用户名: 密码: 验证码:
交直流电网数字物理混合仿真技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着特高压交直流输电工程的实施,交直流电网之间的相互影响变得日益复杂,电网运行特性不断变化,为保证规模巨大、结构复杂的交直流电网安全可靠运行,出于经济和技术层面考虑,必须采用有效的仿真手段对系统稳定特性、运行和控制技术进行全面深入的研究。与数字仿真软件相比,配备有与实际工程参数相一致的物理直流仿真装置可以更加准确的反映交直流相互影响特性,因此有必要采用电磁暂态全数字实时仿真与直流输电物理仿真相结合的方式,建立多回直流和特高压交流骨干网混合输电的数模混合仿真系统,对特高压电网的稳定特性进行试验研究。本文工作结合国家电网公司重大科技项目以及多个国家电网科技项目对数字物理混合仿真技术进行了相关的理论和试验研究,主要研究内容包括:
     (1)对大规模电力系统进行实时仿真时,并行计算效率是必须首先考虑的因素。本文分析了交直流大电网数模混合仿真系统的并行计算效率,确定了各因素对并行计算效率的影响,为实现大规模电网的实时仿真提供了依据和参考。要实现大规模电力系统的数字实时仿真,必须借助于大型计算机系统进行并行计算,同时必须综合考虑各个因素对并行计算效率的影响,以平衡系统性能,从而得到最优并行计算效率。
     (2)在广泛研究现有的数字物理混合仿真接口方法的基础上,结合实际数模混合仿真中各种不同的网络拓扑结构,分析了现有的输电线解耦方法存在的不足,提出了改进方法,系统解决了长线路,短线路,无线路情况下数字网络与物理仿真装置的接口问题;对于长度大于50km的输电线路可直接选择线路进行解耦,对于长度在50kn以下的线路通过补偿电容的方法转换成50km线路后也可实现数字侧与物理侧解耦,而对于无线路情况下,可选择支路部分电感,转换成1km线路再进行解耦。改进的接口方法使得数字物理网络分割可以在任意节点进行。
     (3)本文深入分析了数模混合实时仿真接口稳定性的形成机理,对接口延时、直流偏移、阻抗参数匹配、串并联谐振以及多端口相互影响对混合仿真接口稳定性的影响进行了深入分析。提出了改进的混合仿真接口方案,选择合适的软件和硬件实现了特高压直流输电系统与全数字仿真软件的数模混合实时仿真,全物理仿真与数模混合仿真结果的比较验证了改进的混合仿真接口具有较高的稳定性和仿真精度,解决了数模混合实时仿真的接口稳定性问题。
     (4)结合实际电网,对交直流大电网数模混合实时仿真系统进行了测试和试验研究。在世界上首次实现了多回高压/特高压直流输电系统的交直流大电网数模混合实时仿真,针对三华交直流混合输电系统中直流多馈入系统中交流系统故障对直流系统的影响,包括换相失败情况、系统恢复时间等一系列问题,采用本论文开发的数字物理混合仿真系统作了仿真分析,验证了离线仿真计算的结论,证明了本论文研究工作的实用性和必要性。
     本文研究成果初步实现了大规模电力系统数字物理混合实时仿真,将为我国联网电力系统的规划、运行提供有力的仿真分析工具。
With the development of the UHVAC and UHVDC projects, interactions between ac and dc network are becoming more complex. To ensure the security and safety operation of such a large ac/dc hybrid power system, it's necessary to study the system stability, operation and control issues in detail. For economic and technology concerns, a simulation tool has played important role. Compared with the digital simulator, the physical HVDC simulator with actual control and protection system can better reflect the interactions. Therefore, it's necessary to combine the advantages of the electromagnetic transient full digital simulator with physical HVDC simulator, establish the multiple HVDC and UHVDC hybrid transmission system and study the stability issues of the UHV grid. This work is supported by key projects of the State Grid Corporation as well as several National grid projects of science and technology, the relevant theoretical and experimental research about power system digital and analog hybrid simulation technology are presented. The main contents are organized as follows:
     The parallel calculation efficiency is the paramount issue in large power system real time simulation. This paper analyzes the parallel efficiency of AC\DC grid analog digital hybrid simulation, determines the impact of various factors on the parallel computing efficiency and provides a basis and reference for real-time simulation. To achieve real-time digital simulation, super computer must be used. While factors that affect the simulation efficiency should be considered in order to get the most optimal calculation efficiency.
