用户名: 密码: 验证码:
CSAMT与IP联合探测分布式接收系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的飞速发展,矿产资源的消耗大量增加,许多浅层矿已被开采殆尽,成为危机矿山,因此迫切需要勘探开发深部矿产资源。电法勘探是矿产资源勘查的有效手段之一,但由于深部目标体响应信号微弱,测量环境噪声严重等特殊情况,给电法勘探技术和仪器提出了巨大挑战。 CSAMT (Controlled Source Audio-frequencyMagnetotelluric,可控源音频大地电磁法)是一种人工源频率域电磁测深方法,具有勘探深度范围大、测量效率高等优点,在金属矿、油气、地热资源勘查等领域应用广泛,但存在随深度增加分辨率降低的缺点。IP(Induced Polarization,激发极化法)以不同岩、矿石激电效应的差异为物质基础,通过观测人工建立的激电场的分布规律来探查地下介质情况,是勘查各类金属矿产的主要方法,但IP采用几何测深,存在探测深度有限的不足。本文提出了CSAMT与IP联合探测方法,通过IP测量,不但能得到有效反映矿体的激发极化参数,同时获得的极化电阻率可对CSAMT高频段视电阻率进行约束,从而提高CSAMT深部电性结构探测的分辨率。根据CSAMT和IP的观测方式及被测电磁信号的特点,研制了实现两种方法多点同步快速测量的分布式接收系统。本文的研究是在国家自然科学基金科学仪器基础研究专款项目《大深度(500-1500米)分布式电磁探测关键技术与仪器研究》的资助下完成的。
     本文首先研究了CSAMT与IP联合探测技术,解决了CSAMT频率测深和IP几何测深数据的归一化问题,给出了高效联合探测的野外观测方式。接着仔细研究了分布式接收系统中的关键技术。通过研究电磁信号模拟调理技术、24位高分辨数据采集技术和数字滤波抽取技术实现了宽频带大动态范围信号的有效检测。采用GPS和恒温晶振结合的方法产生高精度同步时钟,设计了CSAMT循环收发同步协议,实现了多频点扫描测量。针对接收系统采集通道和磁场传感器的标定,提出了基于多频伪随机信号相关迭代检测的频域标定方法,有效抑制标定过程中环境噪声的影响,提高了标定的效率和精度。对于有用信号频带内模拟电路难以抑制的几种干扰噪声,分别给出了数字滤波和数字平均的消除方法,从而提高参数提取结果的准确性。最后,通过分布式接收系统与国内外同类仪器的水槽模型和野外勘探对比实验,验证了仪器单一方法测量结果的准确性。在辽宁大台沟铁矿和吉林红旗岭镍矿进行了CSAMT与IP联合探测实验,获得了与已知地质和钻孔资料吻合的探测结果,体现了CSAMT与IP联合探测方法和仪器应用于深部矿产资源勘探的可行性和有效性。
Mineral resources are fundamental materials of society development in the world. Alarge number of mineral resources were consumed with the rapid development of China'seconomy. Many shallow ores have been mined and exhausted, for this reason that more andmore raw material depended on external resources, such as petroleum, iron ore, and so on.The national economic security is increasingly affected. The metallogenic theory andinternational prospecting experiences show that there is great potential for discovery of deepunknown ore in China. Electrical prospecting is one of the effective means for mineralresources exploration. Because of weak electromagnetic response signal of deep target andserious environmental noise, there are many problems for using existing electrical prospectingtechnology, such as the weak anti-interference ability, low measurement efficiency, poorinterpretation results credibility. The application affects of electrical method have beenrestricted in the deep mineral resources exploration.
