用户名: 密码: 验证码:
电力变压器内部故障计算及新型保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统规模的扩大,超高压大容量电力变压器不断投入运行,它的安全运行直接影响到整个电力系统的安全稳定,现场对其主保护提出了更高的要求,完善现有差动保护方案和开发应用新型主保护具有十分重要的意义,而变压器内部故障仿真又是揭示内部故障规律提高保护性能的必要手段。本文针对目前变压器仿真和保护相关研究中仍存在的一些关键问题展开工作,并提出了相应的解决措施。论文的主要内容和研究成果包括:
     深入研究了利用有限元方法进行变压器磁场计算过程,提出了新型的自适应单元划分方法和变压器绕组漏电感参数计算方法,利用VC++程序封装有限元分析过程,开发模型参数计算平台,极大地提高了计算的效率和精度。与实验数据的比较结果说明了本方法的正确性和可行性。
     提出了新的励磁涌流识别方法。深入研究了不同运行状态下差动电流相位关系和在时域、采样空间中的分布特征。基于Park矢量模频率特征的识别方法利用Park矢量模中二次谐波含量反应三相差动电流的相对相位关系,该方法计算量小,物理意义明确,不受非故障相影响;基于波形时域分布特征的识别方法利用直方图技术提取励磁涌流的诸如间断、尖顶等局部特征,不受对称性涌流的影响,具有很好的识别效果;基于采样空间分布特征的励磁涌流识别方法通过空间变换技术获取最佳识别子空间,可以最大程度地保证识别的可靠性和灵敏性。
     提出励磁涌流变权综合识别方法。在统计分析的基础上提出了利用2可加测度定量分析判据交互性的方法,并将其作为选取最优判据组合、确定判据常权的依据,根据励磁涌流隶属函数的特点构造了新的状态变权向量函数,使判据权重综合体现了判据的全局重要性和在特定状态下的相对重要性,避免了权重固定可能造成的性能下降问题。
     提出了新的变压器△侧绕组电流计算方法。分析了空载合闸过程中Y侧零序电流和△侧绕组环流间的相似关系,通过分析拟合励磁电流相似度的大小确定二者间的比例系数,该方法无需知道变压器绕组参数,不用控制变压器空载合闸过程,具有很高的计算精度。
     提出两种新型变压器绕组参数在线辨识方法。利用变压器回路方程构造绕组参数辨识模型,基于UD分解的最小二乘辨识方法在绕组电流可得的前提下能快速得到稳定的结果,数值稳定性高,基于现代内点法的非线性辨识方法无需测量△侧绕组电流,仅利用负荷数据即可得到高精度的计算结果,易于应用。
     提出了两种新型基于回路方程的变压器主保护。基于广义基波功率的新型变压器保护突出了回路方程中差电压、电流间的相位特征,不受变压器铁损、铜损的影响,无需知道变压器各侧漏阻抗参数,与回路方程差值判据结合构成新型实用化主保护方案。基于补偿电压的电压差动保护分别考虑回路方程中两侧补偿电压的幅值和相位关系,最大程度地扩大了保护的动作区,在保证可靠性的前提下提高了保护在内部故障时的灵敏度。
Recently with development of power system extra high voltage large capacity transformers are put into operation continuously. Its safe operation would affect the security and stability of power system. High demands to transformer main protection are put forward, so it is very significant of improving the scheme of differential current protection now in use and developing novel transformer main protection, and the simulation of transformer internal faults is the necessary means to reveal the laws of internal faults and improve the performance of protection. The dissertation makes an investigation on some key problems that are not well solved in transformer protection. Based on deep analysis and research, novel methods to solve those problems are presented. The major contributions of this dissertation are as follows:
     The process of transformer magnetic field calculation based on finite element analysis is studied deeply. The adaptive meshing method and the transformer winding leakage inductances calculation method are presented, the platform for transformer model parameters calculation is developed in which the above computing process is packaged with VC, the computing efficiency and accuracy are raised. The calculation results are compared with experiment data, and the comparison results show that this method is correct.
