用户名: 密码: 验证码:
磁流变液及其传动技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变液(Magnetorheological Fluid, MRF)是一种新型智能材料,在磁场作用下具有显著的流变效应,近年来受到国内外学者的高度重视,得到越来越广泛的应用,磁流变传动装置(Magnetorheological Transmission Device, MRTD)是磁流变液的重要应用之一,具有优越的传动特性,存在广阔的应用前景。针对目前磁流变液及其传动技术研究中存在的问题,本文在以下几个方面进行了深入的研究。
     阐述了磁流变液的组成,从宏观及微观方面对磁流变液的流变效应进行了分析,详细分析了磁流变液的性能评价指标,指出剪切屈服应力是磁流变液最重要的性能之一,总结了经典偶极子、局部场偶极子和有限元三种颗粒作用力计算模型的特点,分析了经典偶极子模型的局限性,并得到其误差分布特点,提出了一种新型的颗粒作用力计算模型——分裂偶极子模型,并讨论了其计算精度,得到了一种形式较简单、计算较准确的磁流变液剪切屈服应力理论计算模型。
     总结了磁流变传动装置变形界面的产生形式,采用数值计算方法,从变形界面磁场和液膜传动能力两方面分析了变形界面的传动性能,得到了变形量及工作间距对变形界面传动能力的影响规律,并进行了相关实验研究,确定了传动界面许用变形量。
     阐述了磁流变液壁面滑移现象的产生机理,理论分析了磁流变液中颗粒与传动壁面间的相互作用,并采用实验方法研究了壁面材料类型、粗糙度、沟槽形状、沟槽密度、沟槽深度、纹理类型、颗粒体积分数、工作间隙磁场强度等因素对壁面滑移特性的影响规律,确定了较为合理的传动壁面。
     研制了一种双圆盘式磁流变传动装置,并分析了其电磁场及温度场,搭建了磁流变传动试验台,开展了磁流变传动装置空载特性、静特性、动特性、调节特性、温升特性、滑差转速特性及工作间距特性研究。
     建立了磁流变传动系统的速度控制模型,并对该模型输出速度的时间响应特性进行了分析,总结了磁流变传动装置的控制特点,分析了控制系统常用控制策略,提出了输出速度的模糊控制策略,设计出二维模糊控制器,并开展了速度调节特性实验,研究取得的成果对磁流变液及其传动技术的深入研究具有指导意义,为磁流变传动装置的设计和磁流变传动技术的应用推广提供技术支持。
Magnetorheologcial Fluds (MRF) is a new type intellectual material with attractiverheological properties upon the application of an external magnetic field, has been afocused research and widely use all over the world recent years, MagnetorheologicalTransmission Device (MRTD), with superior transmission performance and applicationprospect, is an important application of MRF. According to the existing problems, thefollowing aspects are thoroughly researched in the dissertation.
     Conception of MRF is described and rheology effect is observed from macroscopicand microscopic aspect, performance evaluation indexs are analyzed detailedly showingthat shear yield stress is the most important performance of MRF, the characteristics ofclassic dipole model, local dipole model and finite element model are summarized,obtaining the limitation and error distribution of classic dipole model, a new type particlesinteraction model, splitting dipole model, is proposed and the error is discussed, then, anew shear yield stress theory calculation model of MRF is deduced, which has simplerformat and higher precision.
     Deformed interface shapes of MRTD are summarized, the magnetic field distributionin working gap and the transmission capability of oil film are analyzed repectively by thenumerical calculation method, and transmission rules of different deformation values andworking distances are obtained, the results are verfied by experiment method and theallowable deformation value is obtained.
     Wall slip effect generation mechanism is described and interaction relationshipbetween particles and transmission wall is analyzed theoretically. Based on a lot ofexperiments, the influence rules of wall materials, roughness, groove shapes, groovedensities, groove depths, texture types, volume fraction of MRF and applied magnetic fieldon wall slip effect are obtained respectively, the more reasonable transmission wall isobtained.
