用户名: 密码: 验证码:
直驱式风电场动态等值建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于风能具有随机性、间歇性及不可控性,随着风电并网容量的增加,风电对电力系统安全稳定运行的影响越来越大,大规模风电场动态等值建模理论与方法的研究是当前亟待解决的课题。风电场的等值结果与风电场的风机类型、控制策略、风速、风向、尾流效应等相关,本文研究了直驱式风电场等值方法。论文的主要工作如下:
     (1)直驱式风电机组动态建模及特性分析。建立了风速、尾流效应模型、直驱式风电机组动态模型、提出了全功率双脉宽调制变换器的控制策略;仿真研究了直驱式风电机组接入电网后风速扰动时、电网故障时的动态特性;风速扰动时,风电机组输出的有功功率、无功功率随风速变化而变化,变换器直流侧电压有微小的波动;电网故障时,直驱式风电机组可以进行无功功率控制,对电网电压的恢复有积极的作用,不向短路点提供短路电流,确保风电系统连续运行,提高了电力系统的安全稳定性;仿真结果表明所建模型及控制策略是正确有效的。
     (2)为了研究直驱式风电场等值模型处理方法,对直驱式风电机组模型降阶。建立直驱式风电机组的13阶详细动态数学模型,应用特征分析法,分析了风速变化、控制器参数变化对特征值及系统稳定性的影响,确定主导特征值,保留与主导特征值相关的状态变量,使风电机组的阶数降为四阶,应用时域仿真法对详细模型和降阶模型进行对比,结果表明降阶模型与详细模型具有较好的一致性。
     (3)直驱式风电场稳态等值及不确定性潮流计算。研究风电场内部集电系统等值方法,提出一个简单易行的风电场内部集电系统等值方法——等值功率损耗法,验证了等值功率损耗法的有效性及准确性;由于风速的随机波动性,提出了考虑尾流效应的风速不确定性和直驱式风电机组出力不确定性潮流定量计算方法,利用PSASP/UPI提供的开发平台及强大的综合程序计算功能,通过动态连接库实现UP用户功能,编程实现了含风电场的不确定性潮流计算。
     (4)直驱式风电场动态等值及含风电场的电力系统暂态稳定分析。将模态同调等值法应用于风电场动态等值中;为保证模态不变,风电机组等值模型处理采用降阶的直驱式风电机组模型,为保证同调,根据风电机组运行特性相近为分群原则,研究了风电场分群方法;依据风电场实测运行数据,采用优化算法,辩识等值风电机组参数;验证了等值模型及参数的有效性;应用PSASP提供的用户接口程序UPI编程实现风电场暂态稳定计算,分析了在风速扰动下、电网故障时,含等值风电场的电力系统暂态稳定特性;最后分析了达坂城风电场接入乌鲁木齐电网的电压及频率稳定性。
Owing to characteristics of randomicity, intermittence and uncontrollable of windpower, and along with growing capacity of installation, wind power influences more andmore significantly on safe and stable operating of the power grid. Theory and method fordynamic equivalent modeling of large scale wind farms has become an urgent research task.Equivalent result of wind farm relates with the type of wind turbine, strategy of control,wind speed, wind direction, wake effect, etc. A direct-drive wind farm equivalent methodwas studied in this paper. The main contributions of this paper are as follows:
     (1) Dynamic modeling and characteristic analysis of the direct-drive wind turbine, inwhich, the model of wind speed and wake effect was given, the dynamic models ofdirect-drive wind turbine was proposed and the control strategies of full-scale powerpulse-width modulation converter were studied. The transient characteristics, when windspeed changes and power system faults, were calculated. Simulation results show that: themodel and the control strategies are effective, the active power and reactive power of windturbine were changed and the DC voltage of convertor was few fluctuated with wind speedchanged, the direct-drive wind turbine can provide reactive power support to voltagerecovery, has not influence on short-circuit current of short-circuit node when power gridfaults, and ensures continuous operation of wind turbines and improves security andstability of the electric power system.