     Novel inrush currents identification methods are presented. The phase relation of differential currents and the features in time domain and sampling space under various conditions are studied thoroughly. In the identification method based on the frequency characteristic of Park vector module the content of second harmonic is used to reflect the phase relation among the three differential currents. The method needs less calculation, has definite physical meaning and is not affected by the non-fault phase. The identification method based on the waveform characteristic in time domain is presented. In this method the histogram is used for extracting the local characteristics of inrush current such as backlash and the peak. The method is not affected by the symmetrical inrush and has higher performance. In the identification method based on the distribution characteristic in sampling space the optimum subspace (direction) for identification is obtained with principal component analysis. The reliability and sensitivity are assured as much as possibly.
     The variable weights synthetic identification of inrush is presented. Based on the statistical results the method to count the interactions among various criterions quantitatively with2-order additive measures is presented, and the results are used to the basis for selecting a optimal criterion combination and setting the constant weight of criterion. According to the characteristic of inrush membership function A new state variable weights function is constructed. Thus the weights reflect the overall importance and the relative importance under certain condition, and the loss in identification performance caused by the invariability of weights is avoided.
     New method for transformer winding currents at delta side calculation is presented. The similarity relation between zero sequence current at star side and the circulating current at delta side under the inrush condition is analyzed. The proportionality coefficient between zero sequence current and circulating current is determined by analyzing the similarity of the fitted inrush current. The method does not need the parameters of windings, has no requirement on the process of switching on with no load, and has high calculation accuracy.
     Two new on-line identification methods for transformer winding parameters are presented. The identification model is obtained according to the loop equation. With the method based on UD decomposition least square the stable results can be obtained quickly at the premise that the winding currents are known. The method has high numerical stability. In the nonlinear identification method based on modern interior point method the winding currents are not needed, only the load data are used. The method has high calculation accuracy and is easy to be realized.
