用户名: 密码: 验证码:
全腔静脉——肺动脉连接术的临床与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂性紫绀型先天性心脏病一直是心脏外科手术治疗的难
    题之一。自从1971年Fontan和Baudet首次报道采用心房—肺
    动脉循环方式治疗三尖瓣闭锁获得成功以来,这种手术方法逐渐
    为临床所接受,且适应症范围不断扩大,但由于其术后逐渐出现
    右房高压以及吻合口疤痕增生,导致房性心律失常发生率显著增
    加,因此长期结果仍显示出功能衰竭和过早的远期死亡。1988
    年de Leval等提出右房收缩并不是肺循环的必需动力,在肺血管
    阻力正常时,升高的腔静脉压足可维持肺循环血流,另外右房舒
    缩会使无瓣房腔产生涡流,导致房压升高,房性心律失常及房内
    血栓形成的危险性增加,因此对其进行了改进,将上、下腔静脉
    直接与肺动脉相连,完全旷置右心,称之为全腔静脉—肺动脉连
    接术(total cavopulmonary connection,TCPC)。由于该连接方式产
    生的血流动力学效果、手术应用范围、并发症发生率等均优于传
    统的Fontan手术,目前这种腔静脉—肺动脉循环方式已逐渐取
    代Fontan手术的心房—肺动脉循环方式,成为复杂性先天性心
    脏病理想的减状性手术方法。
     全腔静脉—肺动脉连接术的临床应用仅十余年时间,目前国
    内外对于该术式的研究主要集中于临床手术经验的总结以及腔
    静脉—肺动脉具体连接方式的改良等方面,其手术方法依次经历
    了心房内侧隧道、心房内管道、心外管道等一系列改进,尤其后
    者,不但手术操作简单,可在心脏跳动下进行,避免了心房的切
    开与缝合,而且适应症广泛,血流动力学最优,术后并发症发生
    
    
    第四军医大学硕士学位论文 中文摘要
    率低,因此逐渐为临床所采用。
     然而,对于该术式的研究目前仍存在以下不足:()全腔静
    脉一肺动脉连接术动物模型的建立虽偶见报道,但因手术操作复
    杂、耗时,术后无法维持稳定的血流动力学状态,且存活时间短
    暂,对临床指导意义不大。Q厂心外管道TCPC术式中,关于下
    腔静脉与肺动脉不同连接方法对肺循环血流动力学影响的研究
    多数局限于体外管道及计算机模拟模型,缺乏临床资料的证实。
     0)国内外尚末见报道关于该手术完全旷置右心后,肺循环内
    长期无搏动血流对肺血分布及心肺内分泌功能的确切影响。N)
    TCPC术式与传统改良Fontan手术相比,虽然房性心律失常发生
    率显著下降,但胸腔积液、乳糜胸、肺动静脉瘦等并发症的发生
    率明显增高,关于其产生原因仍不明确,目前尚无有效的预防及
    治疗手段。
     我单位从 1990年开展该手术以来,至今己行 TCPC手术共
    50例,其中包括心房内隧道、心房内管道、及心外管道TCPC
    等各种腔静脉刀动脉连接方式。自 1993年 3月至 2000年门月,
    我单位采用将上腔静脉与右肺动脉端侧吻合,下腔静脉通过人造
    血管与主肺动脉端侧吻合的方法,共行。O外管道 TCPC术 16例,
    并对术后存活病人进行了随访。由此我们确立了对心外管道全腔
    静脉一肺动脉连接术进行临床及实验研究的课题。本研究包括两
    部分:
     第一部分 全腔静脉一肺动脉连接术动物模型的研究
     我们通过改进手术方法,将Y型人造血管分别端侧吻合于
    上、下腔静脉及主肺动脉,结扎腔静脉近心段,无需体外循环,
     £
    
