用户名: 密码: 验证码:
特高压半波长输电技术的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国能源资源和负荷需求的逆向分布格局,决定了我国未来必须在1000km-3000km距离的输电技术上寻求新的突破。此外,国际间的电能传输计划也越来越多,传输距离可能达到甚至超过3000km。因此,超远距离输电是世界范围内能源传输规划的发展趋势,而半波长交流输电技术以其显著的经济与技术优势,在超远距离点对点输电模式中具有竞争力和应用前景。针对半波长交流输电的关键技术开展创新研究,具有重要的学术价值和现实意义。
     在半波长输电技术当前研究进展的基础上,本文重点针对电压与功率传输特性、含半波长输电线路的系统稳定分析、工频过电压和故障激发过电压、潜供电弧及其抑制技术等关键问题进行了探索研究,以期为半波长输电的未来发展奠定理论与技术基础。
     半波长输电线路的电压与功率传输特性不同于常规短线路。通过引入系统的等值阻抗和功率因数等参量,推导出线路最高电压值及其出现位置的计算公式。进一步参照无损长线的传输功率方程,分析了自然半波长线路和调谐线路的功率传输特性,指出电容型调谐线路具有较强的功率传输能力。
     半波长输电系统的暂态稳定特性受线路长度、调谐网络类型、故障类型及故障持续时间等多种因素的影响。通过建立含半波长输电线路的双机系统仿真模型,结合不同的调谐网络、线路长度、故障类型等因素,研究了自然半波长和调谐半波长输电系统的暂态稳定特性,基于对故障持续时间、摇摆曲线振荡幅值与持续时间、电压振荡范围等参数的量化比较,揭示了半波长输电系统暂态稳定的影响机制。
     通过建立特高压半波长输电线路的暂态仿真模型,研究了自然半波长线路与调谐线路的沿线工频过电压与故障激发过电压分布特征。以单相接地故障为例,分析了典型故障条件下故障相与健全相沿线的故障激发过电压及其变化规律,揭示出传输功率和调谐网络类型等因素对过电压水平的影响机制。进一步提出针对特高压半波长输电线路的沿线分布式避雷器分组优化配置方案,可将故障激发过电压限制在1.60p.u.以下
     建立了半波长输电线路潜供电流与弧道恢复电压的计算模型,可获得不同故障位置的潜供电流分布特征,并研究了传输功率、调谐网络、线路长度等对潜供电流及弧道恢复电压的影响。提出了基于快速接地开关沿线非均匀优化配置的潜供电弧抑制方案,可有效抑制半波长线路潜供电弧的燃弧时间;结合基于黑盒电弧模型的仿真分析,给出了特高压半波长输电线路的单相自动重合闸配合时序。
     本文研究工作可为特高压半波长输电技术的发展及其工程应用,提供有参考价值的理论与设计依据。
Due to the inverse distribution of energy storage and load demand in China, the fundamental theoretical breakthrough in 1000 km-3000 km power transmission technology is desired. The distance of international power transmission in plan also may reach or even exceed 3000 km. As a special kind of long-distance transmission, half-wavelength alternating current transmission (HWACT) has nowadays drawn more attention in ultra-distance point-to-point transmission mode, thanks to its unique advantages in both economical and technological aspects. Therefore, the explorative research on some key issues of the UHV HWACT has broad academic significance and important practical value.
     Based on the current research status of HWACT, this dissertation did explorative research on some key issues of the UHV HWACT in order to establish the theoretical foundation for the future development of HWACT. In thins dissertation, a detailed analysis with regards to the key technical issues of the UHV HWACT is given, including voltage and power transmission characteristics, system stability analysis of half-wavelength lines, power frequency and the fault-caused overvoltages, the secondary arc and its suppression, etc.
     The voltage and power transmission characteristics of the half-wavelength lines are different from those of normal short lines. By introducing the equivalent impedance of the system and power factor, this dissertation deduced the formula of voltage maximum and its position. According to the transmission power equation of the lossless long lines, the power transmission characteristics of the natural and tuning half-wavelength lines are analyzed, indicating that capacitive based tuning network rendering better power transmission ability.