     Two new transformer main protections based on loop equation are presented. In the method based on the generalized fundamental power the phase characteristic between the differential voltage and the differential current is accentuated. The method is not affected by the core loss and copper loss, does not need the winding leakage inductances. A practical scheme of transformer main protection is presented by combining this method and that based on loop equation difference. In the differential voltage protection based on the compensated voltages the amplitude and phase relations between the compensated voltages are considered independently. The operation zero is expanded as much as possible, the sensitivity of the protection under internal fault condition is increased on the premise that the reliability is ensured.
引文
[1]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):1-6
    [2]周玉兰,王玉玲,赵曼勇.2004年全国电网继电保护与安全自动装置运行情况[J].电网技术,2005,29(16):42-48
    [3]沈晓凡,舒治淮,刘宇,等.2007年国家电网公司继电保护装置运行情况[J].电网技术,2008,32(16):5-8
    [4]C. Bengtsson. Status and trends in transformer monitoring [C]. IEEE 1995 Power-tech Conference Proceedings. Aug.1995, Stockhlom, Sweden:1379-1384
    [5]R. Asensi, J. A. Cobos, O. Garcia, R. Prieto and J. Uceda. A full procedure to model high frequency transformer windings [C]. IEEE PESC 94, Taipei, Taiwan,1994
    [6]D. J. Wilcox. Theory of transformer modeling using modal analysis [J]. IEE Proceedings,1999,138(2):121-128
    [7]Patrick Bastard, Pierre Bertrand, Michel Meunier. A Transformer Model for Winding Fault Studies [J]. IEEE Transactions on Power Delivery,1994,9(2): 690-699
    [8]王雪.变压器内部故障仿真及其保护算法研究[D].保定:华北电力大学,2004
    [9]Chen Xusheng. A Three Phase Multi-legged Transformer Model in ATP Using the Directly-formed Inverse Inductance Matrix [J]. IEEE Transactions on Power Delivery,1996,11(3):1554-1562
    [10]V. Brandwajn, H. W. Dommel, I. I. Dommel. Matrix representation of three-phase N-winding transformers for steady-state and transient studies [J]. IEEE Trans. on Power Apparatus and systems,1982, PAS-101(6):1369-1378
    [11]John G Hayes, Neil O Donovan, Michael G Egan. The Extended T Model of the Multi-winding Transformer [C].35th Annual IEEE Power Electronics Specialists Conference, Aachen Germany,2004:1812-1817
    [12]A. C. Delaiba, J. C. de Oliveira, J. R. Cardoso, S. Y. Nabeta. Behavior of three-phase transformers supplying non-linear loads using time domain representation and finite element analysis [J]. IEEE Trans, on Magnetics. Sept 1998,34(5), Part I:3174-3177
    [13]A. A. Arkadan, R. H. VanderHeiden. Three-dimensional nonlinear finite element modeling of a voltage source excited transformer feeding a rectified load[J]. IEEE Trans. On Magnetics. Sept 1992,28(5), Part 2:3174-3177
    [14]王世山,李彦明.利用有限元法进行电力变压器绕组电动力的分析计算[J].西安石油学院学报(自然科学版),2002,17(4):56-58
    [15]王群京,李国丽,马飞,等.具有永磁励磁的混合式爪极发电机空载磁场分析 和电感计算[J].电工技术学报,2002,17(5):1-5
    [16]王世山,王德林,李彦明.大型有限元软件ANSYS在电磁领域的使用[J].高压电器,2002,38(3):27-33