     For the deficiencies of the existing electrical prospecting technology and equipment inthe deep mineral resources exploration, tracking the latest trends of the foreign instrument,combined CSAMT (Controlled Source Audio-frequency Magnetotelluric) and IP (InducedPolarization) prospecting method is proposed in this paper. Artificial source methods improvethe anti-interference capability in the measurement environment of mining area. Thecombined prospecting method takes advantage of large exploration depth of CSAMT andaccurate shallow exploration results of IP. The measurement results of IP not only provideinduced polarization parameter of ore deposit, but also constraint high frequency bandresistivity of CSAMT using polarization resistivity of IP obtained at the same time, Thus theresolution of deep electric structure for CSAMT prospecting is improved effectively.Combined CSAMT and IP prospecting technology was studied in this paper. Datanormalization method for combined CSAMT and IP prospecting is proposed and fieldobservation for high efficiency combined prospecting was designed. Through the in-depthstudy of the key technologies of wideband large dynamic range signal detection, transceivingsynchronization, calibration in frequency domain, and so on, a distributed simultaneousmulti-site receiving system was developed which meet the requirements for combinedCSAMT and IP prospecting. This study was funded by the National Natural ScienceFoundation of scientific instrument special program” Research on key technology andinstrument for large depth (500-1500m) distributed electromagnetic exploration”. This paper made a breakthrough and innovative in the following four aspects:
     1. Data normalization method for combined CSAMT and IP prospecting was proposed.According to the unity of CSAMT and IP results reflecting underground electrical structure atdifferent depth, the conversion formula between CSAMT frequency and IP polar distance isgiven. By establishing the relationship between polarization resistivity and DC resistivity andinterpolation processing for conversion frequency points, Data normalization problem forcombined prospecting is solved at the same depth using the two methods. Weighted averageCSAMT and IP data combined method is proposed to achieve CSAMT data constrained by IPdata and improve the resolution of CSAMT method for deep electrical structure.
     2. The cycle transceiving synchronization technology for CSAMT multi-frequencymeasurement base on GPS and oven controlled crystal oscillator was proposed. CSAMTinstrument is faced with the demands of remote,broad band and multi-frequency transceivingsynchronization to realize phase measurement. The period that pulse per second of GPScalibrates the output of oven controlled crystal oscillator’s divider periodically was shortenedby selecting small denominator frequency value, then, a signal with minor cumulative errorwas generated to be used as the synchronous clock. The synchronization protocol thatcoordinated universal time (UTC) was assigned cyclically achieve sweeping measurementand improve the multi-frequency measurement efficiency.
     3. The frequency domain calibration method for distributed receiving system base onmulti-frequency pseudo-random signal iterative correlation detection was put forward.According to single signal frequency for sine wave, uneven frequency distribution inlogarithmic coordinate and serious harmonic amplitude attenuation for square wave, themulti-frequency pseudo-random calibration signal has several main frequency points withlogarithmic interval distribution and equal amplitude approximately to improve the efficiencyof the calibration. Multiple correlation iterative algorithm is used to detect multi-frequencyoutput signal to inhibit the effects of environmental noise and improved the accuracy of thecalibration.
     4. The distributed receiving system was developed which meet the requirements forcombined CSAMT and IP prospecting. Signal detection system with frequency band0.05Hz~10kHz, short circuit noise lower than1μV, dynamic range130dB is realized bysolving several key techniques, including electromagnetic signal conditioning, the24high-resolution data acquisition, digital filtering and decimation. Based on multi-sitedsimultaneous measurement of distributed receiving system and similar observation mode fortwo methods, The scalar CSAET, the IP sounding of three poles and intermediate gradientprofile measurement was designed to achieve high efficiency combined prospecting in thesmallest changes for the device.
     The field contrast and combined prospecting experiments were carried out fordistributed receiving system. The consistency of the exploration results is very good with similar foreign instrument and the accuracy of system for single method was proved. Thedistributed receiving system has obvious advantages in measuring efficiency, pressingvarying interference, improving the credibility explained by single method because of multi-site synchronous acquisition. The combined CSAMT and IP prospecting experiments werecompleted for Dataigou iron deposit, in Liaoning Province and Hongqiling nickel deposit, inJilin Province. Compared with the single CSAMT result, the combined exploration results ismore consistent with the known geological and drilling material. Therefore it is proved to befeasible and effective that combined CSAMT and IP prospecting method and instruments isapplied in the deep mineral resources exploration. The proposed combined prospectingmethod provides ideas for the combined application and interpretation of other methods. Theweak signal detection, synchronization acquisition and instrument calibration and othercommon technologies in distributed receiving system provides references for the developmentof other electrical prospecting instrument, also lays the foundation technology for thedevelopment of the three-dimensional electrical prospecting system.