     The angle stability of half-wavelength line was influenced by line length, tuning network type, fault type, fault duration and etc. By establishing the UHV duplex machine system simulation model, angle stabilities of natural and tuning half-wavelength lines were analyzed with different influencing factors such as man-made tuning network, line length and fault types. Based on the quantitative comparison of parameters such as fault duration, generator-swing trajectories amplitude and duration, voltage vibration range, the influence mechanism of angle stability of half-wavelength line was revealed.
     A simulation model for analyzing transient process of the half-wavelength transmission line was built with a view to calculate the power frequency overvoltages and the fault-caused overvoltages along the natural and tuning half-wavelength lines. Taking the single phase earth fault as an example, the fault-caused overvoltage along the lines of faulty phase and healthy phase was analyzed. The impacts of transmission capacity and man-made tuning network on the overvoltages were also investigated. An optimized scheme of the metal oxide arresters (MOAs) arrangement was proposed in order to limit the value of the fault-caused overvoltages to 1.60 p.u.
     Based on a simplified coupling model, formulations to describe the secondary arc current and the recovery voltage were deduced to calculate the distribution characteristics of the secondary arc current in different fault location. The impacts of transmission power, man-made tuning network, line length on the secondary arc current and recovery voltage were investigated. An optimized scheme of high speed grounding switch (HSGS) arrangement was proposed as to shorten the arc time of secondary arc. Based on black-box model of arc, an optimal time sequence for single phase auto-reclosing scheme (SPAR) specifically with UHV HWACT line was put forward.
     The research achievements in the dissertation have further developed the fundamental theory and key technologies encountered in HWACT, which provided important reference value for the development and engineering application of UHV HWACT.
引文
[1]张宁.提高特高压电网输电能力研究[D].济南:山东大学,2008.
    [2]牛林,赵建国.发展特高压交流输电建设坚强的国家电网[J].电力自动化设备,2007,27(5):1-5.
    [3]Maria Cristina Tavares, Carlos M. Protela. Half-wave length line energization case test-proposition of real test [C]. Proceedings of the International Conference on High Voltage Engineering and Application, Chongqing, China, November 9-13,2008:261-264.
    [4]杜至刚.中国特高压电网发展战略规划研究[D].济南:山东大学,2008.
    [5]杨冬,刘玉田.中国未来输电网架结构初探[J].电力自动化设备,2010,30(8):1-5.
    [6]吴敬儒.中国电网的发展与改革展望[J].电网技术,2001,25(11):6-9.
    [7]王锡凡.分频输电系统[J].中国电力,1995,28(1):2-6.
    [8]Wang Xi-fan, Wang Xiu-li. Feasibility study of fractional frequency transmission system [J]. IEEE Trans. On Power Systems,1996,11(2): 962-967.
    [9]李广凯,梁海峰,赵成勇,等.几种特殊输电方式的分析比较和展望[J].中国电力,2004,37(4):43-48.
    [10]刘光哗,杨以涵.四相输电的技术优势和应用前景[J].中国电力,2000,33(10):33-35.
    [11]周有庆,姚建刚,彭建春.四相输电方式研究[J].中国电机工程学报,1999,19(5):80-84.
    [12]张惠勤.世界各国750kV电网的发展状况[J].电网技术,2002,26(3):37-40.
    [13]Zhao Chenghua, Yu Youwen. Cireling Beijing [J]. Transmission and Distribution World,2000,52(9):40-48.
    [14]舒印彪,赵丞华.研究实施中的500kV同塔双回紧凑型输电线路[J].电网技术,2002,26(4):49-51.
    [15]王秀丽,宋永华,王海军.新型交流输电技术现状与展望[J].中国电力,2003,36(8):40-46.
    [16]周孝信,郭剑波,胡学浩,等.提高500kV线路输电能力的实用技术和措施[J].电网技术,2001,25(3):1-6.
    [17]Tiwari S N, Bin Saroor A S. An investigation into loadability characreristics of EHV high phase order transmission lines [J]. IEEE Trans. On Power Systems,1995,10(3):1264-1270.
    [18]Portela C, Tavares M C. Six-phase transmission line propagation characteristics and new three-phase representation [J]. IEEE Transactions on Power Delivery,1993,8(3):1470-1483.