    [17]Mario Chiampi, Angelo L Negro, Michele Tartaglia. A Finite Element Method to Compute Three-Dimensional Magnetic Field Distribution in Transformer Cores [J]. IEEE Transactions on Magnetics,1980,16(6):1413-1419
    [18]Masato Enokizono, Naoya Soda. Finite Element Analysis of Transformer Model Core with Measured Reluctivity Tensor [J]. IEEE Transactions on Magnetics,1997,33(5):4110-4112
    [19]唐兴伦,范群波,张朝晖,等ANSYS工程应用教程——热与电磁学篇[M].北京:中国铁道出版社,2003
    [20]张榴晨,徐松.有限元法在电磁计算中的应用[M].北京:中国铁道出版社,1996
    [21]陈玉庆.大型变压器漏磁场、电场和应力场有限元分析[D].济南:山东大学,2005
    [22]Tang Renyuan, Wang Shenhui, Li Yan, et al. Transient Simulation of Power Transformers Using 3D Finite Element Model Coupled to Electric Circuit Equations [J]. IEEE Transactions on Magnetics,2000,36(4):1417-1420
    [23]高志刚,刘泽明,李娜.复杂模型的ANSYS有限元网格划分研究[J].机械工程与自动化,2006(3):41-43
    [24]李庆龄ANSYS中网格划分方法研究[J].上海电机学院学报,2006,9(5):28-30
    [25]王辉明,马希龄,赵文.自适应有限元方法及其在ANSYS软件中的应用[J].新疆大学学报(自然科学版),2003,20(1):84-87
    [26]蔡显新,王文凯,蒋燕英,等.一种有效的网格自适应方法[J].计算力学学报,2007,24(2):241-245
    [27]王礼广,蔡放,熊岳山.一种新的基于方向导数的二维自适应网格生成算法[J].国防科技大学学报,2007,29(6):126-130
    [28]李朋,郝治国,张保会,等.基于有限元法的变压器漏感计算在绕组变形中的应用[J].电力自动化设备,2007,27(7):49-53
    [29]李英,杨力军,辛朝辉.大型变压器绕组结构对漏磁场及短路电动力的影响[J].变压器,2000,37(3):7-10
    [30]H Wang, K L Butler. Finite Element Analysis of Internal Winding Faults in Distribution Transformer [J]. IEEE Transactions on Power Delivery,2001, 16(3):422-428
    [31]H Wang, K L Butler. Modeling Transformers with Internal Incipient Faults [J]. IEEE Transactions on Power Delivery,2002,17(2):500-508
    [32]王雪,王增平,徐岩.电力变压器励磁涌流和故障电流的仿真研究[J].高压电器,2003,39(6):11-16
    [33]王雪,王增平.变压器内部故障仿真模型的设计[J].电网技术,2004,28(12):50-52
    [34]Mladen Kezunovic, Yong Guo. Modeling and Simulation of the Power Transformer Faults and Related Protective Relay Behavior [J]. IEEE Transactions on Power Delivery,2000,15(1):44-50
    [35]Khai D T Ngo, E Alpizar, J Kenneth Watson. Modeling of Magnetizing Inductance and Leakage Inductance in a Matrix Transformer [J]. IEEE Transactions on Power Electronics,1993,8(2):200-207
    [36]胡冠中.变压器绕组内部短路故障的数值模拟方法研究[D].杭州:浙江大学,2006
    [37]王赞基,刘秀成,陈香辉.用于内部故障分析的变压器电感参数计算模型[J].电力系统自动化,2000(12):21-25
    [38]王维俭,王祥珩,王赞基.大型发电机变压器内部故障分析与继电保护(第一版)[M].北京:中国电力出版社,2006
    [39]李永丽,贺家李.电力变压器新型微机保护原理的研究[J].电力系统自动化,1995,19(7):15-19
    [40]傅翔华,贾长朱.微机变压器保护装置现状分析及改进建议[J].电力系统自动化,1997,21(8):54-56
    [41]张举,黄少峰.我国微机继电保护的发展历史现状与展望[J].继电器,1996,24(1):3-6
    [42]I. Hermanto, Y. V. S. Murty, M. A. Rahman. A stand-alone digital protective relay for power transformers [J]. IEEE Trans. on Power Delivery, 1991,6(1):85-92
    [43]Sharp R L, Glassburn W E. A Transformer Differential Relay with Second Harmonic Restraint [J]. Transactions of American Institute of Electrical Engineers, Part Ⅲ Power Apparatus and Systems,1958,77(3):913-918
    [44]Hay ward C D. Harmonic Current Restrained Relays for Transformer Differential Protection [J]. Transactions of American Institute of Electrical Engineers,1941,60 (6):377-382