引文
[1]张复明,赵瑞娟.中国矿产资源与经济发展探讨[J].技术经济与管理研究,2009,1:103-105
    [2]赵洋,鞠美庭,沈镭.我国矿产资源安全现状及对策[J].资源与产业,2011,13(6):79-83.
    [3]易晓剑.国内外主要有色金属资源储量及其特点[J].世界有色金属,2005,12:42-43.
    [4]陈毓川.建立我国矿产资源可持续发展安全供应体系及对策[J].国土资源,2005,5:4-7.
    [5]左治兴,朱必勇,易斌.我国矿产资源安全及保障措施[J].采矿技术,2006,6(3):122-123.
    [6]陈伟军,刘红涛.对我国矿产资源可持续发展的几点思考[J].矿产综合利用,2008,(2):11-13.
    [7]梅燕雄,杨德凤,叶锦华,等.中国矿产资源战略问题[J].中国矿业,2008,17(6):45-49.
    [8]程秀娟.2011中国国土资源公报发布[EB/OL].(2012-05-10)[2012-10-10].http://www.mlr.gov.cn/xwdt/jrxw/201205/t20120510_1095413.htm.
    [9]邵娜,余际从.全国危机矿山找矿经济和社会效果分析[J].中国矿业,2010,19(4):142-149.
    [10]滕吉文.强化第二深度空间金属矿产资源探查,加速发展地球物理勘探新技术与仪器设备的研制及产业化[J].地球物理学进展,201025(3):729-748.
    [11]滕吉文,刘建明,刘财,等.第二深度空间金属矿产探查与东北战略后备基地的建立和可持续发展[J].吉林大学学报:地球科学版,2007,37(4):633-651.
    [12]底青云,杨长春,朱日祥.深部资源探测核心技术研发与应用[J].中国科学院院刊,2012,27(3):389-394.
    [13]翟裕生,邓军,王建平,等.深部找矿研究问题[J].矿床地质,2004,23(2):142-149.
    [14]柳建新.地球物理勘探在矿山危机深边部接替资源勘探中的应用[J].国土资源导刊.2006,3(3):120-124.
    [15]朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
    [16]李舟波,孟令顺,梅忠武.资源综合地球物理勘查[M].北京:地质出版社,2004.
    [17]Cagniard L. Basic theory of the magnetotelluric method of geophysical prospecting [J].Geophysics,1953,18(1):605-635.
    [18]Goldstein M. A., Strangway D. W. Audio-frequency magnetotellurics with a groundedelectric dipole source [J]. Geophysics,1975,40(1):669-683.
    [19]Kazuya Okada. Geophysical exploration at Hishikari gold mine, Kagoshima, Japan [J].The Leading Edge,2000,19(7):744-750.
    [20]Grant Nimeck, Rodney Koch. A progressive geophysical exploration strategy at the SheaCreek uranium deposit [J]. The Leading Edge,2008,27(3):52-63.
    [21]Boerner D. E., Wright J. A., Thurlow J. G., et al. Tensor CSAMT studies at the BuchansMine in central Newfoundland [J]. Geophysics,1993,58(1):12–19.
    [22]于昌明. CSAMT方法在寻找隐伏金矿中的应用.[J].地球物理学报,1998,41(1):133-138.
    [23]Norman Carlson, Kenneth Zonge, George Ring, ea tl.Fluid-flow mapping at a copperleaching operation in Arizona [J]. The Leading Edge,2000,19(7):752-755.
    [24]Batrel L. C., Jacobson R. D. Results of a controlled-source audiofrequencymagnetotelluric survey at the Puhimau thermal area, Kilauea Volcano, Hawaii [J].Geophysics,1987,52(4):665-677.
    [25]刘瑞德,黄力军,孟银生.可控源音频大地电磁测深法在地热田勘查中应用效果初探[J].工程地球物理学报,2007,4(2):86-89.
    [26]Wannamaker P. E. Tensor CSAMT survey over the Sulphur Springs thermal area, VallesCaldera, New Mexico, USA, Part II: Implications for CSAMT methodology [J].Geophysics,1997,62(4):466-476.
