(光盘版).2003年修订版,V7.0.
    [140] Fairchild Semiconductor, 2005. U.S.A
    [141] 黄河,李继榜.一种高效线性直流稳压电源的设计.移动电源与车辆,1999,(4):10~11
    [142] 贾祥芝.煤矿直流稳压电源的现状和发展趋势.煤矿设计.1998,(9):34-36
    [143] 杨保祥,章良海,兴自中等.爆炸性气体环境用电气设备 第4部分:本质安全型“i”北京:国家质量技术监督局,2000
    [144] 付国红,何继善,熊彬.MAX471在限流稳压电源中的应用.桂林工学院学报,2006,26(4):572~574
    [145] 林欣.一种提高效率的线性稳压电路.电测与仪表,2003,39(5):39-55
    [146] 陈兴文.对采用集成运算放大器的串联稳压器的性能分析.广西物理, 1994, 15 (5): 10~16
    [147] Fu GH, He JS, Xiong B, etc.. A simple re-network for checking the performance of dual-frequecy IP instruments, Proceeding of the 2nd international conference on environmental and engineering Geophysics, 2006
    [148] 何继善,鲍光淑.一种激发极化观测系统.中南矿冶学院学报,1986,17(4):1-9
    [149] 付国红,何继善,陈一平等.检测双频激电仪性能的一种简易RC网络.物探与化探,2004,28(5):431-435

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700