     On the basis of extensive research of existing interface method in accordance with the actual network topologies, the shortcomings of the existing transmission line decoupling method are analyzed, then the improved interfacing method under different conditions (long lines, short lines and none line) are given. If the length of the decoupling line is more than 50km, transmission line decoupling method can be used directly. If the length of the decoupling line is less than 50km, a capacitor compensation method is used to overcome the limit of the length of the decoupling line.If there is none lines, parts of the branch inductance is selected and converted to a lkm line. The improved interface method makes the digital and physical network decoupling can be carried out at any node.
     The closed-loop stability is the paramount issue in power hardware in-the-loop (HIL) simulation in regard to the operational safety and the experiment reliability. In this paper, a stability analysis of the power HIL simulation using TLM is first introduced with a simple example. Several factors (such as time delay, dc offset and resonance of the interface circuit) with respect to the interface stability are analyzed in detail. Then improvements are adopted to ensure interface stability. Through hybrid simulation and full physical simulation of the power hardware-in-the-loop (HIL) of a UH VDC link, it is revealed that the interface exhibit higher stability and accuracy than before under the given conditions.
     To more accurately study the interaction between ac and dc grid, PHIL simulation was used in a large power grid existing in China power system. PHIL simulation of a large power system with multiple HVDC\UHVDC lines has been achieved for the first time in the world. An interaction study is performed, including the commutation failures, the recovery characteristics after failure, etc. Comparisons of PHIL simulation against off line simulation proved the usefulness and necessity of this paper.
     The results of this study are the first realization of the digital and analog hybrid real-time simulation of large scale power network, this will provide strong technical support for planning and operation of interconnection power system in China.
引文
[1]舒印彪.我国特高压输电的发展与实施[J].中国电力,2005,38(11):1-8.
    [2]郭强,张运洲,吕健.我国未来同步电网构建研究[J].电网技术,2005,29(22):14-18.
    [3]国家电网公司”十一五”电网发展规划[R],国家电网公司,2006年12月
    [4]郭小江,申洪,周勤勇等.特高压交直流混合输电系统安全稳定研究[R].北京:中国电力科学研究院,2010.
    [5]黄莹,徐政,曾德文,等.西电东送纯直流输电方案[J].电网技术,2004,28(19):1-4.
    [6]印永华,蒋卫平,王明新等.±800kV级直流系统与送受端交流系统相互影响的动态等值研究[R].北京:中国电力科学研究院,2007.
    [7]齐旭,曾德文,史大军,等.特高压直流输电对系统安全稳定影响研究[J].电网技术,2006,30(2):1-6.
    [8]赵良,覃琴,马世英等.容量受端电网装机比例及相关技术问题研究[R].北京:中国电力科学研究院,2006.
    [9]印永华等.国家电网仿真中心可行性研究报告[R].中国电力科学研究院,2006年6月.
    [10]黄家裕等编.电力系统数字仿真.北京:中国电力出版社,1998.
    [11]张晋华,刘云,印永华,汤涌.特高压交/直流电网仿真技术研究[J].电网技术,2007,31(23):1-5.
    [12]岳程燕.电力系统电磁暂态与机电暂态混合实时仿真的研究[D].北京:中国电力科学研究院,2004.
    [13]M.B.基尔皮契夫.相似理论.科学出版社,1955年3月.
    [14]高源,陈允平,刘会金.电力系统物理与数字联合实时仿真[J].电网技术,2005,29(12):77-80.
    [15]RTDS Technologies Inc. Introduction [EB/OL]. [2006-03-30] http://www. rtds.com/intro.htm.
    [16]周保容,房大容,Laurence A. Snider.全数字实时仿真器—HYPERSIM[J].电力系统自动化,2003,27(19):79-82.
    [17]EDF. ARENE [EB/OL]. [2006-03-30]. www.edf.com.
    [18]数字动态实时仿真系统DDRTS[Z].北京:博电殷图科技有限公司.
    [19]周孝信,李若梅,岳程燕.电力系统全数字实时仿真装置ADPSS[C]//2004年世界工程师大会电力和能源分会场论文集.上海,2004.11:328-333.