    [27]Unsworth M. J., Xinyou Lu, Watts M. D. CSAMT exploration at Sellafield:Characterization of a potential radioactive waste disposal site [J]. Geophysics,2000,65(7):1070-1079.
    [28]李帝铨,底青云,王光杰,等. CSAMT探测断层在北京新区规划中的应用[J].地球物理学进展,2008,23(6):1963-1969.
    [29]王赟,杨德义,石昆法. CSAMT法基本理论及在工程中的应用[J].煤炭学报,2008,4(2):383-387.
    [30]底青云,王光杰,安志国,等.南水北调西线千米深长隧洞围岩构造地球物理勘探[J].地球物理学报,2006,49(6):1836-1842.
    [31]底青云,王妙月,石昆法,等.高分辨V6系统在矿山顶板涌水隐患中的应用研究.[J].地球物理学报,2002,45(5):744-748.
    [32]Agunloye. Induced polarization: A preliminary study of its chemical basis [J].Geophysics,1977,42(3):788-803.
    [33]傅良奎.激发极化法[M].北京:地质出版社,1982.
    [34]何继善.双频激电法[M].北京:高等教育出版社,2006.
    [35]敬荣中,鲍光淑,陈绍裘.地球物理联合反演研究综述[J].地球物理学进展,2003,18(3):535-540.
    [36]Richard Kellett, John Bishop, Emmett Van Reed. The effects of source polarization inCSAMT data over two massive sulfide deposits in Australia [J]. Geophysics,1993,58(12):1764-1772.
    [37]Yixian Xu, Ruiyong Yue. Preliminary understanding of near-field effect of CSAMT inelectric azimuthally anisotropic half-space [J]. J ENVIRON ENG GEOPHYS,2006,11(3):67-72.
    [38]Shu Yan, Junmei Fu. An analytical method to estimate shadow and source overprinteffects in CSAMT sounding [J]. Geophysics,2004,69(1):161-163.
    [39]黄兆辉,底青云,侯胜利,等. CSAMT的静态效应校正及应用[J].地球物理学进展,2006,21(4):1290-1295.
    [40]Urquhart S. A., Zonge K. L.. Combining CSAMT and MT in difficult explorationenvironments [J]. The Leading Edge,1997,16(4):383-384.
    [41]Thomas Kalscheuer, Juliane Hübert, Alexey Kuvshinov, ea tl. A hybrid regularizationscheme for the inversion of magnetotelluric data from natural and controlled sources tolayer and distortion parameters [J]. Geophysics,2012,.77(7): E301-E315.
    [42]Mehrdad Bastani, Alireza Malehmir, Nazli Ismail, et al.Delineating hydrothermalstockwork copper deposits using controlled-source and radio-magnetotelluric methods: Acase study from northeast Iran [J]. Geophysics,2009,74(9): B167-B181.
    [43]Pedersen L. B., Bastani M., Dynesius L. Groundwater exploration using combinedcontrolled-source and radiomagnetotelluric techniques [J]. Geophysics,2005,70(1):G8-G15.
    [44]Basokur A. T., Rasmussen T. M., Kaya C., et al. Comparison of induced polarization andcontrolled-source audio-magnetotellurics methods for massive chalcopyrite exploration ina volcanic area [J]. Geophysics,1997,62(8):1087-1096.
    [45]Klaus Spitzer, Michel Chouteau. A dc resistivity and IP borehole survey at the CasaBerardi gold mine in northwestern Quebec [J]. Geophysics,2003,68(3):453-463.
    [46]王大勇,李桐林,高远,等. CSAMT法和TEM法在铜陵龙虎山地区隐伏矿勘探中的应用[J].吉林大学学报:地球科学版,2009,39(6):1134-1140.
    [47]滕吉文,白武明,张中杰,等.中国大陆动力学研究导向和思考[J].地球物理学进展,2009,24(6):1913-1936.
    [48]Michael S. Z. Electromagnetic geophysics: Notes from the past and the road ahead [J].Geophysics,2010,75(5):75A49-75A66.