     (2) In order to study modeling approach of direct-drive wind turbine (DDWT) whilewind farm dynamic equivalence, DDWT model order was reduced. Firstly, a13-orderdetailed model of DDWT was established. And then by applying eigenvalue analysismethod, dominant eigenvalues were determined, the state variables associated with thedominant eigenvalues were retained and other state variables were eliminated, the systemstate equation of model was reduced to4-order. Finally, dynamic characteristics of thereduced-order model and the detailed model were compared by using time domainsimulation. The comparison result indicates that the reduced-order model has good consistency to the detailed model.
     (3) Study on stability equivalence of wind farm and uncertainty flow calculation. WithStudying the equivalence way on the collector system within wind farm, a simple andpracticable equivalence method-equivalent power loss method was proposed, and validityand accuracy of the equivalent power loss method was verified. Due to randomicity andfluctuation of wind speed, the uncertainty power flow quantity calculation method wasestablished, in which the randomness of wind speed, uncertainty of wind power generation,the effect of wake effect were considered. UP user function was achieved by usingdynamic link library on developing platform of power system analysis softwarepackage/user program interface (PSASP/UPI). Thus the randomization power flowcalculation considered the wind turbine was implemented.
     (4) Dynamic equivalence method of wind farm was studied and transient stability ofpower system with wind farm counted in was analyzed. Mode and coherency equivalentwas applied to acquire equivalent of wind farm. In order to keep mode being constant,reduced-order model was used for direct-drive wind turbine, and grouping rule of windfarm, according to grouping rule of wind turbine operating characteristics being similar,was investigated to ensure coherency of wind turbine. Based on actual operating data ofwind farm, equivalent parameters of wind turbine were identified by applying optimizationalgorithms. Equivalence model and parameter were verified. The transient stabilitycalculation of wind farm was implemented by programming with UPI(User ProgrammingInterface) of PSASP, and the transient stability characteristics of the equivalent wind farmunder wind speed disturbances and system fault were analyzed. Finally, the voltage andfrequency stability of the Dabancheng wind farms integrating to Urumqi grid wasanalyzed.
引文
[1]李俊峰,时璟丽,施鹏飞,等.风力12在中国[M],北京:化学工业出版社,2005,13-19.
    [2]2011年世界可再生能源现状报告[R].http://chinaero.com.cn/zxdt/djxx/zbbg/2011/08/107849.shtml
    [3]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海口:海南出版社,2010,10.
    [4]马宗林.加快中国风能开发和利用[DB/OL]. http://2010lianghui.people.com.cn/GB/180668/11129283.html,[2010,3,12].
    [5]刘国忠.智能电网建设将解决我国风电送出瓶颈[J].电力技术,2010,19(10):18-20,17.
    [6]余贻鑫.智能电网的技术组成和实现顺序[J].南方电网技术,2009,3(2):1-5.
    [7]张伯明,孙宏斌,吴文传,郭庆来.智能电网控制中心技术的未来发展[J].电力系统自动化,2009,33(17):21-28.
    [8] HAASE P. IntelliGrid: A Smart Network of Power[J]. EPRI Journal,2005:17-25.
    [9] U.S.Department of Energy, National Energy Technology Laboratory.Modern Grid Initiative:AVision for Modern Grid [EB/OL]. http://www.netl.doe.gov/moderngrid/docs/,[2008-10-10].
    [10] European Commission.European Technology Platform Smart Grids: Vision and Strategy forEurope’s Electricity Networks of the Future [EB/OL]. http://ec.europa.eu/research/energy/pdf/smartgrids_en.pdf,[2008-10-10].
    [11]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7.
    [12]王益民.坚强智能电网技术标准体系研究框架[J].电力系统自动化,2010,34(22):1-6.
    [13]肖世杰.构建中国智能电网技术思考[J].电力系统自动化,2009,33(9):1-4.
    [14]李光允,陈小虎,唐国庆.大型风力发电场等值建模研究综述[J].华北电力大学学报,2006,33(1):42-46.
    [15]迟永宁.大型风电场接入电网的稳定性问题研究[D].北京:中国电力科学研究院,2006.