    [20]徐政.交直流电力系统动态行为分析.北京:机械工业出版社.2004年5月.
    [21]南方电网仿真实验室.南方电网实时仿真系统建设与发展.电力系统实时仿真数字仿真技术国际研讨会.北京,华北电力大学,2008.论文集:1-11.
    [22]郑三立,雷宪章,黄梅,D. Retzmann. HVDC和FACTS控制与保护系统的实时测试技术[J].电工技术学报,2004,19(6):90-94.
    [23]汤涌.电力系统数字仿真技术的现状及发展[J].电力系统自动化,2002,26(17):66-70.
    [24]郑三立,黄梅,张海红.电力系统数模混合实时仿真技术的现状与发展[J].现代电力,21(6):29-33.
    [25]欧开健.交直流混合仿真系统研究与实施(二)[J].南方电网技术研究,2006,2(3):30-33
    [26]朱艺颖,蒋卫平,印永华.电力系统数模混合仿真技术及仿真中心建设[J].电网技术,2008,32(22):1-5.
    [27]蒋卫平,张晋华,班连庚,王明新等.华中-华北电网联网方式的研究.全国电力系统技术会议.厦门,中国电机工程学会,2001.9.论文集:20-25.
    [28]冯宇,王淑芳,张慧媛.电力系统数字仿真软件ARENE[J].电力建设,2004,25(1):41-42.
    [29]田芳,李亚楼,周孝信,吴中习,张星.电力系统全数字实时仿真装置[J].电网技术,2008,32(22):17-22.
    [30]于跃海,梁志成,施玉祥等[C].2006中国电机工程学会年会论文集.郑州,2006.11:1172-1178.
    [31]贾旭东.基于RTDS的交直流系统实时数字仿真方法研究与实现[D].北京:华北电力大学,2009.
    [32]南江,高超,郑博睿.Altix 450在三维定常N-S层流数值模拟计算中的并行计算效率研究[J].航空计算技术,2010,40(2):46-48.
    [33]R. Kuffel, R. P.Wierckx, H. Duchen, M. Lagerkvist, X.Wang, P. Forsyth, and P. Holmberg, "Expanding an analogue HVDC simulator's modeling capability using a real-time digital simulator (RTDS)," in Proc.1st ICDS, Apr.1995, pp.199-204.
    [34]X. Wu, S. Lentijo, A. Deshmuk, A. Monti, and F. Ponci, "Design and implementation of a power-hardware-in-the-loop interface:A nonlinear load case study," in Proc.20th Annu. IEEE Appl. Power Electron. Conf. Mar.2005, vol.2, pp.1332-1338.
    [35]REN W, STEUER M, BALDWIN T L. Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorit hms. IEEE Trans on Indust ry Applications,2008,44 (4):1286-1294.
    [36]胡涛.交/直流电力系统数模混合仿真接口的研究[D].北京:中国电力科学研究院,2008.
    [37]S. Ayasun, S. Vallieu, R. Fishl, and T. Chmielewski, "Electric machinery diagnostic/testing system and power hardware-in-the-loop studies," in Proc.4th IEEE Int. Symp. Diagnost. Electr. Mach. Power Electron. Drives, Atlanta, GA, Aug.24-26, 2003, pp.361-366.
    [38]X. Wu, S. Lentijo, and A. Monti, "A novel interface for power-hardware in-the-loop simulation," in Proc. IEEE Workshop Comput. Power Electron.Aug.15-18,2004, pp. 178-182.
    [39]E. Acha, O. Anaya-Lara, J. Parle, and M. Madrigal, "Real-time simulator for power quality disturbance applications," in Proc.9th Int. Conf. Harmonics Quality Power, Oct.2000, vol.3, pp.763-768.
    [40]W. Zhu, S. Pekarek, J. Jatskevich, O. Wasynczuk, and D. Delisle, "A model in-the-loop interface to emulate source dynamics in a zonal DC distribution system," IEEE Trans. Power Electron., vol.20, no.2, pp.438-445, Mar.2005.
    [41]S. C. Verma, Hideki Odani, Shigeaki Ogawa, Kenichi Kuroda. Real Time Interface for Interconnecting Fully Digital and Analog Simulators using Short Line or Transformer [C].Power Engineering Society General Meeting,2006.