    [49]Nabighian M. N., Asten M W. Metalliferous mining geophysics—State of the art in thelast decade of the20th century and the beginning of the new millennium [J]. Geophysics,2002,67(5):964-978.
    [50]Nabighian M. N., Macnae J. C. Electrical and EM methods,1980–2005[J]. The LeadingEdge,2005,24: S42-S45.
    [51]陆其鹄,吴天彪,林君.地球物理仪器学科发展研究报告[J].地球物理学进展,2009,24(2):750-758.
    [52]林君,王言章,刘长胜.高端地球物理仪器研究及我国产业化现状[J].仪器仪表学报,2010,31(8):173-180.
    [53]刘国栋.电磁法及电法仪器的新进展和应用[J].石油地球物理勘探,2004,39(11):46-51.
    [54]Weissling Blake. Advances in electrical resistivity imaging of karst voids [C]. TheGeological Society of America abstracts with42nd Annual Meeting,40(3):30
    [55]Zonge International. GDP-32/24multifunction receiver specification sheet [EB/OL].http://www.zonge.com/Receivers.html
    [56]Yamashita Mitsuru, Fox Leo. Introduction of V8wireless multifunction, multichannelgeophysical data acquisition system [C]. Proceedings of the SEGJ Conference,2005:219-222.
    [57]Bernhard Friedrichs. Multi dipole CSAMT [EB/OL]. http://178.63.62.205/mtxgeo/index.php/transmitter/txm-22
    [58]Adam Schultz, Paul Vincent, Kelly Rose, et al.4D monitoring techniques to improvereservoir longevity and productivity in Enhanced Geothermal Systems [C]. InternationalWorkshop of Deep Geothermal Systems.2012,7.
    [59]Joosten, W.L. Seismic Telemetry: The Future of Geophysics [C]. SEG52nd AnnualInternational Meeting Expanded Abstracts,1982:47-48.
    [60]Sheard N., Ritchie T., Kingman J. et al. MIMDAS–a new direction in geophysics [C].ASEG Conference and Exhibition Abstracts,1998.
    [61]Garner S J, Thiel D V. Broadband (ULF-VLF) surface impedance measurements usingMIMDAS[J]. Exploration Geophysics,2000,31(2):173-178.
    [62]White M, Gordon R. Deep imaging: new technology lowers cost of discovery[J].Canadian Mining Journal,2003,4(3):27-28.
    [63]Nimeck G, Koch R. A Progressive geophysical exploration strategy at the Shea Creekuranium deposit[J]. The Leading Edge,2008,27(3):52-63.
    [64]Goldie M. A comparison between conventional and distributed acquisition inducedpolarization surveys for gold exploration in Nevada [J]. The Leading Edge,2007,26(2):180-183.
    [65]Gharibi M, Killin K, McGill D, et al. Full3D Acquisition and Modelling with theQuantec3D System-The Hidden Hill Deposit Case Study [J]. ASEG Extended Abstracts,2012(1):1-4.
    [66]David Wright, Anton Ziolkowski, Bruces Hobbs. Hydrocarbon detection and monitoringwith a multicomponent transient electromagnetic (MTEM) survey [J].The Leading Edge,2002,21(9):852-864.
    [67]Anton Ziolkowski, Bruce A. Hobbs, David Wright. Multitransient electromagneticdemonstration survey in France [J]. Geophysics,2007,72(7): F197-F209.
    [68]Golden H., Herbert T., Duncan A. GEOFERRET: A new distributed system fordeep-probing TEM surveys [C]:76th SEG Annual International Meeting Uraniumworkshop extended abstracts,2006.
    [69]蒋邦远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998.
    [70]董浩斌,王传雷.高密度电法的发展与应用[J].地学前缘,2003,10(1):171-176.
    [71]刘国栋.我国大地电磁测深的发展[J].地球物理学报,1994,37(增刊):301-310.
    [72]王东坡,曾效箴,薛林福,等.海洋阵列大地电磁测深法在辽东湾滩海深部地质构造研究中的应用[J].石油与天然气地质,2000,21(4):293-299.
    [73]陆其鹄,彭克中,易碧金.我国地球物理仪器的发展[J].地球物理学进展,2007,22(4):1332-1337.