    [16] Li H, Chen Z. Overview of different wind generator systems and their comparions[J]. IETRenewable Power Generation,2008,2(2):123-138.
    [17] FeiJoo A E, Cidras J. Modeling of wind farm in the load flow analysis. IEEE Trans on PowerSystems,2000,15(1):110-115.
    [18]徐娇,李兴源。异步风力发电机组的简化RX模型及其潮流计算[J].电力系统自动化,2008,32(1):22-25.
    [19] Lu Bosny Z. Wind turbine operation in electric power system. New York, NY, USA: SpringerVerlag,2003.
    [20]王守相,江兴月,王成山.含风力发电机组的配电网潮流计算[J].电网技术,2006,30(21):42-45,61.
    [21]王海超,周双喜,鲁宗相,吴俊玲.含风电场的电力系统潮流计算的联合迭代应用[J].电网技术,2005,29(18):59-62.
    [22]吴义纯,丁明,张立军.含风电场的电力系统潮流计算[J].中国电机工程学报,2005,25(4):38-41.
    [23]蔺红,晁勤.并网型风力发电机建模与仿真[J].可再生能源,2006,124(4):63-65.
    [24] Slootweg J G. Wind power modeling and impact on power system dynamics[D]. TechnicheUniversiteit Delft,2003.
    [25] Zhou F Q, Joos G, ABBEY C. Voltage stability in weak connection wind farms[J]. IEEETransactions on Power Systems,2005,2(12):1483-1488.
    [26]蔺红,晁勤.风力发电机的简单建模与稳定性分析[J].新疆大学学报,2001,18(1):60-64.
    [27]任普春,石文辉,许晓艳,赵海翔.应用SVC提高风电场接入电网的电压稳定性[J].中国电力,2007,40(11):97-101.
    [28]迟永宁,关宏亮,王伟胜,戴慧珠. SVC与桨距角控制改善异步机风电场暂态电压稳定性[J].电力系统自动化,2007,31(3):95-100.
    [29]范高锋,王纯琦,乔元,赵海翔,薛锋,王伟胜. SVC补偿型定速风电机组模型及其特性分析[J].电网技术,2007,31(22):64-68.
    [30]张锋,晁勤. STATCOM改善风电场暂态电压稳定性的研究[J].电网技术,2008,32(9):70-73.
    [31]李辉,赵斌,韩力.风力发电机组暂态模型和稳定性分析方法评价[J].重庆大学学报,2008,31(5):481-485,494.
    [32]陈毅东,杨育林,王立乔,等.电网不对称故障时全功率变流器风电机组控制策略[J].电力系统自动化,2011,35(7):75-80.
    [33]杨淑英.双馈型风力发电变流器及其控制[D].合肥:合肥工业大学,2007.
    [34] Erlich I, Kretschmann J, Fortmann J,et al. Modeling of wind turbines based on doubly-fedinduction generators for power system stability studies[J]. IEEE Transactions on Power Systems,2007,22(3):909-919.
    [35] Petersson A, Thiringer T, Harnefors L, et al. Modeling and experimental verification of gridinteraction of a DFIG wind turbine[J]. IEEE Transactions on Energy Conversion,2005,20(4):878-886.
    [36] Ledesma P, Usaola J. Double fed induction generator model for transient stability analysis[J]. IEEETransactions on Energy Conversion,2005,20(2):388-397.
    [37]严干贵,王茂春,穆钢,崔杨,周志强,戴武昌.双馈异步风力发电机组联网运行建模及其无功静态调节能力研究[J].电工技术学报,2008,23(7):98-104.
    [38]蒋禹,高雪松.双馈型变速恒频风力发电系统最大风能追踪控制研究[J].电网技术,2008,32)6):100-105.
    [39]廖勇,李辉,姚骏,庄凯.采用串联网侧变换器的双馈风电机组低电压过渡控制策略[J].中国电机工程学报,2009,29(27):90-98.