    [42]A. R. Newton and A. L. Sangiovanni-Vincentelli, "Relaxation-based electrical simulation," IEEE Trans. Electron Devices, vol.30, no.9, pp.1184-1207, Sep.1983.
    [43]K. L. Lian and P. W. Lehn, "Real-time simulation of voltage source converters based on time average method," IEEE Trans. Power Syst., vol.20, no.1, pp.110-118, Feb. 2005.
    [44]张纬钹、何金良,等.1电力系统过电压及绝缘配合.北京:清华大学出版社,1987.
    [45]H.W.Dommel著,李永庄,林集明,曾昭华译.电力系统电磁暂态计算理论.北京:水利电力出版社,1991.
    [46]Neville Watson, Jos Arrillaga. IET Power and Energy Series 39:Power Systems Electromagnetic Transients Simulation [M].2003
    [47]J. Langston, M. Steurer, S.Woodruff, T. Baldwin, and J. Tang, "A generic real-time computer simulation model for superconducting fault current limiters and its application in system protection studies," IEEE Trans. Appl. Supercond., vol.15, no. 2, pt.2, pp.2090-2093, Jun.2005.
    [48]A. Mackay, S. Galloway, C. Booth, and J. R. McDonald, "Real-time assessment of relay protection schemes on integrated full electric propulsion systems," in Proc. IEEE Electr. Ship Technol. Symp., Jul.25-27,2005, pp.230-236.
    [49]L. Yunwei, D. M. Vilathgamuwa, and P. C. Loh, "Design, analysis, and real-time testing of a controller for multibus microgrid system," IEEE Trans. Power Electron., vol.19, no.5, pp.1195-1204, Sep.2004.
    [50]H. J. Slater, D. J. Atkinson, and A. G. Jack, "Real-time emulation for power equipment development. Ⅱ. The virtual machine," Proc. Inst. Electr. Eng., vol.145, no.3, pp.153-158, May 1998.
    [51]S. Y. R. Hui, K. K. Fung, and C. Christopoulos, "Decoupled simulation of DC-linked power electronic systems using transmission-line links," IEEE Trans. Power Electron, vol.9, no.1, pp.85-91, Jan.1994.
    [52]V. B. Dmitriev-Zdorov, "Generalized coupling as a way to improve the convergence in relaxation-based solvers," in Proc. EURO-DAC EUROVHDL, Sep.16-20,1996, pp.15-20.
    [53]RTDS User Manual Set, RTDS Technol. Winnepeg, MB, Canada,2006.
    [54]刘建,李兴源,傅孝,等.多馈入短路比及多馈入交互作用因子与换相失败的关系[J].电网技术,2009,33(12):20-25
    [55]赵畹君.高压直流输电工程技术.北京:中国电力出版社,2004.
    [56]胡涛,印永华,蒋卫平,张晋华,刘云,陈凌芳,王晶芳,李芳.数模混合实时仿真系统及其在特高压交直流电网仿真研究中的应用.电网技术,2008,32(17):1-5.
    [57]刘云,印永华等.数模混合式高压直流输电仿真系统的建立[J].电力系统自动化,2006,30(18):38-44.
    [58]加拿大魁北克水电局.hypersim用户手册.
    [59]数字发电机模型、动态负荷模型和感应电动机模型的验收[R],中国电力科学研究院,2005年7月.
    [60]浙江大学直流输电科研组.直流输电[M].北京:水利水电出版社,1985:258-259.
    [61]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998:153-155.
    [62]Taylor. Power system voltage stability[M].北京:中国电力出版社,2002:137-144.
    [63]杨卫东,徐政,韩祯祥.多馈入交直流电力系统研究中的相关问题[J].电网技术,2000,24(8):13-17.
    [64]郭剑波,周俊,郭强等.华北—华中—华东交直流输电系统数模混合仿真[J].《电网技术》,2011,35(9)55-59.
    [65]周俊,郭剑波,胡涛,印永华等.高压直流输电系统数字物理混合仿真[J].电工技术学报.2012,3(27):1-8.
    [66]周俊,郭剑波,胡涛,郭强.交直流大电网数模混合仿真并行计算效率研究[J].电网技术.2010,34(4):76-80.
    [67]周俊,郭剑波,郭强等.特高压交直流电网数模混合实时仿真系统[J].电力自动化设备.2011,31(9):1-5.