    第凹牟医大学硕士学位论文 中文摘要
    无需其它心内操作,在心脏跳动情况下,成功建立了犬全腔静脉
    肺动脉连接术动物模型,该手术方法可将腔静脉血直接引流入肺
    动脉,与临床TCPC手术的病理生理一致。我们观察了术后不同
    腔静脉压水平对血流动力学的影响,采用羟乙基淀粉代血浆将腔
    静脉压维持于20mnirlg,测量其血流动力学指标随时间的变化规
    律,采用电磁流量计测量双侧肺血流量,研究其双侧肺血分布与
    血流动力学指标间的相互关系。
     结果:平均手术时间为29ndn,术后腔静脉、人工管道、肺
    动脉之间无明显压力阶差,动物存活时间明显延长,平均14小
    时,最长可达5大。动物模型建立后,低心排症状明显,肺血管
    阻力显著升高,心排量与腔静脉压成显著正相关,与肺血管阻力
    呈显著负相关。术后肺血分布改变明显,双肺血流比值接近1:
    l,且与肺血管阻力显著相关。
     结论:该动物模型手术操作简单,不需体外循环,避免心内
    操作,将中心静脉压维持于20Illllulg可获得稳定的血流动力学
    指标,且动物术后存活时间明显延长。术后心排量与腔静脉压及
    肺血管阻力关系密切,肺血分布与肺血管阻力显著相关。因此
    TCPC术后适当升高腔静脉压,降低肺血管阻力有助于纠正低心
    排,改善肺血分布。
     第二部分 心外管道全腔静脉一肺动脉连接术的临床研究
     自 1993年至 2000年门 月,我单位采用将上腔静脉与右肺
    动脉端侧吻合、下腔静脉通过人造血管与主肺动脉端侧吻合的万
    法,共行心外管道 TCPC术 16例,效果满意。我们采用心导管、
    心血管造影、肺ECT等手段对其中一部分病人的血流动力学宿
     >
Total cavopulmonary connection (TCPC) has been proposed as a rational alternative to atriopulmonary connection for complex cyanotic congenital heart disease. But because of its only ten years' clinical application, the study of its animal model, postoperative hemodynamics, cardiovascular and neuroendocrine is deficiency. By improving the vascular anastomosis of venae cavac-pulmonary connection, we successfully created its animal model, and by following up the clinic patients, we discussed the mechanism of the interaction between hemodynamics and cardiovascular-neuroendocrine. This study includes two parts:
    Part I Experimental study of the total cavopulmonary
    connection
    
    
    
    By improving on the vascular anastomosis of venae cavae梡ulmonary connection, we have built a new animal model of total cavopulmonary connection (TCPC). Our methods is to construct a Y-shaped conduit with tube grafts (1.4cm in diameter), each limb of the conduit was anastomosised with the vena cava and the main pulmonary artery in the end-to-side way with a side clamp, then ligated the proximal vena cava. It can drain the blood flow to pulmonary artery directly, being accordance with the pathophysiology of clinic TCPC operations. We have observed the relationship between the different central venous pressure and the hemodynamics postoperation. Using hespan to keep the cava pressure at 20mrnHg, we observed the hemodynamic changes along with the time. Using electromagnetic flowmeter, we measured the pulmonary perfusion, and investigated the relationship between pulmonary perfusion and hemodynamic characteristics.
    Results: All dogs tolerated the operative procedure. No pressure gradients were observed between the pulmonary artery and venae cavae. We found that cardiac output can be increased with the central venous pressure, and the circulation with this model can be sufficiently sustained with the CVP at 20mmHg. The mean time that dogs alive is 14 hours, and the longest is 5 days. After the operation, pulmonary vascular resistance stepped up and CO decreased significantly, CO has a positive correlation with CVP, and has a negative correlation with PVR. After TCPC operation, the
    - IX -
    
    
    
    distribution of pulmonary perfusion changed remarkable, the ratio of left/right pulmonary blood flow is approach to 1:1, and has a negative correlation with PVR.
    Conclusions: Our new model was successfully developed without the use of cardiopulmonary bypass, the tricuspid valve and pulmonary artery valve was left untouched. The operation is easy, and we can get stable hemodynamic characteristics. After operation, CO has an intimate correlation with CVP and PVR, the distribution of pulmonary perfusion has a negative correlation with PVR. It will be useful for studying the circulation after TCPC operation that result in total exclusion of the right heart.
    Part II Clinical study of the total cavopulmonary
    connection
    Since 1990, 50 patients have undergone TCPC in our departments, including all kinds of pattern, such as intracardiac tunnel, intracardiac canal, extracardiac lateral tunnel, and extracardiac canal TCPC. Between March 1993 and November 2000, 16 patients underwent total right heart bypass by means of a superior vena cava梤ight pulmonary artery anastmosis and an extracardiac Gore-Tex conduit from the inferior vena cava to the main pulmonary artery in our departments. We reviewed these patients to investigate the hemodynamic characteristics, pulmonary
    