    [40] Seman S,Niiranen J,Arkkio A. Ride-through analysis of doubly fed induction wind-powergenerator under unsymmetrical network disturbance[J]. IEEE Transactions on PowerSystems,2006,21(4):1782-1789.
    [41] Tapia A,Tapia G,Ostolaza J X,Saenz J R. Modeling and control of a wind turbine driven doublyfed induction generator[J]. IEEE Transactions on Energy Conversion,2003,18(2):194-204.
    [42] Hee-Sang Ko,Gi-Gab Yoon,Nam-Ho Kyung,Won-Pyo Hong.Modeling and control ofDFIG-based variable-speed wind-turbine[J]. Electric Power Systems Research,2008,78(11):1841-1849.
    [43]秦涛,吕跃刚,徐大平.采用双馈机组的风电场无功功率控制技术[J].电网技术,2009,33(2):105-109
    [44]舒进,张保会,李鹏,等.变速恒频风电机组运行控制[J].电力系统自动化,2008,32(16):89-97
    [45]徐大平,肖运启,秦涛,吕跃刚.变桨距型双馈风电机组并网控制及建模仿真[J].电网技术,2008,32(6):100-105.
    [46]伍小杰,柴建云,王祥珩.变速恒频双馈风力发电系统交流励磁综述[J].电力系统自动化,2004,28(23):92-96.
    [47]卞松江,吕晓美,相会杰,等.交流励磁变速恒频风力发电系统控制策略的仿真研究[J].中国电机工程学报,2005,25(16):57-62.
    [48] Flannery PS,Venkataramanan G. Unbalanced Voltage Sag Ride-Through of a DoublyFed Induction Generator Wind Turbine With Series Grid-Side Converter[J]. IEEETransactions on Industry Applications,2009,45(5):1879-1887.
    [49] Lie Xu. Coordinated Control of DFIG's Rotor and Grid Side Converters During NetworkUnbalance[J]. IEEE Transactions on Power Electronics,2008,23(3):1041-1049.
    [50] Jiabing Hu, Yikang He. Modeling and enhanced control of DFIG under unbalancedgrid voltage conditions[J]. Electric Power Systems Research,2009,79(2):273-281.
    [51] Lie Xu,Yi Wang. Dynamic Modeling and Control of DFIG-Based Wind Turbines UnderUnbalanced Network Conditions[J]. IEEE Transactions on Power Systems,2007,22(1):314-323.
    [52]胡家兵,贺益康,王宏胜.不平衡电网电压下双馈感应发电机转子侧变换器的比例-谐振电流控制策略[J].中国电机工程学报,2010,30(6):48-56.
    [53]李辉,廖勇,姚骏,庄凯.不平衡电网电压下基于串联网侧变换器DFIG控制策略[J].电力系统自动化,2009,33(13):83-88
    [54]吴涛,于啸,郭嘉阳,等.暂态稳定计算中双馈型风电机组模型与参数的实证分析[J].电网技术,2011,35(1):100-105.
    [55]王晓波,严干贵,郑太一,等.双馈感应风电机组联网运行仿真及实证分析[J].电力系统自动化,2008,32(7):87-91.
    [56]申洪.变速恒频风电机组并网运行模型研究及其应用[D],中国电力科学研究院,2003.
    [57]尹明,李庚银,张建成,赵巍然,薛轶峰.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,31(15):61-65.
    [58]姚骏,廖勇,瞿兴鸿,刘刃.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):11-15.
    [59] Rawn G B,Lehn W P, Maggiore M. Toward controlled wind farm output: adjustablepower filtering[C].2006IEEE/PES General Meeting, Montreal, Quebec Canada,2006.
    [60]胡书举,李建林,许洪华.永磁直驱风电系统低电压运行特性的分析[J].电力系统自动化,2007,31(17):73-77.
    [61]李建林,胡书举,孔德国,许洪华.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.
    [62]赵紫龙,吴维宁,王伟.电网不对称故障下直驱风电机组低电压穿越技术[J].电力系统自动化,2009,33(21):87-91.