     A double disc MRTD is designed, of which the magnetic field and the temperaturefield are analyzed, the disc MRTD test-bed is established and the transmissioncharacteristics including no-loaded characteristic, static characteristic, dynamiccharacteristic, adjusting characteristic, temperature characteristic, slip rotato speedcharacteristic and working distance characteristic of MRTD are researched by experimentmethod.
     Relationship model of MRTD system between current and rotate speed is deduced and the time response is analyzed, then, the control characteristic and strategy are summarized,the fuzzy control strategy and controller are desiged, the corresponding speed adjustingexperiment is researched. The research results play a guiding role in the thorough researchon MRF and MRTD technology, and provide technical support for the design of MRTDand application and popularization of MRTD technology.
引文
[1] Carlson J D, Catanzarite D M, Clair K A. Commercial magneto-rheological fluid devices[J].International Journal of Modern Physics B.1996,10(23-24):2857-2865.
    [2] Koichiro H, Wataru S, Toshinobu Y. Magnetic and rheological properties of monodisperseFe3O4nanoparticle/organic hybrid[J]. Journal of Magnetism and Magnetic Materials,2009,321(5):450-457.
    [3] Bossis G, Volkova O, Lacis S and Meunier A, Magnetorheology: fluids, structures andrheology[J]. Lecture Notes in Physics,2003,594:202-230.
    [4] Richter L, Zipser L, Lange U, Properties of magnetorhologic fluids[J]. Sensors and Materials,2001,13(7):385-397.
    [5]汪建晓,孟光.磁流变液研究进展[J].航空学报,2002,23(1):6-12.
    [6] Carlson J D. A daptronics and smart structures[M]. Berlin: Spring-verlag,1999.
    [7] Ralf B, Hartmut J. Design rules for MR fluid actuator in different working modes[J], SmartStructures and Materials,1997,3045:148-159.
    [8] Olabi A G, Grunwald A. Design and application of magnetorheological fluid[J]. Materials andDesign,2007,(28):2658-2664.
    [9]侯友夫,黄民,张永忠.带式输送机动态特性及控制技术[M].北京:煤炭工业出版社,2004.
    [10]魏宸官,赵家象.液体粘性传动技术[M].北京:国防工业出版社,1996.
    [11]孟庆睿,液体粘性传动调速起动及其控制技术研究[D].徐州:中国矿业大学,2008.
    [12]蒋建东,磁流变传动技术与器件的研究[D].重庆:重庆大学,2004.
    [13]郑军,磁流变传动理论与试验研究[D].重庆:重庆大学,2008.
    [14] Carlson J D. What makes a good MR fluids[J]. Journal of Intelligent Material Systems andStructures,2002,13(7-8):431-435.
    [15] Spencer B F, Yang G Q, Carlson J D, Sain M K,“Smart” dampers for seismic protection ofstructures: a full-scale study[C]. The Second World Conference on Structural Control, Kyoto,Japan,1998:417-426.
    [16] Kordonski W I, Golini D, Fundamentals of magnetorheological fluid utilization in highprecision finishing[J]. Journal of Intelligent Material System and Structures,1999,10(9):683-689.
    [17] Kordonski W I, Jacobs S D, Magnetorheological finishing[J]. International Journal of ModernPhysics,1996,10(23-24):2837-2848.
    [18] Kordonski W I, Jacobs S D, Golini D, Fess E, et al. Vertical wheel magnetorheologicalfinishing machine for flats, convex and concave surface[J]. Optical Fabrication and TestingWorkshop, OSA Technical Digest Series,1996,7:146-149.
    [19] Kordonski W I, Prokhorow I V, Gordodkin S R, Gorodkin G R, et al. Magnetorheologicalpolishing devices and methods[P]. US Patent:5577948,1996.
    [20] Kordonski W I, Gorodkin S R, Kolomentsev A V, Kuzmin V A, et al. Magnetorheologicalvalve and devices incorpprating magnetorheological elements[P]. US Patent:5452745,1995.