    
    
    perfusion, and some vasoactive factors.
    Results: seventeen patients with complex congenital heart disease underwent this surgical procedure. Three patients died (early mortality, 12.5%). Mean follow-up was 13.8 months. The incidence of postoperative pleural effusion and chylothorax are 21.4%, cardiac arrthymia is 13.4%. The ECT results showed that right lung has the relative superior blood perfusion. The patients underwent this procedure are associated with abnormal distribution of flow to the lower lung lobes. Hemodynamic data were satisfactory, a preferential direction
引文
1 Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971;26:240-8
    2 Amodeo A, Galletti L, Marianeschi S, et al. Extracardiac Fontan operation for complex cardiac anomalies: seven years' experience. J Thorac Cardiovasc Surg 1997;114:1020-1028
    3 Gelatt M, Hamilton RM, McCrindle BW, Gow RM, Williams WG, Trusler GA, et al. Risk factors for atrial tachyarrthymias after the Fontan operation. J Am Coll Cardiol 1994;24:1735-41
    4 de Leval MR, Kilner P, Gewillig M, Bull C. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. J Thorac Cardiovasc Surg 1988;98:682-95
    5 Jonas RA, Castaneda AR. Modified Fontan procedure: atrial baffle and systemic venous to pulmonary artery anastomosis techniques. J Cardiac Surg 1988;3:91-6
    6 Nawa S, Irie H, Takata K, Sugawara E, Teramoto S. Development of a new experimental model for total exclusion of the right heart without the aid of cardiopulmonary bypass. J Thorac Cardiovasc Surg 1989;97:130-4
    7 Kaku K, Matsuda H, Kaneko M, et al. Experimental complete
    
     right heart bypass. Proposal of a new model and acute hemodynamic assessment with vasoactive drugs in dogs. J Thorac Cardiovasc Surg 1990;99:161-6
    8 Haneda K, Konnai T, Sato N, Nicoloff NN, Mohri H. Acute hemodynamic changes after Fontan operation: an experimental study. Tohoku J Exp Med 1993 ;169(2) : 113-9
    9 Sharma S, Goudy S, Walker P, et al. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. JACC 1996;27(5) : 1264-9
    10 Nawa S, Irie H, Takata K, Sugawara E, Teramoto S. Development of a new experimental model for total exclusion of the right heart without the aid of cardiopulmonary bypass. J Thorac Cardiovasc Surg 1989;97:130-4
    11 Kaku K, Matsuda H, Kaneko M, et al. Experimental complete right heart bypass. Proposal of a new model and acute hemodynamic assessment with vasoactive drugs in dogs. J Thorac Cardiovasc Surg 1990;99:161-6
    12 Haneda K, Konnai T, Sato N, Nicoloff NN, Mohri H. Acute hemodynamic changes after Fontan operation: an experimental study. Tohoku J Exp Med 1993; 169(2) : 113-9
    13 Nawa S, Irie H, Takata K, Sugawara E, Teramoto S. Development of a new experimental model for total exclusion of the
    
    right heart without the aid of cardiopulmonary bypass.J Thorac Cardiovasc Surg 1989;97:130-4
    14 Kaku K, Matsuda H, Kaneko M, et al. Experimental complete right heart bypass.Proposal of a new model and acute hemodynamic assessment with vasoactive drugs in dogs. J Thorac Cardiovasc Surg 1990;99:161-6
    15 Haneda K, Konnai T, Sato N, Nicoloff NN, Mohri H. Acute hemodynamic changes after Fontan operation: an experimental study. Tohoku J Exp Med 1993;169(2): 113-9
    16 Nawa S, Irie H, Takata K, Sugawara E, Teramoto S. Development of a new experimental model for total exclusion of the right heart without the aid of cardiopulmonary bypass. J Thorac Cardiovasc Surg 1989;97:130-4
    17 de Leval MR, Kilner P, Gewillig M, Bull C.Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. J Thorac Cardiovasc Surg 1988;98:682-95
    18 张仁福,汪曾炜,孙立志等。心房内管道行全腔静脉—肺动脉连接术。中华胸心血管外科杂志1996;12:132-6
    19 Laschinger JC, Ringl RE, Brenner JI, et al. Extracardiac total cavopulonary connection. Ann Thorac Surg 1992;54:371-3
    20 Lardo AC, Webber SA, Friehs I, et al. Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary
    