    [68]周俊,郭剑波等.电力系统功率连接装置接口稳定性问题及其改进措施[J].电力自动化设备.2011,31(8):1-5.
    [69]胡涛,朱艺颖,周俊等.含多回物理直流仿真装置的特高压交直流电网数模混合仿真建模及仿真研究[J].中国电机工程学报.2012.32(7):68-75.
    [70]董鹏,朱艺颖,呙虎,周俊等.特高压电网建设初期“三华”电网数模混合实时仿真试验研究[J].电网技术.2012,36(1):18-25.
    [71]刘种.多直流馈入系统运行特性分析[D].北京:中国电力科学研究院,2009.
    [72]张晋华,蒋卫平,印永华,胡涛等.特高压规划电网安全稳定性研究[J].《中国电机工程学报》,2008,28(22):64-68.
    [73]Medium Series Linear Amplifier LVC5050 Manual.
    [74]T. V. Cutsem and C. Vournas, Voltage Stability of Electric Power Systems. Springer, inc.,1998.
    [75]I. J. T. F. on Stability Terms and Definitions, "Definition and classification of power system stability," IEEE Trans. Power Syst., vol.19, no.2, pp.1387-1401, May,2004.
    [76]F. P. Demello and C. Concordia, "Concept of synchronous machine stability as affected by excitation control," IEEE Trans. Power App. Syst., vol. PAS-88, no.4, pp. 189-202, April 1969.
    [77]T. V. Cutsem, "Voltage instability:phenomena, countermeasures, and analysis methods," Proceedings of the IEEE, vol.88, no.2, pp.208-227, February 2000.
    [78]H. W. Dommel, "Digital Computer Solution of Electromagnetic Transients in Single and Multiphase Networks," IEEE Trans.on Power Apparatus and Systems, vol.88, no.4, April 1969, pp.734-741.
    [79]D. A. Woodford, A. M. Gole and R. Z. Menzies, "Digital Simulation of DC Links and AC Machines," IEEE Trans. on Power Apparatus and Systems, vol.102, no.6, June 1983, pp.1616-1623.
    [80]J. Mahseredjian and F. Alvarado, "Creating an Electromagnetic Transients Program in MATLAB:MatEMTP," IEEE Trans. on Power Delivery, vol.12, no.1, January 1997, pp.380-388.
    [81]V. R. Dinavahi, M. R. Iravani and R. Bonert, "Real-Time Digital Simulation of Power Electronic Apparatus Interfaced with Digital Controllers," IEEE Trans. on Power Delivery, vol.16, no.4, October 2001, pp.775-781.
    [82]M. O. Faruque, V. Dinavahi and W. Xu, "Algorithms for the Accounting of Multiple Switching Events in the Digital Simulation of Power Electronic Apparatus," IEEE Trans. on Power Delivery, vol.20, no.2, April 2005, pp.1157-1167.
    [83]R. Champagne, L.A. Dessaint, H. Fortin-Blanchette and G. Sybille, "Analysis and Validation of a Real-Time AC Drive Simulator", IEEE Trans. on Power Electronics, vol.19, no.2, March 2004, pp.336-345.
    [84]L.F. Pak, M. O. Faruque, X. Nie and V. Dinavahi, "A Versatile Cluster-Based Real-Time Digital Simulator for Power Engineering Research," IEEE Trans. on Power Systems, vol.21, no.2, May 2006, pp.455-465.
    [85]M. O. Faruque, Y. Zhang, and V. Dinavahi, "Detailed modeling of CIGRE HVDC benchmark system using PSCAD/EMTDC and PSB/SIMULINK," IEEE Trans. Power Del., vol.21, no.1, pp.378-387, Jan.2006.
    [86]L. M.Wedepohl and S. E. T. Mohamed, "Multiconductor transmission lines. Theory of natural modes and Fourier integral applied to transient analysis," Proc. IEE, vol. 116, no.9, pp.1553-1563, Sep.1969.
    [87]G. G. Parma and V. Dinavahi, "Real-time digital hardware simulation of power electronics and drives," IEEE Trans. Power Del., vol.22, no.2, pp.1235-1246, Apr. 2007.
    [88]H. Li, M. Steurer, S. Woodruff, K. L. Shi, and D. Zhang, "Development of a unified design, test, and research platform for wind energy systems based on hardware-in-the-loop real time simulation," IEEE Trans. Ind. Electron., vol.53, no.4, pp.1144-1151, Jun.2006.