    [21]夏品奇,江绛,嵌入式磁流变液智能材料夹层结构[P].中国专利:200610097467.8,2006.
    [22] Weiss K D, Duclos T G, Chrzan M J, Yanyo L C. Magnetorheological fluid compositestructures. USA: US Patent:5547049,1996.
    [23] Tang X, Zhang X, Tao R, Flexible fixture with magnetorheological fluids[C]. Proceeding ofthe7th International Conference on ER Fluids and MR Suspensions. Singapore: WorldScientific,2000:712-720.
    [24] Zhang X S, Magnetorheological fluids workpiece holding apparatus and method[P]. USPatent:6267364B1,2001.
    [25]张先舟,龚兴龙,张培强,具有可变刚度的柔性表面的夹持装置[P].中国专利:200410103237.9,2006.
    [26] Kordonsky W I, Garodkin S R, Magnetorheological fluid based seal. Proceeding of the5thInternational Conference on ER Fluids, MR Suspensions and Associated Technology,Singapore: World Scientific,1996:704-709.
    [27]赵四海,尤福祯.磁流变液密封机制及结构设计[J].润滑与密封,2006,(3):138-145.
    [28] Jolly M R, Pneumatic motion control using magnetorheological technology[C]. theInternational Society for Optical Engineering, SPIE,2001
    [29] Winslow W M. Method and means for translating electrical impulses into mechanical force[P].US Patent:2417850,1947.
    [30] Rabinow J. The magnetic fluid clutch[J]. AIEE Transactions,1948,67:1308-1315.
    [31] Rabinow J. Magnetic fluid torque and force transmitting device[P]. US Patent:2575360.1951.
    [32] Shulman Z P, Gorodkin R G, Korobko E V, Gleb V K. The electrorheological effect and itspossible uses[J]. Journal of Non-Newtonian Fluid Mechanics,1981,8(1-2):29-41.
    [33] Shulman Z P, Korobko E V, Study of electrorheological effect during flow of dielectricsuspensions in a horizontal coaxially cylindrical capacitor[J]. Journal of Engineering Physics,1974,26(5):568-571.
    [34] Deineqa, Yu F, The electrorheology of dispersed systems[J]. Journal of Engineering Physicsand Thermophysics,1970,18(6):679-682.
    [35] Standrud H T, Electric-field valves inside cylinder control vibrator[J]. Hydraulics andPneumatics,1966,9:139-143.
    [36] Lykov A V, Gorodkin R G, Shulman Z P, Study of electrorheological effect[J]. Journal ofEngineering Physics and Thermophysics,1968,15(4):925-927.
    [37] Carlson J D, Jolly M R, MR fluid, foam and elastomer devices[J]. Mechatronics2000,10:555-569.
    [38] Carlson J D, Matthis W, Toscano J R, Smart prosthetics based on magnetorheological fluids[J].The International Society for Optical Engineering,2001,4332:308-316.
    [39] Jolly M R, Bender J W, Carlson J D. Properties and applications of commercialmagnetorheological fluids[J]. Journal of Intelligent Material Systems and Structures,1999,10(1):5-13.
    [40] Margida A J, Weiss K D, Carlson J D, Magnetorheological material based on iron alloyparticles[J]. International Journal of Modern Physics B,1996,10(23-24):3335-3341.
    [41] Goncalves F D, Ahmadian M, Carlson J D, Investigating the magnetorheological effect athigh flow velocities[J]. Smart Materials and Structures,2006,15(1):75-85.
    [42] Ginder J M, Davis L C, Elie L D, Rheology of magnetorheological fluids: models andmeasurements[J]. International Journal of Modern Physics B,1996,10(23-24):3293-3303.
    [43] Ginder, J M, Behavior of magnetorheological fluids[J]: MRS Bulletin,1998,23(8):26-29.