     connections. J Thorac Cardiovasc Surg 1999;117(4) :697-704
    21 Sharma S, Goudy S, Walker P, et al. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. JACC 1996;27(5) : 1264-9
    22 Houlind K, Stenbog EV, Sorensen KE, et al. Pulmonary and caval flow dynamics after total cavopulmonary connection. Heart 1999;81(l):67-72
    23 de Leval MR, Dubini G, Migliavacca F, et al. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavopulmonary connections. J Thorac cardiovasc Surg 1996;111:502-13
    24 Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971;26:240-8
    25 Gelatt M, Hamilton RM, McCrindle BW, Gow RM, Williams WG, Trusler GA, et al. Risk factors for atrial tachyarrthymias after the Fontan operation. J Am Coll Cardiol 1994;24:1735-41
    26 de Leval MR, Kilner P, Gewillig M, Bull C. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. J Thorac Cardiovasc Surg 1988;98:682-95
    27 Jonas RA, Castaneda AR. Modified Fontan procedure: atrial baffle and systemic venous to pulmonary artery anastomosis
    
    techniques.J Cardiac Surg 1988;3:91-6
    28 张仁福,汪曾炜,孙立志等。心房内管道行全腔静脉—肺动脉连接术。中华胸心血管外科杂志1996;12:132-6
    29 Laschinger JC, Ringl RE, Brenner JI, et al. Extracardiac total cavopulonary connection. Ann Thorac Surg 1992;54:371-3
    30 Laschinger JC, Redmond JM, Cameron DE, et al. Intermediate result of the extracardiac Fontan procedure. Ann Thorac Surg 1996;62:1261-7
    31 Lardo AC, Webber SA, Friehs I, et al. Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections. J Thorac Cardiovasc Surg 1999; 117(4):697-704
    32 Lardo AC, Webber SA, Friehs I, et al. Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections. J Thorac Cardiaovasc Surg 1999; 117(4)
    33 Sharma S, Goudy S, Walker P, et al. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. JACC 1996;27(5): 1264-9
    34 Houlind K, Stenbog EV, Sorensen KE, et al. Pulmonary and caval flow dynamics after total cavopulmonary connection.Heart 1999;81(1):67-72
    35 Laschinger JC, Redmond JM, Cameron DE, et al. Intermediate result of the extracardiac Fontan procedure. Ann Thorac Surg, 1996,
    
     62: 1261-1267
    36 Sharma S, Goudy S, Walker P, et al. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. JACC, 1996, 27:1264-1269
    37 Cloutier A, Ash JM, Smallhorn JF, et al. Abnormal distribution of pulmonary blood flow after the Glenn shunt or Fontan procedure. Circulation, 1985, 72: 471-479
    38 Kim SJ, Bae EJ, Cho DJ, et al. Development of pulmonary arteriovenous fistulas after bidirectional cavopulmonary shunt. Ann Thorac Surg, 2000, 70: 1918-1922
    39 Srivastava D, Preminger T, Lock JE, et al. Hepatic venous blood and the development of pulmonary arteriovenous malformation in congenital heart disease. Circulation, 1995, 92: 1217-1222
    40 Troutman WB, Bastow TJ, Galindo AJ, et al. Abnormal dynamic cardiorespiratory respones to exercise in pediatric patients after Fontan procedure. J Am Coll Cardiol, 1998, 31: 668-673
    41 de Leval MR, Kilner P, Gewillig M, Bull C. Total
    cavopulmonary connection: a logical alternative to atriopulmonary
    