    [45]Rob R A, Jewell W T. Computer Based Harmonic Simulation and Testing for Transformer Differential Relay [C]. Proceedings of the 35th Midwest Symposium on Circuits and Systems,1992,(1):103-106
    [46]C E Lin, C L Cheng, C L Huang, etal. Investigation of Magnetizing Inrush Current in Transformers Part Ⅱ:Harmonic Analysis [J]. IEEE Transactions on Power Delivery,1993,8(1):255-263
    [47]邱文征.变压器主保护的研究[D].武汉:华中理工大学,1998,5
    [48]A Guzman, S Zocholl, G Benmouyal, etal. A Current-based Solution for Transformer Differential Protection Part Ⅰ:Problem Statement [J]. IEEE Transactions on Power Delivery,2001,16(10):485-491
    [49]A Guzman, S Zocholl, G Benmouyal, etal. A Current-based Solution for Transformer Differential Protection Part Ⅱ:Relay Description and Evaluation [J]. IEEE Transactions on Power Delivery,2002,17(4):886-893
    [50]陈德树,尹项根,张哲,等.虚拟三次谐波制动式变压器差动保护[J].中国电机工程学报.2001,21(8):19-23
    [51]胡玉峰,陈德树,尹项根,等.虚拟三次谐波制动式变压器差动保护的仿真研 究[J].电力系统自动化,2002,26(2):38-44
    [52]王祖光.间断角原理的变压器差动保护[J].电力系统自动化,1979,3(1):18-30
    [53]朱亚明,郑玉平,叶锋,等.间断角原理的变压器差动保护的性能特点及微机实现[J].电力系统自动化,1996,20(11):36-40
    [54]刘建飞,马锁明,任冰.间断角原理变压器微机保护装置的实用化研究[J].现代电力,1998,15(3):1-6
    [55]孙志杰,陈云仑.波形对称原理的变压器差动保护[J].电力系统自动化,1996,20(4):42-46
    [56]焦邵华,刘万顺.区分变压器励磁涌流和内部短路的积分型波形对称原理[J].中国电机工程学报,1999,19(8):35-38
    [57]李贵存,刘万顺,滕林,等.基于波形相关性分析的变压器励磁涌流识别新算法[J].电力系统自动化.2001(9):25-28
    [58]林湘宁,刘沛,杨春明,等.利用改进型波形相关法鉴别励磁涌流的研究[J].中国电机工程学报,2001,21(5):56-70
    [59]和敬涵,李静正,姚斌,等.基于波形正弦度特征的变压器励磁涌流判别算法[J].中国电机工程学报,2007,27(4):54-58
    [60]张雪松,何奔腾.基于误差估计的变压器励磁涌流识别原理[J].中国电机工程学报,2005,25(3):94-99
    [61]张雪松,何奔腾.变压器励磁涌流的相移比较鉴别方法[J].中国电机工程学报,2005,25(19):43-47
    [62]Omar A S Youssef. A Wavelet-Based Technique for Discrimination between Faults and Magnetizing Inrush Currents in Transformers [J]. IEEE Transactions on Power Delivery,2003,18(1):170-176
    [63]Moises Gomez-Morante, Denise W Nicoletti. A Wavelet-based Differential Transformer Protection [J]. IEEE Transactions on Power Delivery, 1999,14(4):1351-1356
    [64]Yong Sheng, Steven M Rovnyak. Decision Trees and Wavelet Analysis for Power Transformer Protection [J]. IEEE Transactions on Power Delivery, 2002,17(2):429-433
    [65]N Y Abed, O A Mohammed. Modeling and Characterization of Transformers Internal Faults Using Finite Element and Discrete Wavelet Transforms [J]. IEEE Transactions on Magnetics,2007,43(4):1425-1428
    [66]焦邵华,刘万顺,刘建飞,等.用小波理论区分变压器的励磁涌流和短路电流的新原理[J].中国电机工程学报,1999,19(7):1-5
    [67]林湘宁,刘沛,程时杰.基于小波包变换的变压器励磁涌流识别新方法[J].中国电机工程学报,1999,19(8):14-19
    [68]杨钟皓,董新洲.基于小波变换的变压器励磁涌流识别方法[J].清华大学学报(自然科学版).2002,42(9):1184-1187
    [69]Zhang Chuanli, Huang Yizhuang, Ma Xiaoxu, etal. A new approach to detect transformer inrush current by applying wavelet transform [C].1998 International Conference on Power System Technology (POWERCON'98), Proceedings, Aug.1998, Volume 2:18-21
    [70]张传利,黄益庄,马晓旭,等.改进递归小波变换在变压器保护中的应用研究[J].电力系统自动化,1999,23(17):20-22