    [19]Wang X, Cao C, Zhou Z. Experiment on fractional frequency transmission system [J]. IEEE Trans on Power Systems,2006,21(1):372-377.
    [20]王仲鸿.交流特高压在中国应用的经济和安全分析研究[J].电力自动化设备,2007,27(10):1-4.
    [21]何大愚.对我国未来西电东送输电技术的战略初探[J].电网技术,1993,4:7-10.
    [22]周浩,钟一俊.特高压交、直流输电的适用场合及其技术比较[J].电力自动化设备,2007,27(5):6-12.
    [23]郑健超.智能电力设备与半波长交流输电[C].中国电机工程学会第九次全国会员代表大会学术报告会,北京,2009年6月.
    [24]Hubert F. J., Gent M. R.. Half-wavelength power transmission lines [J]. IEEE Transactions on Power Apparatus and Systems,1965,84(10):965-974.
    [25]Prabhakara F S, Parthasarathy K, Ramachandra R H N. Analysis of natural half-wave-length power transmission lines [J]. IEEE Transac. On PAS,2002, 88(12):1787-1794.
    [26]Lliceto F, Cinieri E. Analysis of half-wave length transmission lines with simulation of corona losses [J]. IEEE Transactions on Power Delivery, October,1988,13(4):2081-2091.
    [27]Prabhakara F S, Parthasarathy K, Ramachandra Rao H N. Performance of tuned half-wave-length power transmission lines [J]. IEEE Transactions on Power Apparatus and Systems,1969,88(12):1795-1802.
    [28]Gatta F M, Iliceto F. Analysis of some operation problems of half-wave length power transmission lines [C]. IEEE AFRICON'92 Proc. Conference, Ezulwini Valley, Swaziland, September 22-24,1992:59-64.
    [29]Aredes M, Portela C, Vanemmerik E L, et al. Static series compensators applied to very long distance transmission lines [J]. Electrical Engineering, 2004,86(2):69-76.
    [30]Crary S B, Power System Stability, Ⅰ and Ⅱ [M]. New York:Wiley,1947.
    [31]Kimbark E W. Power System in the Steady State [M]. New York:Wiley, 1948-1956.
    [32]Kimbark E W. Power System Stability, Ⅰ and Ⅲ [M]. New York:Wiley, 1948-1956.
    [33]Portela C, Tavares M C. Proposing a new methodology for the transient study of a transmission system [C]. Proceedings International Conference on Power Systems Transient, Rio de Janeiro, Brazil, June,2001:311-316.
    [34]Portela C, Tavares M C A new methodology to optimize transmission system transient studies [C]. International Conference on Power Systems (ICPS 2001). Wuhan, China, September,2001:732-736.
    [35]Anderson P M, Agrawal B L, Vanness J E. Subsyncronous resonance in power systems [M]. Wiley-IEEE Press,1999.
    [36]Anderson P M, Fouad A. Power system control and stability,2nd Edition [M]. Wiley-IEEE Press,2002.
    [37]Gomes S J. Modeling and numerical methods for linear analysis of electromechanical stability, subsynchronous resonance, electromagnetic transients and harmonics in power systems [D]. Brazil, D. Se. thesis COPP/URFJ,2002.
    [38]段献忠,何仰赞,陈德树.论电力系统电压稳定几种实用判据和安全指标[J].电力系统自动化.1994,18(9):36-41.
    [39]黄昕颖.电力系统的电压稳定问题浅析[J].吉林广播电视大学学报.2011,第06期,26+66.
    [40]Tiranuchit A, Thomas R J. A posturing strategy against voltage instabilities in electric systems [J]. IEEE Trans. Feb.1988,3(1).
    [41]李光琦.电力系统暂态分析[M].第三版.北京:中国电力出版社.2007.
    [42]Sckine A, Yokoyama Y. Dynamic stability analysis taking into account load flow multisolutions and load characteristics [C]. Proc. Of the 8th Power System Computation Conference.1984,8.
    [43]段献忠,何仰赞,陈德树.电压崩溃机理探讨[J].电力系统及其自动化学报.1991,(2).
    [44]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [45]陈维贤,陈禾,鲁铁成,等.关于特高压可控电抗器[J].高电压技术,2005,31(11):26-27.