     connection for complex Fontan operations. J Thorac Cardiovasc Surg 1988;98:682-95
    42 Kawashima Y, Kitarura S, Matsuda H, et al. Total cavopulmonary shunt operation in complex cardiac anomalies: A new operation. J Thorac Cardiovasc Surg 1984;87:74-81
    43 Nawa S, Teramoto S. New extension of the Fontan principle: Inferior vena cava-pulmonary artery bridge operation. Thorax 1988;43:1022-1023
    44 Marcelletti C, Corno A, Giannico S, et al. Inferior vena cava-pulmonary artery extracardiac conduit: A new form of right heart bypass. J Thorac Cardiovasc Surg 1990; 100: 228-232
    45 Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971;26:240-8
    46 Gelatt M, Hamilton RM, McCrindle BW, Gow RM, Williams WG, Trusler GA, et al. Risk factors for atrial tachyarrthymias after the Fontan operation. J Am Coll Cardiol 1994;24:1735-41
    47 de Leval MR, Kilner P, Gewillig M, Bull C. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. J Thorac Cardiovasc Surg 1988;98:682-95
    48 de Leval MR, Kilner P, Gewillig M, Bull C. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. J Thorac Cardiovasc
    
    Surg 1988;98:682-95
    49 Jonas RA, Castaneda AR. Modified Fontan procedure: atrial baffle and systemic venous to pulmonary artery anastomosis techniques. J Cardiac Surg 1988;3:91-6
    50 Laschinger JC, Ringl RE, Brenner JI, et al. Extracardiac total cavopulonary connection. Ann Thorac Surg 1992;54:371-3
    51 张仁福,汪曾炜,孙立志等。心房内管道行全腔静脉—肺动脉连接术。中华胸心血管外科杂志1996;12:132-6
    52 Laschinger JC, Redmond JM, Cameron DE, et al. Intermediate result of the extracardiac Fontan procedure. Ann Thorac Surg 1996;62:1261-7
    53 Sharma S, Goudy S, Walker P, et al. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. JACC 1996;27(5): 1264-9
    54 de Leval MR, Dubini G, Migliavacca F, et al. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavopulmonary connections. J Thorac cardiovasc Surg 1996; 111:502-13
    55 Stumper O, Wright JGC, Sadiq M, et al. Late systemic desaturation after total cavopulmonary shunt operations. Br Heart J 1995;74:282-286
    56 Stein DG, Laks H, Drinkwater DC, et al. Results of total
    
     cavopulmonary connection in the treatment of patients with a functional single ventricle. J Thorac Cardiovasc Surg. 1991;102:280-7
    57 Pearl JM, Laks H, Stein DG, et al. Total cavopulmonary anastomosis versus conventional modified Fontan procedure. Ann Thorac Surg. 1991 ;52:189-96
    58 Harrison DA, Liu P, Walters JE, et al. Cardiopulmonary function in adult patients late after Fanton repair. J Am Coll Cardio 1995;26:1016-21
    59 Rosenthal M, Bush A, Deanfield J, et al. Comparison of cardiopulmonary adaptation during exercise in children after the atriopulmonary and total cavopulmonary connection Fontan procedures. Circulation 1995 ;91:372-8
    60 Norgard G, Gatzoulis MA. Value of exercise testing in the assessment of the Fontan operation. Cardiol Young 1996;6:106-8
    61 Mertens L, Rogers R, Reybrouck T, et al. Cardiopulmonary response to exercise after the Fontan operation: a cross-sectional and longitudinal evaluation. Cardiol Young 1996;6:136-42
    62 Troutman WB, Bastow TJ, Galindo AJ, et al. Abnormal dynamic cardiorespiratory respones to exercise in pediatric patients after Fontan procedure. J Am Coll Cardiol 1998;31:668-73
    63 Kiana A, Shakibi JG. Fontan physiology. Circulation 1995;92:3149-50
    