    [71]全玉生,李洪杰,,严璋.应用小波变换测量间断角的新方法[J].电力系统自动化,1998,22(1):33-35
    [72]Bo Zhiqian, Weller Geoff, Lomas Tom. A new technique for transformer protection based on transient detection [J]. IEEE Trans. on Power Delivery, 2000,15(3):870-875
    [73]Butler-Purry, Mustafa Bagriyanik. Characterization of transients in transformers using discrete wavelet transforms [J]. IEEE Trans. on Power Delivery,2003,18(2):648-656
    [74]Jiang F, Bo Z Q, Chin P S M, etal. Power transformer protection based on transient detection using discrete wavelet transform (DWT) [C].2000 IEEE Power Engineering Society Winter Meeting,23-27 Jan.2000, Singapore. vol.3:1856-1861
    [75]葛耀中.小波变换与继电保护技术[J].继电器,1998,26(4):1-6
    [76]操丰梅,苏沛浦.小波变换在变压器差动保护中的应用[J].中国电力,1998,31(11):21-24
    [77]李贵存,刘万顺,贾清泉,等.一种利用小波原理防止变压器差动保护误动的新算法[J].电网技术,,2001,25(7):48-51
    [78]李贵存,刘万顺,李鹏,等.一种利用小波原理防止差动保护误动的新方法[J].电力系统自动化,2002,26(2):45-48
    [79]岳蔚,刘沛.基于数学形态学消噪的电能质量扰动检测方法[J].电力系统自动化,2002,26(7):13-17
    [80]林湘宁,刘沛,刘世明.电力系统超高速保护的形态学—小波综合滤波算法[J].中国电机工程学报,2002,22(9):19-24
    [81]Wu Q H, Zhang J F, Zhang D J. Ultra-High-Speed directional protection of transmission lines using mathematical morphology [J]. IEEE Trans. on Power Delivery,2003,18(4):1127-1133
    [82]Sun P, Zhang J F, Zhang D J, etal. Morphological identification of transformer magnetizing inrush current [J]. Electronics Letters,2002,38(9): 437-438
    [83]郑涛,刘万顺,肖仕武,等.一种基于数学形态学提取电流波形特征的变压器保护新原理[J].中国电机工程学报,2004,24(7):18-24
    [84]王维俭.变压器保护运行不良的反思[J].电力自动化设备,2001,21(10):1-3
    [85]葛宝明,于学海,王祥珩,等.基于等效瞬时电感判别变压器励磁涌流的新方法[J].电力系统自动化,2004,28(7):44-48
    [86]葛宝明,苏鹏声,王祥珩,等.基于瞬时励磁电感频率特性判别变压器励磁涌流[J].电力系统自动化,2002,26(17):35-40
    [87]郑涛,刘万顺,庄恒建,等.用归一化等效瞬时电感分布特性识别励磁涌流的新算法[J].中国电机工程学报,2005,25(23):47-53
    [88]夏石伟,郑涛.Yd接线变压器三角形侧绕组中环流求取方法[J].电力系统 自动化,2008,32(24):60-64
    [89]郑涛,刘强,夏石伟.基于变压器回路方程的三角形侧绕组中环流求取新方法[J].电力系统自动化,2009,33(15):43-46,111
    [90]毕大强,梁武星,柴建云,王祥珩,王维俭.变压器三角形绕组中环流的构造方法[J].电力系统自动化,2008,32(1):39-43
    [91]Phadke AG, Thorp JS. A Computer-based Flux-restrained Current Differential Relay for Power Transformer Protection [J]. IEEE Transactions on Power Apparatus and System.1983, PAS102(11):3624-3629
    [92]徐岩,王增平,杨奇逊,等.基于电压电流微分波形特性的变压器保护新原理的研究[J].中国电机工程学报,2004,24(2):61-65
    [93]徐岩.电力变压器内部故障数字仿真及其保护新原理的研究[D].保定:华北电力大学,2005
    [94]孙志杰,曾献华,汤汉松.磁通制动原理在变压器差动保护中的应用[J].电力自动化设备,2005,25(1):79-81
    [95]宗洪良,金华烽,朱振飞等.基于励磁阻抗变化的变压器励磁涌流判别方法[J].中国电机工程学报.2001,21(7):91-94
    [96]范文涛,王广延.基于模糊集理论的变压器微机差动保护新判据[J].中国电机工程学报,1997,17(6):403-407
    [97]黄登峰,郁惟镛.基于模糊集合理论的变压器匝间短路保护算法及仿真研究[J].电网技术,2002,26(1):12-14
    [98]Andrzej Wiszniewski, Bogdan Kasztenny. A Multi-criteria Differential Transformer Relay Based on Fuzzy Logic [J]. IEEE Transactions on Power Delivery.1995,10 (4):1786-1792
    [99]Andrzej Wiszniewski, Bogdan Kasztenny. Fuzzy set Approach to Transformer Differential Relay [C]. Fifth International Conference on Developments in Power System Protection,1993:169-172