    [44] Ginder J M, Sproston J L, The performance of field-controllable fluids and devices[C].5thInternational Conference on New Actuators. AXON Technologie Consult Gmbh, Bremen,Germany,1996:26-28.
    [45] Pawlak A M, Intellectual property mapping of mechatronics[C]. XL Ⅲ InternationalSymposium on Electrical Machines, PTETIS Publishers, Poland,2007:17-20.
    [46] Lyengar, Vardarajan R, Wear testing of seals in magneto-rheological fluids[J]. TribologyTransactions,2004,47(1):23-28.
    [47] Laun H M, Kormann C, Willenbacher N, Rheometry on magnetorheological fluids[J].Rheologica Acta,1996,35(5):417-432.
    [48] Kormann C, Laun H M, Richter H J, MR fluids with nano-sized magnetic particles[J].International Journal of Modern Physics B,1996,10(23-24):3167-3172.
    [49] Mazlan S A, The behaviour of magnetorheological fluids in squeeze mode[D]. Dublin CityUniversity,2008.
    [50] Kormann C, Laun H M, Richter H J. MR fluids with nano-sized magnetic particles[C]. In:Bullogh W A ed. Proceeding of the5th International Conference on ER Fluids, MRSuspensions and Associated Technology. Singapore: World Scientific,1996,362-367.
    [51] Kordonski W I, Demchuk S A. Additional magnetic dispersed phase improves the MR-Fluidproperties[C]. Proceeding of the5th International Conference on ER Fluids, MR Suspensionsand Associated Technology. Singapore: World Scientific, In: Bullogh W A ed.1996,613-619.
    [52] Ashour O, Kinder D, Giurgiutiu V, et al. Manufacturing and characterization ofmagnetorheological fluids[C]. In: Simmons W C ed. Proc of SPIE,1997,3040:174-184.
    [53] Ginder J M, Elie L D, Davis L C. Magnetic fluid-based magnetorheological fluids[P]. U SPatent:5549837,1996.
    [54] Foister R T. Magnetorheological fluids[P]. U S Patent:5667715,1997.
    [55] Phule P P, Ginder J M. Synthesis and processing of novel magetorheological fluids havingimproved stability and redispersibility. Proceeding of the6th International Conference on ERFluids, MR Suspensions and their Applications[C]. In: Nakano M, Koyama K eds. Singapore:World Scientific,1998.445-453.
    [56] Ulicny J C, Mance A M, Evaluation of electroless nickel surface treatment for iron powderused in MR fluids[J]. Materials Science and Engineering,2004,369(1-2):309-313.
    [57] Gomez-Ramirez A, Lopez-Lopez M T, Gonzalez-Caballero F, Duran J D G. Stability ofmagnetorheological fluids in ionic liquids[J]. Smart Material and Structures,2011,20(4):45001-45010.
    [58]张平,刘奇,唐龙.磁流变液[P].中国专利:200410081618,2004.
    [59]唐龙,刘奇,张平.水基磁流变液的制备及其性能研究[J].功能材料,2006,37(4):543-545.
    [60] Li J H, Guan X C, Ou J P, Disc testing apparatus and rheological performance of MR fluid[C].The9th International Conference on Electrorheological Fluid and Magnetorheological and ItsApplication, Beijing, China,2004.
    [61]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定[J].振动与冲击,2001,20(1):5-9.
    [62]郭鹏飞,关新春,欧进萍.磁流变液阻尼器响应时间的试验研究及其动态磁场有限元分析[J].振动与冲击,2009,28(6):1-7.
    [63]刘加福.磁流变液制备及其性能评价方法研究[D].哈尔滨:哈尔滨工业大学,2008.
    [64]李金海,关新春,欧进萍.可调范围宽、悬浮稳定的磁流变液的配制[J].功能材料,2004,35(4):414-416.
    [65]杨仕清,彭斌,蒋洪川,张文旭等.复合智能磁流变液的制备及流变性质研究[J].材料导报,2000,9:21-24.