    
    64 Kiana A,Shakibi JG.Fontan physiology.Circulation 1995;92:3149-50
    65 Kelly JR, Mack GW, Fhey JT. Diminished venous vascular capacitance in patients with univentricular hearts after the Fontan operation. Am J Cardiol 1995;76:158-63
    66 Mertens L, Rogers R, Reybrouck T, et al. Cardiopulmonary response to exercise after the Fontan operation: a cross-sectional and longitudinal evaluation. Cardiol Young 1996;6:136-42
    67 McDonagh TA, Robb SD, Murdoch DR, et al. Biochemical detection of left-ventricular systolic dysfunction. Lancet 1998;351:9-13
    68 Vantrimpont P, Rouleau JL, Ciampi A, et al.(for the SAVE investigators).Two-year time course and significance of neurohumoral activation in the Survival and Ventricular Enlargement(SAVE) study. Eur Heart J 1998; 19:52-63
    69 Mainwaring RD, Lamberti JJ, Ciampi A, et al. Comparison of the hormonal response after bi-directional Glenn and Fontan procedure. Am Thorac Surg 1994;57:59-64
    70 Cusson JR, Hamet P, Gutkowska J, et al. Effects of atrial natriuretic factor on natriuresis and cGMP in patients with essential hypertension. J Hypertension 1987;5:435-443
    71 现代心血管病学/钱学贤等主编北京人民军医出版社,1995.5 ISBN 7-80020-810-9
    
    
    72 Cusson JR, Hamet P, Gutkowska J, et al. Effects of atrial natriuretic factor on natriuresis and cGMP in patients with essential hypertension. J Hypertension 1987;5:435-443
    73 Schwab TR, Edwars BS, Heulein DM, Burnett JC Jr. Role of atrial natriuretic peptide in volume-expension natriuresis. Am J Physiol 1986;251:R310-3
    74 Zimmerman RS, Edwars BS, Schwab TR, Heulein DM, Burnett JC Jr. Cardiorenal-endocrine dynamics during and following volume expansion. Am J Physiol 1987;252:R336-40
    75 Maack T. Receptor of atrial natriuretic factor. Ann Rev Physiol 1992;54:11-27
    76 Roy LF, Ogilvie RI, Larochelle P, et al. Cardiac and vascular effects of atrial natriuretic peptide and sodium nitroprusside in healthy men. Circulation 1989;79:383-392
    77 Westendorp RGJ, Meinders AE. Atrial natriuretic peptide modeulates pulmonary pathophysiology. In: Yearbook of Intension Care and Emergency Medcine.Vincent J-L(Ed).Berlin,Heiddberg,Spriner-Verlag, 1994;pp3 74-383
    78 Burch M, Shinebourne EA, Rigby ML, Carter N, Jeffery S, Stanley P, Smith A. Plasma atrial natriuretic peptide after the Fontan procedure and total cavopulmonary connexion. Int J Cardiol 1990 May;27(2) :161-5
    79 Yoshimura N, Yamaguchi M, Oshima Y, et al. Suppression of
    
    
     the secretion of atrial and brain natriuretic peptide after total cavopulmonary connection. J Thorac Cardiovasc Surg 2000;120:764-769
    80 Johnston CL, Hodsman PG, Kohzuki M. Interaction between atrial natriuretic peptide and the rennin angiotensin aldosterone system. Am J Med 1989;87(suppl 6B)24-28S
    81 Hall SM, Haworth SG. Onset and evolution of pulmonary vascular disease in young children: abnormal postnatal remodeling studied in lung biopsies. J Pathol 1992; 166:183-94
    82 Brigham KL. Mechanisms of endothelial injury. In: Ryan US.ed.Pulmonary endothelium in health and disease. New York: Marcel Dekker 1987;207-36
    83 Rabinovitchc M, Bothwell T,Hayakawa BN,Williams WG,et al. Pulmonary artery endothelial abnormalities in patients with congenital heart defects and pulmonary hypertension. A correlation of light with scanning electron microscopy and transmission electron microscopy. Lab Invest 1986;55:632-53
    84 Barst RJ,Stalcup SA, Steeg CN, Hall JC, Frosolono MF, Cato AE, Mellins RB. Relation of arachidonic acid metabolites to abnormal control of the pulmonary circulation in a child. Am Rev RespirDis.l985;131:171-177
    85 Barst RJ, Stalcup SA. Endothelial function in clinical pulmonary hypertension. Chest.l985;88:216s-219s
    