    [100]王增平,高中德,张举,等.模糊理论在变压器保护中的应用[J].电力系统自动化.1998,22(2):13-16
    [101]刘颖.基于模糊识别原理的变压器保护的研究[D].保定:华北电力大学,2002
    [102]黄登峰,郁惟镛,赵亮,等.基于模糊多判据的变压器励磁涌流识别新算法[J].继电器,2000,28(12):4-7
    [103]Myong Chul Shin, Chul Won Park, Jong Hyung Kim. Fuzzy Logic Based Relaying for Large Power Transformer Protection [J]. IEEE Transactions on Power Delivery,2003,18 (3):718-724
    [104]卢雪峰,王增平,徐岩.模糊层次分析法在变压器励磁涌流识别中的应用[J].电力自动化设备.2008,28(11):57-61
    [105]梁国坚,梁冠安.复合判据模糊逻辑的电力变压器微机差动保护[J].变压器,2000,37(9):40-44
    [106]Kasztenny B, Rosolowski E, Saha M M, etal. A multi-criteria fuzzy logic transformer protection [C]. Sixth International Conference on Developments in Power System Protection,25-27 Mar 1997, Page(s):143-146
    [107]Alessandro Ferrero, Silvia Sangiovanni, Ennio Zappitelli. A fuzzy-set approach to fault-type identification in digital relaying [J]. IEEE Trans on Power Delivery,1995,10(1):169-175
    [108]Kasztenny B, Rosolowski E, Saha M M, etal. A self-organizing fuzzy logic based protective relay-an application to power transformer protection [J]. IEEE Trans on Power Delivery,1997,12(3):1119-1127
    [109]Wiszniewski A, Kasztenny B. Fuzzy set approach to transformer differential relay [C]. Fifth International Conference on Developments in Power System Protection,1993, Page(s):169-172
    [110]G.Perez L, Flechsig A J, Meador J L, etal. Training an artificial neural network to discriminate between magnetizing inrush and internal faults [J]. IEEE Trans on Power Delivery,1994,9(1):434-441
    [111]Bastard P, Meunier M, Regal H. Neural network-based algorithm for power transformer differential relays [J]. IEE Proceedings of Transmission and Distribution,1995,142(4):386-392
    [112]段玉倩,贺家李,贺继红.基于人工神经网络方法的微机变压器保护[J].中国电机工程学报,1998,18(3):190-194
    [113]潘荣贞,郁惟镛,田寿龙.基于波形记忆和模糊极小—极大神经网络的变压器励磁涌流和内部短路的鉴别[J].电网技术,2002,26(5):4-9
    [114]李海峰,王钢,李晓华,等.电力变压器励磁涌流判别的自适应小波神经网络方法[J].中国电机工程学报,2005,25(7):144-150
    [115]Zaman M R, Rahman M A. Experimental testing of the artificial neural network based protection of power transformers [J]. IEEE Trans on Power Delivery,1998,13 (2):510-517
    [116]Kasztenny, Rosolowski B, Lukowicz E, etal. Multi-objective optimization of a neural network based differential relay for power transformers [C].1999 IEEE Transmission and Distribution Conference,11-16 Apr 1999, Volume:2, Page(s):476-481
    [117]Kuniaki Yabe. Power Differential Method for Discrimination between Fault and Magnetizing Inrush Current in Transformers [J]. IEEE Transactions on Power Delivery.1997,12(3):1109-1138
    [118]孙鸣,梁俊滔,冯小英.基于功率差动原理的变压器保护实现方法的分析[J].继电器,2001,29(12):13-15
    [119]王增平,徐岩,王雪,等.基于变压器模型的新型变压器保护原理的研究[J].中国电机工程学报,2003,23(12):54-58
    [120]马静,王增平,王雪.基于等效瞬时漏电感的变压器保护新原理[J].电力系统自动化,2006,30(23):64-68
    [121]刘传彝.电力变压器设计计算方法与实践[M].沈阳:辽宁科学技术出版社,2002
    [122]J. A. Martinez, R. Walling, B. A. Mork, et al. Parameter Determination for Modeling System Transients-Part Ⅲ:Transformers [J]. IEEE Transactions on Power Delivery,2005,20(3):2051-2062