    [63] Hansen AD,Michalke G. Multi-pole permanent magnet synchronous generator wind turbines'grid support capability in uninterrupted operation during grid faults. IET RenewablePower Generation,2009,3(3):333-348.
    [64]姚骏,廖勇,庄凯.电网故障时永磁直驱风电机组的低电压穿越控制策略[J].电力系统自动化,2009,33(12):91-96.
    [65] Mullane A,Lightbody G. Wind-turbine fault ride-through enhancement[J]. IEEE Transactions onPower Systems,2005,20(4):1929-1937.
    [66] Kim K S,Kim E S,Yoon J Y,et al. PSCAD/EMTDC based dynamic modeling and analysis of avariable speed wind turbine. IEEE/PES General Meeting2004, Denvor, USA,2004.
    [67]吴迪,张建文.变速直驱永磁风力发电机控制系统的研究[J].大电机技术,2006(6):51-55.
    [68] Hong-Woo Kim,Sung-Soo Kim,Hee-Sang Ko. Modeling and control of PMSG-basedvariable-speed wind turbine. Electric Power Systems Research,2010,80(1):46-52.
    [69]姚骏,廖勇,庄凯.永磁直驱风电机组的双PWM变换器协调控制策略[J].电力系统自动化,2008,32(20):88-92.
    [70]严干贵,魏治成,穆钢,等.直驱永磁同步风电机组的动态建模与运行控制[J],电力系统及其自动化学报,2009,21(6):34-39.
    [71]姚良忠,倪以信,张伯民,李凌霞.大规模电力系统分区动态等值的快速直接暂态稳定分析[J].电力系统自动化,1993,17(3):20-25.
    [72]李健,陈涵,李大路.电力系统动态等值研究方法综述[J].广东电力,2007,20(2):1-4,9.
    [73]刘丽霞,罗敏,李晓辉,等.电力系统常用动态等值方法的比较与改进[J].电力系统及其自动化学报,2011,23(1):149-154.
    [74]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [75]许剑冰,薛禹胜,张启平,等.电力系统同调动态等值的述评[J].电力系统自动化,2005,29(14):91-95.
    [76] De Mello R W,Podmore R,Stanton K N.Coheren-cy-based dynamic equivalents:Applicationsin transient stability studies[C]. Proceedings of PICA Conference.New Orleans,USA:1975.
    [77]李如琦,杭乃善.暂态稳定分析中的角加速度同调识别法[J].广西大学学报:自然科学版,1995,20,(4):373-377.
    [78]王世模,盛赞埙,李光琦.大型电力系统在线暂态稳定计算中的加速距离同调识别法[J].西安交通大学学报,1982,16(5):103-114.
    [79]周海强,鞠平,孔德超,等,基于机电距离的聚类方法在动态等值中的应用[J].电力系统自动化,2008,32(3):14-17.
    [80]任立,陈允平,陈昆薇.小波变换和人工神经网络在电力系统动态等值中的应用[J].武汉水利电力大学学报,1998,31(5):47-50,71.
    [81] Chow J H.New algorithms for slow coherency aggregation of large power systems[J].Systems andControl Theory for Power System,1993,64(11):95-115.
    [82]余贻鑫,陈礼义.电力系统的安全性和稳定性[M].北京:科学出版社,1988.
    [83]刘明波.用于多机电力系统动态等值的慢同调分区算法[J].华南理工大学学报:自然科学版,1996,24(1):122-130.
    [84] Nath R,Lamba S S,Prakasa R K S.Coherency based system decomposition into study andexternal areas using weak coupling[J].IEEE Trans on Power Apparatus and Systems,1985,104(6):1443-1449.
    [85]戴晨松,薛峰,薛禹胜.受扰轨迹的分群研究[J].电力系统自动化,2000,24(1):13-16.
    [86]卫志农,王芳华,张湘艳,等.改进模糊ISO—DATA法识别电力系统同调机群[J].电力系统及其自动化学报,2006,18(6):43-47.
    [87]史坤鹏,穆钢,李婷,等.基于经验模式分解的聚类树方法及其在同调机组分群中的应用[J].电网技术,2007,31(22):21-25.