    
    86 Christman BW, Mcpherson CD,Newman JH, King GA, Bernard GR, Groves BM, Loyd JE. An imbalance between excretion of thromboxe and prostacyclin metabolites in pulmonary hypertesion. N Engl J Med.l992;327;70-75
    87 Adatia I, Barrow SE, Stratton P.D., Miall-Allen V.M., Ritter J.M. Thromboxane A2 and prostacyclin biosynthesis in children and adolescents with pulmonary vascular disease. Circulation. 1993;88(5) :2117-2122
    88 Adatia I, Barrow SE, Stratton P.D. Effect of intracardiac repair on biosynthesis of thromboxane A2 and prostacyclin in children with a left to right shunt. Br Heart J. 1994;72:452-456
    89 Adatia I, Barrow SE, Stratton P.D. Abnormalities in the biosynthesis of thromboxane A2 and prostacyclin in children with cyanotic congenital heart disease. Br Heart J 1993;69:179-182
    90 Adatia I, Barrow SE, Stratton P.D. Abnormalities in the biosynthesis of thromboxane A2 and prostacyclin in children with cyanotic congenital heart disease. Br Heart J 1993;69:179-182
    91 Ichida F, Uese K, Hamamichi Y, Hashimoto I, Tsubata S, Fukahara K, Murakami A, Miyawaki T. Chronic effects of oral prostacyclin analogue on thromboxane A2 and prostacyclin metabolites in pulmonary hypertension. Acta Paediatr Jpn. 1998 Feb; 40(1) : 14-9
    92 汤健,唐朝枢,杨军主编。内皮素。北京:北京医科大学协
    
     和医科大学联合出版社。1994; 2: 25-28
    93 Lippton H, Hauth TA, Summer WR, Hyman AL. Endothelin causes pulmonary vasoconstriction and systemic vasodilatation. J Appl Physiol 1989;66:1008-12
    94 Domkowski PW, Cockerham JT, Kot PA, et al. Characterization of the pulmonary arterial response to endothelin-1 and bosentan in neonatal pigs.2000;70:1522-1530
    95 Miyauchi T, Yoricane R, Sakai S, et al. Contribution of endogenous endothelin-1 to the progression of cardiopulmonary alterations in rats with monocrotaline-induced pulmonary hypertension. Circ Res 1993;73:887-97
    96 Yanagisawa M, Kuihara H, Kumura S, Tomobe Y. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411-415.
    97 Komuro I, Kurihara H, Sugiyama T, Takaku F, Yasaki Y. Endothelin stimulates c-fos and c-myc expression and proliferition of vascular smooth muscle cells. FEBS Lett 1988;238:249-252.
    98 Rubanyi G, Parker B. Endothelins. FASEB J 1991;5:2713-2720
    99 Yoshibayashi M, Nishioka K, Nakao K, Saito Y, Matsumura M. Plsama endothlin concentrations in patients with pulmonary hypertension associated with congenital heart defects. Evidence for increased production of endothlin in pulmonary circulation. Circulation 1991; 84:2280-2285
    
    
    
    100 Cody R, Haas G, Binkley P, Capers Q, Kelley R. Plsama endothlin correlates with the extent of pulmonary hypertension in patients with chronic congestive heart failure. Circulation 1992;85:504-509
    101 Vincent JA, Ross RD, kassab J, Hsu JM. Relation of elevated plasma endothelin in congenital heart disease to increased pulmonary blood flow. Am J Cardio 1993 ;71:1204-1207
    102 Haynes WG, Webb DJ. The endothelin family of peptides: Local hormones with diverse roles in health and disease. Clin Sci,1993;84:485
    103 Vincent JA, Ross RD, kassab J, Hsu JM. Relation of elevated plasma endothelin in congenital heart disease to increased pulmonary blood flow. Am J Cardio 1993;71:1204-1207
    104 Ishikawa S, Miyauchi T, Sakai S, et al. Elevated levels of plasma endothelin-1 in young patients with pulmonary hypertension caused by congenital heart disease are decreased after successful surgical repair. J Thorac Cardiovasc Surg 1995; 110:271-3
    105 Elton TS, Oparil S, Taylor GR, et al. Normobaric hypoxia stimulates endotheline gene expression in the rat. Am J Physiol, 1992;263:R1260-1264
    106 Yoshibayashi M, Nishioka K, Nakao K, Saito Y, Matsumura M. Plsama endothlin concentrations in patients with pulmonary hypertension associated with congenital heart defects. Evidence for
    