    [89]B. Lu, X.Wu, H. Figueroa, and A.Monti, "A low cost real-time hardware in-the-loop testing approach of power electronics control," IEEE Trans. Ind. Electron., vol.54, no. 2, pp.919-931, Apr.2007.
    [90]A. Bouscayrol, "Different types of hardware-in-the-loop simulation for electric drives," in Proc. IEEE ISIE, Cambridge, U.K., Jun.30-Jul.2,2008, pp.2146-2151.
    [91]V. Dinavahi, R. Iravani, and R. Bonert, "Design of a real-time digital simulator for a D-STATCOM system," IEEE Trans. Ind. Electron., vol.51, no.5, pp.1001-1008, Oct. 2004.
    [92]A. Monti, E. Santi, R. Dougal, and M. Riva, "Rapid prototyping of digital controls for power electronics," IEEE Trans. Power Electron., vol.18, no.3, pp.915-923, May 2003.
    [93]S. C. Oh, "Evaluation of motor characteristics for hybrid electric vehicles using the hardware-in-the-loop concept," IEEE Trans. Veh. Technol., vol.54, no.3, pp. 817-824, May 2005.
    [94]X. Wu and A. Monti, "Methods for partitioning the system and performance evaluation in power-hardware-in-the-loop simulations:Part I," in Proc. IEEE IECON, Raleigh, NC, Nov.6-10,2005, pp.251-256.
    [95]X. Wu and A. Monti, "Methods for partitioning the system and performance evaluation in power-hardware-in-the-loop simulations:Part Ⅱ," in Proc. IEEE IECON, Raleigh, NC, Nov.6-10,2005, pp.257-262.
    [96]R. C. Wong, H. A. Owen, and T. G. Wilson, "An efficient algorithm for the time-domain simulation of regulated energy-storage dc-to-dc converters," IEEE Trans. Power Electron., vol. PE-2, pp.154-168, Mar.1987.
    [97]R. J. Dirkman, "The simulation of general circuits containing ideal switches," in Proc. IEEE 18th Ann. Conf. Power Electron. Spec.,1987, pp.185-194.
    [98]D. Bedrosian and J. Vlach, "Time-domain analysis of networks with internally controlled switches," IEEE Trans. Circuits Syst., vol.39, pp.199-212, Mar.1992.
    [99]A. M. Luciano and A. G. M. Strollo, "A fast time-domain algorithm for the simulation of switching power converters," IEEE Trans. Power Electron., vol.5, pp.363-370, May 1990.
    [100]A.R. Sana, J. Mahseredjian, X. Dai-Do, and H. Dommel, "Treatment of discontinuities in time-domain simulation of switched networks," Math. Comput. Simul. vol.38, pp.377-387,1995.
    [101]Z. Zuhao, "ZZ model method for initial condition analysis of dynamics networks,' IEEE Trans. Circuits Syst, vol.38, pp.937-941, Aug.1991.
    [102]A. Opal and J. Vlach, "Consistent initial conditions of linear switched networks," IEEE Trans. Circuits Syst., vol.37, pp.364-372, Mar.1990.
    [103]K. Strunz, L. Linares, J. R. Marti, O. Huet, and X. Lombard, "Efficient and accurate representation of asynchronous network structure changing phenomena in digital real-time simulators," IEEE Trans. Power Syst., vol.15, pp.586-592, May 2000.
    [104]P. Kuffel, K. Kent, and G. Irwin, "The implementation and effectiveness of linear interpolation within digital simulation," in Proc.1995 Int. Conf. Power Syst. Transients (IPST'95),1995, pp.499-504.
    [105]V.Q. Do, D. McCallum, P. Giroux, and B. De Kelper, "A backwardforward interpolation technique for a precise modeling of power electronic in HYPERSIM," in Proc.2001 Int. Conf. Power Syst. Transients (IPST'01),2001.
    [106]P. J. Mosterman and G. Biswas, "A formal hybrid modeling scheme for handling discontinuities in physical system models," in Proc. AAAI'96,1996, pp.985-990.
    [107]T. T. Hartley, G. O. Beale, and S. P. Chicatelli, Digital Simulation of Dynamic Systems, a Control Theory Approach. Englewood Cliffs, NJ:Prentice Hall,1994, ch. 3 and 4.