    [74]林品荣,赵子言.分布式被动源电磁法系统及其应用[J].地震地质,2001,23(2):138-142.
    [75]林品荣,郑采君,石福升.电磁法综合探测系统研究[J].地质学报,2006,80(10):1539-1548.
    [76]程德福,王君,李秀平,等.,混场源电磁法仪器研制进展[J].地球物理学进展,2004,19(4):778-781.
    [77]王言章.混场源电磁探测关键技术研究[D].长春:吉林大学,2010.
    [78]魏文博.我国大地电磁测深新进展及瞻望[J].地球物理学进展,2002,17(2):245-254.
    [79]林品荣,郭鹏,石福升,等.大深度多功能电磁探测技术研究[J].地球学报,2010,31(2):149-154.
    [80]何继善.广域电磁法和伪随机信号电法[M].北京:高等教育出版社,2010:1-6.
    [81]蒋奇云.广域电磁测深仪关键技术研究[D].长沙:中南大学,2010.
    [82]李金铭.地电场与电法勘探[M].北京:地质出版社,2005.
    [83]刘国兴.电法勘探原理与方法[M].北京:地质出版社,2005.
    [84]何继善.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1990:1-20.
    [85]石昆法.可控源音频大地电磁法[M].北京:科学出版社,1999:10-88.
    [86]汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005.
    [87]底青云,王若等.可控音频大地电磁数据正反演及方法应用[M].北京:科学出版社,2008.
    [88]安志国,底青云. CSAMT法对低阻薄层结构分辨能力的探讨[J].地震地磁观测与研究,2006,2(27):32-38.
    [89]王艳,林君,周逢道,等. CSAMT法深部低阻分辨能力及方法研究[J].中国矿业大学学报,2009,31(1):86-90.
    [90]Routh P. S., Oldenburg D. W. Inversion of controlled source audio-frequencymagnetotellurics data for a horizontally layered earth [J]. Geophysics,1999,64(12):1689-1697.
    [91]Ruo Wang, Changchun Yin, Miaoyue Wang, et al. Simulated annealing forcontrolled-source audio-frequency magnetotelluric data inversion [J]. Geophysics,2012,77(3): E127-E133.
    [92]雷达.起伏地形下CSAMT二维正反演研究与应用.[J].地球物理学报,2010,53(4):982-993.
    [93]底青云, Martyn Unsworth,王妙月.复杂介质有限元法2.5维可控源音频大地电磁法数值模拟.[J].地球物理学报,2004,47(4):723-730.
    [94]Yuji Mitsuhata, Toshihiro Uchida, Hiroshi Amano.2.5-D inversion of frequency-domainelectromagnetic data generated by a grounded-wire source [J]. Geophysics,2002,67(11):1753-1768.
    [95]Boschetto N. B., Hohmann G. W. Controlled-source audiofrequency magnetotelluricresponses of three-dimensional bodies [J]. Geophysics,1991,56(2):255-264.
    [96]Haber E., Ascher U. M., Oldenburg D. W. Inversion of3D electromagnetic data infrequency and time domain using an inexact all-at-once approach [J]. Geophysics,2004,69(9):1216-1228.
    [97]薛云峰,张继锋.基于南水北调西线工程岩性特征的CSAMT法有限元三维数值模拟研究[J].地球物理学报,2011,54(8):2160-2168.
    [98]吴璐苹,石昆法,李荫槐,等.可控源音频大地电磁法在地下水勘查中的应用研究[J].地球物理学报,1996,39(5):712-717.
    [99]Lanfang He, Minghai Feng, Zhanxiang He, et al. Application of EM Methods for theInvestigation of Qiyueshan Tunnel, China [J]. J ENVIRON ENG GEOPHYS,2006,11(6):151-156.
    [100]Pellerin L., Johnston J. M., Hohmann G. W. A numerical evaluation of electromagneticmethods in geothermal exploration [J]. Geophysics,1996,61(2):121-130.
    [101]Sinharay R. K., Srivastava S., Bhattacharya B. B. Audiomagnetotelluric studies to tracethe hydrological system of thermal fluid flow of Bakreswar Hot Spring, Eastern India: Acase history [J]. Geophysics,2010,75(9): B187-B195.