    [123]郝治国,张保会,褚云龙.基于等值回路平衡方程的变压器保护原理[J].中 国电机工程学报.2006,26(10):67-72
    [124]黎功华,罗建,杨浩.基于绕组不平衡参数回路方程的变压器保护原理[J].电力系统自动化,2008,,32(6):91-94
    [125]索南加乐,焦在滨,康小宁,等.Y/△接线变压器漏感参数的识别方法[J].电机工程学报,2008,28(13):84-90
    [126]高晶,王建华,张保会,等.变压器漏电感参数在线辨识方法研究[J].西安交通大学学报.2008,42(2):199-203
    [127]谷君,郑涛,刘万顺,等.基于平方根滤波法参数辨识的变压器保护新方法[J].电力自动化设备.2008,28(3):27-30
    [128]马静,王增平,吴劫.基于广义瞬时功率的新型变压器保护原理[J].中国电机工程学报.2008,28(13):78-83
    [129]陈家平,齐乐华,周计明等.基于VC和ANSYS接口的液固挤压数值模拟参数化实现[J].机床与液压,2009,37(11):166-169
    [130]王旭红,何怡刚.基于Park变换何DRNN的定子绕组匝间故障诊断方法[J].电湖南大学学报(自然科学版),2009,36(8):43-47
    [131]候新国,吴正国,夏立.基于Park矢量模平方函数的异步电动机转子故障检测方法研究[J].中国电机工程学报,2003,23(9):137-140
    [132]邵英.采用Park变换感应电机转子复合故障检测[J].电机与控制学报,2010,14(3):57-61
    [133]Luis M. R. Oliverira, A. J. Marques Cardoso. Intermittent turn-to-turn winding faults diagnosis in power transformer by the on-load exciting current park's vector approach [C]. Proceedings of the 2008 international conference on electrical machines,1-6
    [134]冈萨雷斯等.数字图像处理[M].第二版.阮秋琦,阮宇智等译.北京:电子工业出版社,2003
    [135]王静龙.多元统计分析[M].北京:科学出版社,2008
    [136]王斌会.多元统计分析及R语言建模[M].广州:暨南大学出版社,2010
    [137]E Vazquez, I I Mijares, O L Chacon, etal. Transformer Differential Protection Using Principal Component Analysis [J]. IEEE Transactions on Power Delivery,2008,23(1):67-72
    [138]胡宝清.模糊理论基础[M].武汉:武汉大学出版社,2004
    [139]王熙照.模糊测度和模糊积分及在分类技术中的应用[M].北京:科学出版社,2008
    [140]Grabisch M, Murofoshi T, Sugeno M. Fuzzy Measures and Integrals:Theory and Application [M]. New Park:Physica Verlag,2000
    [141]汪培庄,李洪兴.模糊系统理论与模糊计算机[M].北京:科学出版社,1996
    [142]汪培庄.模糊集与随机集落影[M].北京:北京师范大学出版社,1985
    [143]Grabisch M. The representation of importance and interaction of features by fuzzy measures [J]. Pattern Recognition Letters.1996,17(6):567-575.
    [144]李德清,李洪兴.变权决策中变权效果分析与状态变权向量的确定[J].控制与决策,2004,19(11):1241-1245
    [145]李德清,谷云东,邹开其.变权综合与可加型标准综合函数[J].模糊系统与数学,2005,19(3):101-104
    [146]李德清,赵彩霞,李洪兴.状态变权向量的等效分析以及一类均衡函数的构造[J].模糊系统与数学,2004,18(2):83-88
    [147]李德清,郝飞龙.状态变权向量的变权效果[J].系统工程理论与实践,2009,29(6):127-131
    [148]刘文奇.均衡函数及其在变权综合中的应用[J].系统工程理论与实践,1997,17(4):58-64,74
    [149]芮坤生,潘孟贤,丁志中.信号分析与处理[M].北京:高等教育出版社,2003
    [150]方崇智,萧德云.过程辨识[M].北京:清华大学出版社,2003
    [151]韩曾晋.自适应控制[M].北京:清华大学出版社,1995
    [152]应玖茜,魏权龄.非线性规划及其理论[M].北京:中国人民大学出版社,1994
    [153]El-Bakry A S, Tapai R A. On the formulation and theory of the newton interior point method for nonlinear programming [J]. Journal of Optimization Theory and Applications,1996,89 (3):507-541
    [154]Hua Wei, Sasaki H. An interior point nonlinear programming for optimal power flow problems with a novel data structure [J]. IEEE Transaction on Power System,1998,13 (3):870-877
    [155]韦化,丁晓莺.基于现代内点理论的电压稳定临界点算法[J].中国电机工程学报,2002,22(3):27-31
    [156]阳育德,韦化,刘辉.基于内点非线性规划的故障切除时间计算[J].中国电机工程学报,2006,26(15):1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700