    [46]张纬钹,高玉明.电力系统过电压与绝缘配合[M].北京:清华大学出版社,1988.
    [47]李福寿.电力系统过电压计算[M].北京:水利电力出版社,1988.
    [48]解广润.电力系统过电压[M].北京:水利电力出版社,1985.
    [49]施围.电力系统过电压计算[M],西安:西安交通大学出版社,1988.
    [50]谷定燮,陆宠惠.日本特高压系统过电压和绝缘配合[J].中国电力,1998,31(11):67-69.
    [51]陆宠惠,万启发,谷定燮,等.日本1000kV特高压输电技术[J].高电压技术,1998,24(2):47-49.
    [52]谷定燮.我国特高压输电系统的过电压和绝缘配合[J].中国电力,1999,32(4):65-68.
    [53]朱家骝,修木洪,舒廉甫.我国电网采用特高压送电方案的研究-过电压及绝缘配合部分[J].中国电力,1996,29(2):40-45.
    [54]盛鹍,李永丽,李斌,等.特高压输电线路过电压的研究和仿真[J].电力系统及其自动化学报,2003,15(6):13-18.
    [55]Kim Jeong-boo. Switching overvoltage analysis and air clearance design on the KEPCO 765 kV double circuit transmission system [J]. IEEE Trans. on Power Delivery,2000,15(1):381-386.
    [56]Hamed M, Esmail D. Statistical study for switching processes in compensated UHV transmission systems [J]. IEE Proc-Gener. Transm. Distrib.,1997, 144(3):237-241.
    [57]钱家骊,袁大陆,徐国政.对1000kV电网操作过电压及相位控制高压断路器的讨论[J].电网技术,2005,29(10):1-4+8.
    [58]林集明,班连庚,王晓刚.中国特高压系统电磁暂态问题的探讨[C].特高压输电技术国际研讨会论文集.北京:中国电力出版社,2005.
    [59]Granaghan M F, Reid W E, Law S W, et al. Overvoltage protection of shunt-capacitor banks using MOV arresters [J]. IEEE Trans. on Power Apparatus and System,1984,103(8):2326-2336.
    [60]Sabot A, Morin C, Taisne J P, et al. A unique multi-purpose damping circuit for shunt capacitor bank switching [J]. IEEE Trans. on Power Delivery,1993, 8(3):1173-1183.
    [61]易辉,熊幼京1000kV交流特高压输电线路运行特性分析[J].电网技术,2006,30(15):1-7.
    [62]张文亮,吴维宁,胡毅.特高压输电技术的研究与我国电网的发展[J].高电压技术,2003,29(9):16-18.
    [63]陈秀娟,陈维江,沈海滨,等.特高压输电系统操作过电压柔性限制方法[J].高电压技术,2007,33(11):1-5.
    [64]Marti L, Dommel H W. Calculation of voltage profiles along transmission lines [J]. IEEE Trans. Power Del.,1997,12(2):993-998.
    [65]吴政球,周野,匡文凯,等.基于参考机的单机等面积暂态稳定分析[J].湖南大学学报(自然科学版),2011,38(6):49-54.
    [66]谷定燮,周沛洪.特高压输电系统过电压、潜供电流和无功补偿[J].高电压技术,2005,31(11):21-25.
    [67]Djuric M, Terzija V. A new approach to the arcing faults detection for auto-reclosure in transmission systems [J]. IEEE Trans. Power Deliv.,1995, 10(4):1793-1798.
    [68]Johns A T, Aggarwal A K, Song Y H. Improved technique for modeling fault are on faulted EHV transmission systems [J]. IEE Proc., Gener. Transm. Distrib.,1994,141(2):148-154.
    [69]Koglin H J, Lobos T. Recognition of arcing faults on transmission lines using a network [C]. Proceedings of the 12th PICC Conference, Dresden,1996: 688-693.
    [70]Portela C, Silva J, Alvim M. Non-conventional ac solutions adequate for very long distance transmission-An alternative for the amazon transmission system [C]. IEC/CIGRE UHV Symposium. Beijing, China, July 18-21,2007: 29.
    [71]Portela C M, Gomes Jr S. Analysis and optimization of Non-conventional transmission trunks considering new technological possibilities [C]. VI SEPOPE-Symposium of Specialists in Electrical Operational and Expansion Planning,1998.