    [88] KimJin-Yi,Won Dong-Jun,Moon Seung-II.Development of dynamic equivalent model for largepower system[C]. IEEE Power Engineering Society Transmission and Distribution Conference,Vancouver,Canada:2001.
    [89]岳程燕.大规模电力系统动态等值中聚合问题的研究[D].北京:中国电力科学研究院,2001.
    [90]胡杰,余贻鑫.电力系统动态等值参数聚合的实用方法[J].电网技术,2006,30(24):26-30.
    [91] Perez I J, Verghese G C, Schweppe F C. Selective Modal Analysis with Application to ElectricPower System, Part2[J]. IEEE Transactions on PAS,1982,101(9):3117-3125.
    [92] Perez I J, Verghese G C, Schweppe F C. Selective Modal Analysis with Application to ElectricPower System, Part1: The Dynamic Stability Problems [J]. IEEE Transactions onPAS,1982,101(9):3126-3134.
    [93] Saitoh H, Miura K, Ishioka O, et al. On-line modal analysis based on synchronized measurementtechnology [C]. Proceedings of International Conference on Power System Technology. Kunming,China: IEEE,2002:817-822.
    [94] Bargiotas D T, Lawler J S. Effect of aggregation methods on individual modes in reduced orderpower system models southeastcon’88[C]. IEEE conference proceedings.[s.l.]:IEEE,1988:579-586.
    [95]刘海涛,李焕,徐波.基于改进型模态分析法的电力系统动态等值分析[J].南京工程学院学报(自然科学版),2008,6(1):27-30.
    [96]孙素琴,蒋周士,周海强,等.电力系统动态等值中原动机调速系统聚合的研究[J].电力系统保护与控制,2010,38(12):24-28,34.
    [97] TSAI H,KEVHANI A,DEMCHKO J,et a1.On–line Synchronous Machine Parameter Estimationfrom Small Disturbance Operation Data[J].IEEE Trans.on Energy Conversion,1995,10(1):85-91.
    [98]鞠平,王卫华,谢洪杰,等.3区域互联电力系统动态等值的辨识方法[J].中国电机工程学报,2007,27(13):29-34.
    [99] AZMY A M,ERLICH I,SOWA P.Artificial Neural Network-based Dynamic Equivalents forDistribution Systems Containing Active Sources[J].Generation,Transmission and Distribution ofIEEE Proceedings,2004,151(12):681-688.
    [100]LINO C Y. Robust Recurrent Neural Network—Based Dynamic Equivalencing in PowerSystem[J]. Power Systems Conference and Exposition,2004,2(10):1068-1077.
    [101]陈涵,邓长虹,李大路.基于循环神经网络的动态等值模型辨识[J].高电压技术,2008,34(5):1001-1004.
    [102]HONG J H,PARK J K. A Time-domain Approach to Transmission Network Equivalents viaProny Analysis for Electromagnetic Transients Analysls[J]. IEEE Trans on Power Systems,1995,10(4):1789-1796.
    [103]魏巍,王渝红,李兴源,等,大型风电场建模及接入甘肃嘉酒电网仿真分析[J].电力系统自动化,2009,33(18):96-101.
    [104]严干贵,李鸿博,穆钢,等.基于等效风速的风电场等值建模[J].东北电力大学学报,2011,31(3):13-19.
    [105]袁贵川,倪林,陈颖.大型风电场等值建模与仿真分析[J].广东电力.2010,23(11):6-9.
    [106]Rudion K,Styczynski Z A,Orths A,et al. MaWind-tool for the aggregation of wind farmmodels[C].2008IEEE Power and Energy Society General Meeting-Conversion and Delivery ofElectrical Energy in the21stCentury,Pittsburgh,Pennsylvania,USA,2008.
    [107]SHAFIU A, ANAYA-LARA O, BATHURST G. Aggregated wind turbine models for powersystem dynamic studies[J]. Wind Engineering,2006,30(3):171-186.