    [66]杨仕清,彭斌,王豪才.超细Co-Ni合金复合磁流变液的制备及流变性质研究[J].功能材料,2001,32(2):142-146.
    [67]王金铭.水基磁流变液的制备和性能研究[D].武汉:武汉理工大学,2008.
    [68]汪小惠.烷基ED3A@Fe复合粒子及油基磁流变液的制备和表征[D].武汉:武汉理工大学,2008.
    [69]杨建国.新型纳米核壳颗粒电(磁)流变液的研究[D].大连:大连理工大学,2009.
    [70]苗运江.磁流变液屈服应力测试影响因素与磁流变液软启动装置的研究[D].徐州:中国矿业大学,2009.
    [71] Bossis G, Mathis C, Mimouni Z, Paparoditis C. Magnetoviscosity of micronic suspensions[J].Europhysics Letters,1990,11(2):133-137.
    [72] Bossis G, Lacis S, Meunier A, Volkova O. Magnetorheological fluids[J]. Journal ofMagnetism and Magnetic Materials,2002,252:224-228.
    [73] Bossis G, Khuzir P, Lacis S, Volkova O. Yield behavior of magnetorheological suspension[J].Journal of Magnetism and Magnetic Materials,2003,258-259:456-458.
    [74] Lemaire E, Paparoditis C, Bossis G. Yield stress in magnetic suspensions[J]. Progr ColloidPolym Sci.1991,84:425-427.
    [75] Lemaire E, Bossis G. Yield stress and wall effect in magnetic colloidal suspensions[J]. JournalPhysics D: Applied Physics,1991,24(8):1473-1477.
    [76] Ginder J M, Davis L C. Shear stress in magnetorheological fluids: role of magneticsaturation[J]. Applied Physics Letters,1994,65:3410-3412.
    [77] Rosensweig R E. On Magnetorheology and electrorheology as states of unsymmetric stress[J].Journal of Rheology,1995,39(1):179-192.
    [78] Jolly M R, Carlson J D. A model of the behaviour of magnetorheological materials[J]. SmartMaterials Structures,1996,5(5):607-614.
    [79] Tang X L, Conrad H, An analytical model for magnetorheological fluids[J]. Journal of PhysicsD: Applied Physics,2000,33(23):3026-3032.
    [80] Tang X L, Chen Y, Conrad H. Structure and interaction force in a model magnetorheologicalsystem[J]. Journal of Intelligent Material Systems and Structures,1996,7(5):517-521.
    [81]金昀,张培强,汪小华,吴卅建.磁流变液剪切屈服应力的数值计算[J],中国科学技术大学学报,2001,31(2):169-173.
    [82]祝长春.磁流变液剪切应力的理论研究[D],武汉:武汉理工大学,2004.
    [83] Zhu C C, Zhai P C. A new theoretical model about shear stress in magnetorheological fluidswith small shear deformation[J]. Journal of Wuhan University of Technology MaterialsScience.2005,20(1):52-56.
    [84]李海涛,彭向和,陈伟民.基于链化分析的磁流变液剪切屈服应力模型[J],化学物理学报,2005,18(4):505-509.
    [85]李海涛,彭向和,陈伟民.磁流变液流变特性的数值模拟分析[J].功能材料,2006,37(5):710-715.
    [86]彭小强,尤伟伟,石峰.磁流变液剪切屈服应力模型的理论分析与实验[J],国防科技大学学报,2006,28(4):110-114.
    [87]阮中尉.基于BCT模型的磁流变液剪切应力预测理论研究[D],武汉:武汉理工大学,2006.
    [88]朱应顺,龚兴龙,李辉,张培强.磁流变液剪切屈服应力的数值分析[J],中国科学技术大学,2006,35(4):498-503.
    [89] Gorodkin S, Zhuravski N. Surface shear stress enhancement under mr fluid deformation[J].International Journal of Modern Physics B,2002,16(17):2745-2750.
    [90]胡元.磁流变液屈服应力测试方法的研究[D].徐州:中国矿业大学,2005.