    [72]Sztergalyos J, Andrichak E J, Colwell D H, et al. Single phase tripping and auto reclosing of transmission lines [J]. IEEE Transaction on Power Delivery, 1992,7(1):182-192.
    [73]Fitton D S, Dunn R W, Aggrawal R K, et al. Design and implementation of an adaptive single pole auto-reclosure technique for transmission lines using artificial neutral networks [J]. IEEE Transaction on Power Delivery,1996, 11(2):748-756.
    [74]Yu L K, Song Y H. Wavelet Transform and neutral network approach to development adaptive single-pole auto reclosing schemes for EHV transmission systems [J]. IEEE Power Engineering Review,1998,11:62-64.
    [75]孙秋芹,李清泉,李庆民,等.特高压线路熄灭潜供电弧的方法比较[J].电力自动化设备,2009,29(4):76-80.
    [76]陈禾,陈维贤.并联电抗器中性点小电抗的选抒[J].高电压技术,2004,28(8):9-10.
    [77]陈维贤,陈禾.可控并联电抗器的功能和调节[J].高电压技术,2006,32(12):92-95.
    [78]牛晓明,李华伟,施围.超高压串联补偿输电线路的潜供电流[J].高电压技术,1997,23(4):48-50.
    [79]牛晓明,王晓彤,施围,等.超高压串联补偿输电线路的潜供电流和恢复电压[J].电网技术,1998,22(9):9-16.
    [80]尹忠东,刘虹.超高压电网可控串联补偿与潜供电弧的抑制[J].高电压技术,1998,24(1):14-16.
    [81]钟胜.与超高压输电线路加装串补装置有关的系统问题及其解决方案[J].电网技术,2004,28(6):26-30.
    [82]Nouredine Hadj-said, Jean Claude, Sabonnadiere, et al. Reducing dead time for single-phase auto-reclosing on a series-capacitor compensated transmission line [J]. IEEE Transaction on Power Delivery,2000,15(1): 51-56.
    [83]柴旭峥,梁曦东,曾嵘,等.串联补偿的远距离输电线路潜供电弧参数特性[J].电网技术,2007,2](5):7-12.
    [84]商立群,施围.快速接地开关熄灭同杆双回输电线路潜供电弧的研究[J].电工电能新技术,2005,24(2):5-7.
    [85]韩彦华,施围.故障点接地电阻对超高压输电线路潜供电流的影响[J].西安交通大学学报,2002,36(6):555-559.
    [86]H.Mizoguchi, I.Hioki, T.Yokota, et al. Development of an interruption of an interruption chamber for 1000kV high-speed grounding switches [J]. IEEE Transactions on Power Delivery,1998,13(2):495-504.
    [87]Chul-Hwan Kim, Sang-pil, Raj K.Aggrawal, et al. An alternative approach to adaptive single pole auto-reclosing in high voltage transmission system based on variable dead time control [J]. IEEE Transaction on Power Delivery, 2001,16(4):676-686.
    [88]袁越,张保会.电力系统自动重合闸研究的现状与展望[J].中国电力,1997,30:54-47.
    [89]罗隆福,李勇,刘福生,等.基于新型换流变压器的直流输电系统滤波装置[J].电工技术学报,2006,21(12):108-115.
    [90]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社.1998.
    [91]夏向阳,罗安.单独注入式有源电力滤波器的控制分析[J].电力自动化设备,2010,30(3):58-63.
    [92]Portela C. Some Aspects of Very Long Lines Switching [C]. CIGRE SC 13 Colloquium, Florianopolis, Brazil,1995:12.
    [93]Portela C, Silva J, Alvim M. Non-Conventional AC solutions adequate for very long AC transmission-an alternative for amazon transmission [C] IEC-CIGRE UHV Symposium, Beijing, China, July 18-21,2007.
    [94]Portela C, Tavares M, Moreno G. Basic constrains of very long distance transmission [C]. XII National Seminar of Production and Transmission of Electric Energy, Recife, Brazil,1993.
    [95]武建,何娜,徐殿国.并联混合有源滤波复合控制策略[J].电力自动化设备,2009,29(3):97-100.