    [108]AKHMATOV V. An aggregated model of a large wind-farm with variable-speed wind turbinesequipped with doubly-fed induction generators[J]. Wind Engineering,2004,28(4):479-488.
    [109]FERN NDEZ L M, GARC A C A, SAENZ J R, et al. Equivalent models of wind farms by usingaggregated wind turbines and equivalent winds[C]. Energy Conversion and Management,2009,50(3):691-704.
    [110]杨晓波,岳程燕,谢海莲.用于电磁暂态仿真分析的永磁同步发电机风电场模型聚合方法[J].电网技术,2011,35(2):115-120.
    [111]黄梅,万航羽.在动态仿真中风电场模型的简化[J].电工技术学报,2009,24(9):147-152.
    [112]袁贵川,倪林,陈颖.大型风电场等值建模与仿真分析[J].广东电力,2010,23(11):6-9.
    [113]米增强,苏勋文,杨奇逊,等,风电场动态等值模型的多机表征方法[J].电工技术学报,2010,25(5):162-169.
    [114]米增强,苏勋文,余洋,等.双馈机组风电场动态等效模型研究[J].电力系统自动化,2010,34(17):72-77.
    [115]苏勋文,米增强,王毅.风电场常用等值方法的适用性及其改进研究[J].电网技术,2010,34(6):175-180.
    [116]Jia-geng Qia, Z.L.Y.M., A novel dynamic equivalence method for grid-connected wind farm[J].Journal of Zhejiang University Science.2008,9(4):558-563.
    [117]郝正航,余贻鑫,曾沅.适合电力系统机电模式分析的双馈风电场等值[J].电力系统及其自动化学报,2011,23(2):59-63,75./双馈风机
    [118]郑睿敏.李建华.李作红,刘议华.考虑尾流效应的风电场建模以及随机潮流计算[J].西安交通大学学报.2008,42(12):1515-1520.
    [119]陈树勇,戴慧珠,白晓民,周孝信.风电场的发电可靠性模型及其应用[J].中国电机工程学报,2000,20(3):26-29.
    [120]刘威,赵渊,周家启,等.计及风电场的发输配电系统可靠性评估[J].电网技术,2008,32(13):69-74.
    [121]吴义纯,丁明,李生虎.风电场对发输电系统可靠性影响的评估[J].电工技术学报,2004,19(11):72-76.
    [122]张硕,李庚银,周明,等.风电场可靠性建模[J].电网技术,2009,33(13):37-41,53.
    [123] Poul SO rensen,Nicolaos Antonio Cutululis. Power Fluetuations From large Wind Farms[J].IEEE Transactions on POWER SYSTEMS,VOL.22,NO.3,AUGUST2007:958-965.
    [124]孙元章,吴俊,李国杰,何剑.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(4):41-47.
    [125]乔嘉赓,鲁宗相,闵勇,等.风电场并网的新型实用等效方法[J].电工技术学报,2009,24(4):209-213.
    [126]魏巍,王渝红,李兴源,等,基于PSASP的双馈风电场建模及接入电网仿真[J].电力自动化设备,2009,29(12):68-73.
    [127]Anderson PM, Anjan B. Stability simulation of wind turbine systems[J]. IEEE Trans PowerApparatus and Systems,1983,102(12):3791-3795.
    [128]Sanderhoff P. Park: user’s guider [M]. Roskile, Denmark: Riso National Laboratory,1993.
    [129]苏绍禹.风力发电机设计与运行维护[M].北京:中国电力出版社,2003.
    [130]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003,27(20):62-67.
    [131]徐科,胡敏强,郑建勇,等风力发电机无速度传感器网侧功率直接控制[J].电力系统自动化,2006,30(23):43-47.
    [132]J. G. Slootweg, S. W. H. de haan, H. Polinder, W. L. Kling. General model for representingvariable speed wind turbines in power system dynamics simulations[J]. IEEE transactions onpower systems, Vol.18, No.1, February2003.
    [133]Chinchilla M, Arnaltes S,Burgos J C. Control of permanent-magnet generators applied tovariable-speed wind-energy systems connected to the grid[J]. IEEE Trans on EnergyConversion,2006,21(1):130-135.