    [102]Volkan Tuncer, Unsworth M. J., Weerachai Siripunvaraporn, et al. Exploration forunconformity-type uranium deposits with audiomagnetotelluric data: A case study fromthe McArthur River mine, Saskatchewan, Canada [J]. Geophysics,2006,71(11):B201-B209.
    [103]Agunloye.Induced polarization:A preliminary study of its chemical basis [J].Geophysics,1977,42(3):788-803.
    [104]Pelton W. H., Smith P. K. Mapping porphyry copper deposits in the Philippines with IP[J]. Geophysics,1976,41(2):106-122.
    [105]Seigel H. O., Vanhala H., Sheard S. N.Some case histories of source discriminationusing time-domain spectral IP [J]. Geophysics,1997,62(10):1394-1408.
    [106]Titov K., Kemna A., Tarasov A., ea tl. Induced polarization of unsaturated sandsdetermined through time domain measurements [J]. Vadose Zone Journal,2004,3(11):1160-1168.
    [107]Merriam J. B. Induced polarization and surface electrochemistry [J]. Geophysics,2007,72(7): F157-F166.
    [108]Sogade J. A., Francesca Scira-Scappuzzo, Yervant Vichabian, et al.Induced-polarization detection and mapping of contaminant plumes [J]. Geophysics,2006,71(5): B75-B84.
    [109]Ulrich C., Slater L. D. Induced polarization measurements on unsaturated,unconsolidated sands [J]. Geophysics,2004,69(5):762-771.
    [110]敬荣中,鲍光淑,林剑,等.一种基于数据融合的地球物理数据联合反演方法[J].地球物理学报,2004,47(1):143-150.
    [111]何委徽,王家林,于鹏.地球物理联合反演研究的现状与趋势分析[J].地球物理学进展,2009,24(2):530-540.
    [112]Meju M. A., Fontes S. L., Oliveira M. F. B., et al. Regional aquifer mapping usingcombined VES-TEM-AMT/EMAP methods in the semiarid eastern margin of ParnaibaBasin, Brazil [J]. Geophysics,1999,64(2):337-356.
    [113]Meju M. A. A simple method of transient electromagnetic data analysis [J]. Geophysics,1998,63(2):405–410.
    [114]Meju M. A. Joint inversion of TEM and distorted MT soundings: Some effectivepractical considerations [J]. Geophysics,199661(1),56–65.
    [115]曹学峰.级联式大功率电性源发射机关键技术研究[D].长春:吉林大学,2010.
    [116]彭黎丽.分布式电磁探测接收系统数据传输技术研究[D].长春:吉林大学,2010.
    [117]孙洁,晋光文,白登海等.大地电磁测深资料的噪声干扰[J].物探与化探,2000,24(2):119-127.
    [118]邵英秋,王言章,程德福,等.基于磁反馈的宽频带磁传感器的研制[J].仪器仪表学报,2010,31(11):2461-2466.
    [119]姜岩峰,张东,于明,等.数字接收机中CIC滤波器的设计[J].电子测量与仪器学报,2011,25(8):671-675.
    [120]赵宏亮.基于Sigma-Delta转换器的数字滤波器设计[D].天津:天津大学,2007.
    [121]蔡友. Sigma-Delta ADC中抽取滤波器的研究与实现[D].杭州:浙江大学,2007.
    [122]覃岭,邓小炜,何子述,等.宽带数字下变频的高效实现方法研究[J].电子科技大学学报,2008,37(5):698-700.
    [123]朱国军,张浩,张志军,等.基于FPGA的CIC滤波器实现[J].电子科技,2006,(11):19-22.
    [124]王超,宋克柱,唐进.高性能水下地震数据采集系统设计与实现[J].吉林大学学报:工学版,2007,37(1):168-172.
    [125]张文秀,林君,刘立超,等.分布式电磁探测宽频数据采集系统的设计与实现[J/OL].吉林大学学报(工学版),2012,[2012-06-19].http://www.cnki.net/kcms/detail/22.1341.T.20120619.1103.005.html.
    [126]石显新,闫述,陈明生,等. CSAMT静态偏移的转换相位法校正[J].石油地球物理勘探,2011,46(5):802-807.