    [96]邱关源主编.电路[M].第四版.北京:高等教育出版社,1999.
    [97]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2000.
    [98]Prabha Kundur著.本书翻译组译.电力系统稳定与控制[M].中国电力出版社,2002.
    [99]Vershkov V A, Nakhapetyan K. T, Olshevskii O, et al. Complex testing of a half-wave tuned transmission in the 500kV interconnection of the power grid of European USSR [J]. Elektrichestvo,1968,10(8):56-70.
    [100]N. Giao Trinh, P. Sarma Maruvada. A method of predicting the corona performance of conductor bundles based on cage test results [J]. IEEE Transactions on Power Apparatus and Systems, Jan 1977,96(1):312-325.
    [101]IEEE Committee Report. A survey of methods for calculating transmission line conductor surface voltage gradients [J]. IEEE Transactions on Power Apparatus and Systems, Nov 1979,98(6):1996-2014.
    [102]Lliceto F, Cinieri E, Di Vita. Overvoltages due to openphase occurrence in reactor compensated EHV lines [J]. IEEE Transactions on Power Apparatus and Systems, March 1984,103(3):474-482.
    [103]王成山,张家安.暂态稳定分布式仿真计算的改进算法[J].电力系统自动化,2004,28(14):28-32.
    [104]杨琦,张建华,李卫国.电力系统接入风电场后的暂态稳定分析[J].高电压技术,2009,35(8):2042-2047.
    [105]Aloisio G, Bochicchio M A, Scala M L, et al. A distributed computing approach for real-time transient stability analysis [J]. IEEE Trans on Power Systems,1997,12(2):981-987.
    [106]顾丹珍,艾芊,陈陈,等.基于ATP-EMTP的大型电力系统暂态稳定分析[J].电力系统自动化,2006,30(21):54-56+65.
    [107]Stewart E S, Charlie S, Kenneth M, et al. Application of phasor of measurement and partial energy analysis in stabilizing large disturbances [J]. IEEE Transaction on Power Systems,1995,10(1):297-306.
    [108]余志文,白雪峰,郭志忠,等.大容量远距离输电网暂态稳定控制方法的探讨[J].电力系统自动化,2003,27(4):57-60+65.
    [109]日本电力中央研究所综合报告109.关于交流特高压绝缘问题的基础研究第四辑[R].武汉:武汉高压研究所,1987.
    [110]陈水明,许伟,何金良.1000kV交流输电线路的工频暂态过电压研究[J].电网技术,2005,29(19):1-5.
    [111]张纬钹,何金良,高玉明.过电压保护及绝缘配合[M].北京:清华大学出版社,2002.
    [112]许伟,陈水明,何金良.1000kV交流输电线路的故障激发过电压研究[J].电网技术,2005,29(21):10-13.
    [113]郭守珠.日本特高压变压器和避雷器的研制[J].高电压工程,1999,25(3):24-26.
    [114]孙才新,司马文霞,赵杰.特高压输电系统的过电压问题[J].电力自动化设备,2005,25(9):5-9.
    [115]何计谋,祝嘉喜,李晓峰.特高压避雷器的探讨[J].电磁避雷器,2006,第1期:23-25+28.
    [116]Johns A T, Aggarwal R K, Song Y H. Improved techniques for modeling fault arcs on faulted EHV transmission system [J]. IEE Proceeding-Generation, Transmission, Distribution,1994,141(2):148-154.
    [117]Dudurych I M, Gallagher T J, Rosolowski E. Arc effect on single-phase reclosing time of a UHV power transmission line [J]. IEEE Trans. on Power Delivery,2004.19(2):854-860.
    [118]陈维江,颜湘莲,贺子鸣,等.特高压交流输电系统单相接地潜供电弧仿真[J].高电压技术,2010,36(1):1-6.
    [119]林莘,何柏娜,徐建源.超高压线路上潜供电弧熄灭特性的分析[J].高电压技术,2006,32(3):7-9.
    [120]R. N. Hasiber, A. C. Legate, J. Brunke, et al. The application of high speed grounding switches for single-pole on 500kV power systems [J]. IEEE Transactions on Power Apparatus and System,1981,100(4):1512-1515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700