    [134]Kundur P.电力系统稳定与控制[M].北京:中国电力出版社,2002.
    [135]刘海涛,龚乐年.多机系统利用模态最优线性组合法的降阶分析[J].电力系统保护与控制,2010,38(15):1-6.
    [136]Hector A. Pulgar-Painemal, Peter W. Sauer, Towards a wind farm reduced-order model[J].Electric Power Systems Research,2011,81(8):1688-1695.
    [137]张宝群,张伯明,吴文传.基于小干扰稳定的双馈感应电机电磁模型降阶分析[J].电力系统自动化,2010,34(10):51-55.
    [138]蔺红,晁勤.并网型直驱式永磁同步风力发电系统暂态特性仿真分析[J].电力自动化设备,2010,30(11):1-5.
    [139]F.Wu, X.P.Zhang, P.Ju. Small signal stability analysis and control of the wind turbine with thedirect-drive permanent magnet generator integrated to the grid [J]. Electr. Power Syst. Res.,2009,79(12):1661-1667.
    [140]刘永强,雷文,吴捷,等.多时间尺度电力系统的模型降阶及稳定性分析(二)电力系统的降阶与中长期失稳[J].电力系统自动化,2003,27(2):45-51.
    [141]王鑫.风电场动态等值模型研究[D],河北:华北电力大学,2008.
    [142]中国电力科学研究院.PSASP6.2用户手册[Z].北京:中国电力科学研究院,2004.
    [143]J.M.undrill. Structure in the computation of power system nonlinear dynamical response. IEEEPAS-88, January,1969.
    [144]J.M.undrill, J. A. Casazza. Electromechanical equivalents for use in power system stability studies.IEEE PAS-80Sept/oct1971P2060-2071.
    [145]J.M.undrill, A.E. Truner. Construction of power system electromechanical equivalents by modelanalysis. IEEE PAS-80Sept/oct1971, P2049-2059.
    [146]杨靖萍,徐政.基于同调机群识别的动态等值方法的工程应用[J].电网技术,2005,29(17):68-71.
    [147]R.A. Schlueter, H. Akhtar, H. Modir. An RMS coherency measure: A basis for unification ofcoherency and modal analysis model aggregation techniques. IEEE PES summer meeting1978A78533-2.
    [148]R.A. Schlueter. Modal analysis equivalents derived base on the RMS coherency measure. IEEE1979PES winter meeting A79061-3.
    [149]J. Lawler, R.A. Sch. Model-coherent equivalents drived from an RMS coherency measure. IEEEPAS-99August1980.
    [150]唐元.多机电力系统中动态等值方法的研究[D].北京:中国电力科学院.1987.
    [151]余贻鑫.大电力系统动态等值[D].天津:天津大学,1979.
    [152]Rudion K, Styczynski Z A, Orths A,et al. MaWind-tool for the aggregation of wind farmmodels.2008IEEE Power and Energy Society General Meeting, Pittsburgh,Pennsylvania, USA,2008.
    [153]孙建锋,焦连伟,吴俊玲,等.风电场发电机动态等值问题的研究[J].电网技术,2004:28(7):58-61.
    [154]闫广新,晁勤,刘新刚,等.含变速双馈风电机组风电场的等值问题[J].可再生能源,2008,26(1):21-23.
    [155]Tapia G, Tapia A, Ostolaza J X. Two alternative modeling approaches for the evaluation of windfarm active and reactive power performances [J]. IEEE Transactions on Energy Conversion,2006,21(4):909-1000.
    [156]Daniel J T, Andrew G, Jawad M K. Fixed-speed Wind-generator and Wind-park Modeling forTransient Stability Studies[J]. IEEE Trans on Power Systems,2004,19(4):1911-1917.
    [157]苏勋文.风电场动态等值建模方法研究[D].河北:华北电力大学,2010.
    [158]李辉,王荷生,史旭阳,等.基于遗传算法的风电场等值模型的研究[J].电力系统保护与控制,2011,39(11):1-8,16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700