    [127]王淑玲,林君,段清明.基于GPS的瞬变电磁系统同步测量控制器研究[J].石油仪器,2001,15(1):13-15.
    [128]杜茗茗,周雒维,马静,等.基于GPS与温补晶振双同步控制的瞬变电磁测量控制器[J].电工技术学报,2008,23(12):120-124.
    [129]杨旭海,翟惠生,胡永辉.基于新校频算法的GPS可驯铷钟系统研究[J].仪器仪表学报,2005,26(1):41-44.
    [130]黄翔,江道灼. GPS同步时钟的高精度守时方案[J].电力系统自动化[J].2010,34(9):74-78.
    [131]曾祥君,尹项根.晶振信号同步GPS信号产生高精度时钟的方法及实现[J].电力系统自动化,2003,27(8):49-53.
    [132]石书祝,赵正予,李婷.武汉电离层斜向探测系统的时间同步设计[J].电波科学学报,2009,24(6):1089-1093.
    [133]魏丰,朱广伟,王瑞清,等.一种GPS校准的数字式高精度守时钟[J].仪器仪表学报,2011,32(4):920-926.
    [134]张文秀,林君,周逢道,等.分布式电磁接收系统多频标定信号的产生与检测[J].光学精密工程,2012,20(4):1362-1369.
    [135]周云耀,蔡亚先.甚宽频带地震计频域标定的相关处理技术[J].武汉大学学报:信息科学版,2005,30(7):632-635.
    [136]张建明.探讨数字相关滤波在精密位置检测与控制系统中的应用[J].光学精密工程,1996,4(3):38-45.
    [137]高爱华,孙金荣,秦文罡.微弱激光信号的数字相关检测技术[J].西安工业大学学报,2010,30(1):5-8.
    [138]王兰炜,赵家骝,王子影,等.相关检测在甚低频电磁信号检测中的应用[J].西北地震学报,2004,26(4):339-346.
    [139]王言章,程德福,万云霞,等.混场源电磁接收与标定系统设计[J].仪器仪表学报,2008,29(2):304-308.
    [140]耿胜利,赵庆安.磁传感器标定技术与误差分析[J].地震地磁观测与研究,1988,9(2):50-55.
    [141]何继善,佟铁钢,柳建新. a~n系列伪随机多频信号数学分析及实现[J].中南大学学报:自然科学版,2009,40(6):1666-1671.
    [142]高晋占.微弱信号检测[M].北京:清华大学出版社,2004.
    [143]胡广书.数字信号处理(第二版)[M].北京:清华大学出版社,2003.
    [144]张文秀,林君,徐汶东,等.分布式电磁探测接收系统中激电测量功能的实现[C]//第九届中国国际地球电磁学术讨论会论文集.桂林,2009:71-74.
    [145]张希友,李国政.长白山地热田地质及地球化学特征[J].吉林地质,2006,25(1):25-30.
    [146]张文秀,周逢道,林君,等.分布式电磁探测系统在深部地下水资源勘查中的应用[J].吉林大学学报地球科学版,2012.42(4):1207-1213.
    [147]王长刚,姚富强,王胜伟.等.杨家杖子钼矿开展新一轮找矿勘查前景分析[J].矿产与地质,2003,17(2):154-156.
    [148]曹中夫.大台沟铁矿成我国最大铁矿[N].地质勘查导报,2010-09-11(001).
    [149]洪秀伟,庞宏伟,刘学文,等.辽宁本溪大台沟铁矿地质特征[J].中国地质,2010,37(5):1426-1433.
    [150]周树亮,孙英华,张向东.等.吉林省红旗岭镍矿区3号岩体成矿地质特征及找矿方向[J].吉林地质,2009,28(2):38-44.
    [151]全国危机矿山接替资源找矿项目-吉林磐石红旗岭铜镍矿找矿[EB/OL].(2010-07-28)[2012-10-10]. http://jlysdk.com/news.asp?pageclass=104&id=304.
    [152]杨学立.铜镍硫化物矿床深部找矿地球物理方法综合研究[D].北京:中国地质大学(北京),2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700