    [108]D. M. Brod and D. W. Novotny, "Current control of VSI-PWM inverters," IEEE Trans. Ind. Applicat., vol. IA-21, pp.562-570, July/Aug.1985.
    [109]V.Q. Do, J.C. Soumagne, G. Sybille, G. Trumel, P. Giroux, G. Cloutier, and S. Poulin, "Hypersim, an integrated real-time simulator for power networks and control systems," in Proc.1999 3rd Int. Conf. Digital Power Syst. Simulators (ICDS'99), 1999.
    [110]J. Mahseredjian, S. Dennetiere, L. Dube, B. Khodabakhchian and L. Gerin-Lajoie, "On a New Approach for the Simulation of Transients in Power Systems," IPST 2005, International Conference on Power Systems Transients, Montreal, Canada, June 19-23,2005
    [111]J. Mahseredjian, F. Alvarado, G Rogers and B. Long, "MATLAB's Power for Power Systems," Invited paper, IEEE Journal on Computer Applications in Power, vol.14, no.1, January 2001, pp.13-19.
    [112]SimPowerSystems, User's Guide, Version 4, The Math Works Inc.,2006.
    [113]PLECS, Electrical Systems and Power Electronics in Simulink, ETH Zurich,2006.
    [114]D. Pare, G. Turmel, J.C. Soumagne, V. A. Do, S. Casoria, M. Bissonnette, B. Marcoux and D. McNabb, "Validation Tests of the Hypersim Digital Real Time Simulator with a Large AC-DC Network," IPST 2003, International Conference on Power Systems Transients, New Orleans, USA, Sept.28-Oct.2,2003.
    [115]S. Abourida, C. Dufour, J. Belanger, G. Murere, N. Lechevin and B. Yu, "Real-Time PC-based Simulator of Electric Systems and Drives," 17th IEEE APEC, Annual Applied Power Electronics Conference and Exposition, vol.1, March 10-14,2002, pp. 433-438.
    [116]L.F. Pak, V. Dinavahi, G. Chang, M. Steurer and P. Ribeiro, "Real-Time Digital Time-Varying Harmonics Modeling and Simulation Techniques," to appear in IEEE Trans, on Power Delivery.
    [117]T. Maguire, J. Giesbrecht, "Small Time-step (<2us) VSC Model for the Real Time Digital Simulator", in Proc. Of 2005 IPST, Montreal Canada, June 2005.
    [118]O. Al-Naseem, R. W. Erickson, P. Carlin, "Prediction of Switching Loss Variation by Averaged Switch Modeling", in Proc. of 2000 15th Applied Power Electronics Conference and Exposition, Vol.1, New Orleans, LA, February 2000, pp.242-248.
    [119]L. Qi, S. Woodruff, M. Steurer, "Study of Power Loss of Small time-step environment Model in RTDS",2007 IEEE Power Engineering General Meeting, Tampa, FL, June, 2007.
    [120]L. Qi, J. Langston, M. Steurer, "Applying a STATCOM for Stability Improvement to an Existing Wind Farm with Fixed-Speed Induction Generators",2008 IEEE Power Engineering General Meeting, Pittsburgh, PA, July 2008.
    [121]J. Langston, L. Qi, M. Steurer, M, "Dynamic Testing of a Controller for an ETO-Based STATCOM through Hardware-in-the-Loop Simulation", submitted to 2009 IEEE Power Engineering General Meeting, Calgary, CA, July,2009.
    [122]J. R. Cave, D. W. A. Willen, R. Nadi, W. Zhu, A. Paquette, R. Boivin, and Y. Brissette, 'Testing and modelling of inductive superconducting fault current limiters," IEEE Trans. Appl. Supercond., vol.7, no.2, pp.832-835, June 1997.
    [123]M. Dione, F. Sirois, F. Grilli, and J. Mahseredjian, "New EMTP-RV equivalent circuit model of core-shielding superconducting fault current
    [124]C. Larose, S. Guerette, F. Guay, A. Nolet, T. Yamamoto, H. Enomoto, Y. Kono, Y Hasegawa, and H. Taoka, "A fully digital real-time power system simulator based on PC-cluster," Mathematics and Computers in Simulation, vol.63, no.3-5, pp.151-159, November 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700