     increased production of endothlin in pulmonary circulation. Circulation 1991; 84:2280-2285
    107 Shimosegawa T, Said SI. Pulmonary calcitonin gene-related peptide immunoreactivity: nerve-endocrine cell interrelationships. Am J Respair Cell Mol Biol.l991;4:126-134.
    108 Stevens TP, McBride JT, Peak JL, Pinkerton KE, Strip BR. Cell proliferation contributes to PNEC hyperplasia after acute airway injury. Am JPhsiol. 1997;272:L486-L493
    109 Kusakabe T, Kawakami T, Powell FL, Ellisman MH, Sawada H, Takenaka T. Distribution of substance P and calcitonin gene-related peptide immunoreactivity nerve fibers in the trachea of chronically hypoxic rats. Brain Res Bull.l996;39:335-339.
    110 Dewitt BJ, Chen DY, Caminiti GN, Nossaman BD, Coy DH, Murphy WA, Kadowits PJ. Comparision of responses to adrenomedullin and calcitonin gene-related peptide in the pulmonary vascular bed of the cat. Eur J Pharmacol.l994;257:303-306
    111 Hyman AL, Hao Q, Tower A, Kadowits PJ, Champion HC, Gumusel B, Lippton H. Novel catherterazation technique for the in vivo measurement of pulmonary vascular reponses in rats. Am J Phsiol.l998;274:H1218-H1229
    112 Kusakabe T, Kawakami T, Powell FL, Ellisman MH, Sawada H,T akenaka T. Distribution of substance P and calcitonin
    
     gene-related peptide immunoreactivity nerve fibers in the trachea of chronically hypoxic rats. Brain Res Bull.l996;39:335-339.
    113 Montuenga LM, Springall D, Gaer J, Winter FJ, Zhao L, Mcbride JT, et al. CGRP-immunoreactivity endocrine cell proliferation in normal and hypoxia rat lung studied by immunocyto-chemical detection incorporation of 5'-bromodeoxyuridine. Cell Tisseue Res.l992;268:9-15
    114 Mannan MM, Springall DR, Enard C, et al. Decreased endothelium-dependent pulmonary vasodilator effect of calcitonin gene-related peptide in hypoxia rats contrasts with increased binding sites. Eur Respair J.1995;8:2029-2037
    115 Kwan YW, Wadsorth RM, Kane KA. Effects of neuopeptide Y and calcitonin gene-related peptide on sheep coronary artery rings under oxygenated, hypoxia and simulated myocardio ischemic conditions. Br J Pharmacol.l990;99:774-778
    116 Keith IM, Ekman R. Dynamic aspects of regulatory lung peptides in chronic hypoxia pulmonary hypertion. Exp Lung Res. 1992; 18:205-224.
    117 Tjen IM, Ekman R, Lippton H, Cary J, Keith I. CGRP and somatostatin modulate chronic hypoxia pulmonary hypertion. Am J Phsiol. 1992;263 :H681-H690
    118 Champion HC, Bivalacqua TJ, Toyoda K, Heistad DD, et al. In vivo gene transfer of prepro-calcitonin gene-related peptide to the
    
     lung attenuates chronic hypoxia-induced pulmonary hypertension in the mouse. Circulation 2000;29:923-930
    119 Anand IS, Gurden J, Wander GS, et al. Cardiovascular and hormonal effects of Calcitonin Gene-Related Peptide in congestive heart failure. JACC 1991;17:208-17
    120 Tjen IM, Ekman R, Lippton H, Cary J, Keith I. CGRP and somatostatin modulate chronic hypoxia pulmonary hypertion. Am J Phsiol. 1992;263:H681-H690
    121 Tjen IM, Ekman R, Lippton H, Cary J, Keith I. CGRP and somatostatin modulate chronic hypoxia pulmonary hypertension. Am J Phsiol. 1992;263:H681-H690
    122 Johnston CL, Peter G, Kohzuki M, et al. Interaction between atrial natriuretic peptide and the rennin angiotensin aldosterone system. Am J Med 1989;87(suppl 6B)24-28S

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700