    [91] Kavlicoglu B M, Gordaninejad F, Evrensel C A, et al. A high-torque magnetorheological fluidclutch[C]. Proceeding of SPIE Conference on Smart Materials and Structures. San Diego,2002,4697:1-8.
    [92] Kikuchi T, Ikeda K, Otsuki K, Kakehashi T, et al. Compact MR fluid clutch device forhuman-friendly actuator[C],11th Conference on Electrorheological Fluids andMagnetorheological Suspensions, IOP Publishing,2009:1-4.
    [93] Swaminathan G, Rochester H, Samuel M L, Troy, et al. Magnetorheological fluid fanclutch[P]. US Patent:5896965,1997.
    [94] Eric A, Bansbach, Fayetteville, Torque transfer apparatus using magnetorheological fluids[P].US Patent:5845753,1998.
    [95] Herbert S, Raaba. Magnetorheologic clutch[P]. US Patent:7461731B2,2008.
    [96] James P D, Manilus. Torque transfer coupling with magnetorheological clutch actuator[P]. USPatent:7083030B2,2006.
    [97] James P. Dolan, Manilus, Hydromechanical coupling with clutch assembly andmagnetorheological clutch actuator[P]. US Patent:6811007B2,2004.
    [98] Thomas C. Bowen, Rochester H. Torque transfer clutch with magnetorheological actuator andball screw operator[P]. US Patent:6725990B2,2004.
    [99]梁锡昌,蒋建东.磁流变无级调速技术的研究[J].机械工程学报,2005,41(9):146-149.
    [100]梁锡昌,蒋建东.磁流变无级变速器[P],中国专利: CN1523251A,2004.
    [101]兰发强.磁流变液启动装置的基础研究[D].重庆:重庆大学,2004.
    [102]孟维佳.双平板式磁流变液离合器的研究设计[D].哈尔滨:哈尔滨工业大学,2006.
    [103]郑军,张光辉,曹兴进.热管式磁流变传动装置研究与实验[J].机械工程学报,2009,45(7):305-311.
    [104]郑军,张光辉,曹兴进.传动装置中磁流变液的稳态流动分析[J].中南大学学报,2008,39(1):149-154.
    [105]郑军,曹兴进,张光辉.传动装置中磁流变液瞬态流动特性的数值计算[J].西安交通大学学报,2007,41(9):1053-1057.
    [106]郑军,张光辉,曹兴进.磁流变传动装置工作机理分析[J].重庆大学学报,2007,30(11):19-22.
    [107]曹兴进,郑军.磁流变软启动装置[P].中国专利: CN100359198C,2004.
    [108]邹刚.杯状磁流变液离合器的性能测试与优化设计[D].哈尔滨:哈尔滨工业大学,2009.
    [109]叶文娟.磁流变液控智能传动机理与设计研究[D].南京:南京理工大学,2009.
    [110]崔亮.基于磁流变技术的离合器设计、控制及实验研究[D].南京:南京理工大学,2008.
    [111]胡红生,王炅,崔亮,蒋学争等.磁流变风扇离合器结构设计与可控性分析[J].南京理工大学学报,2010,34(3):342-246.
    [112]华文林.磁流变液制动器的设计与研究[D].武汉:武汉理工大学,2002.
    [113]单慧勇,王太勇.圆盘式磁流变调速风扇离合器的理论研究[J].润滑与密封,2006,(4):78-80.
    [114]黄金,廖林清,林昌华.圆筒式磁流变离合器的设计分析[J].功能材料,2006,37(5):760-764.
    [115]苗运江,杨志伊.磁流变软启动装置[P].中国专利: CN101029664A,2007.
    [116]杨绍普,潘存志,申玉良,陈恩利等.磁流变液风扇离合器[P].中国专利: CN1928381A,2006.
    [117] Gordaninejad F, Evrensel C A, Liu Y, Kavlicoglu B, et al, Time response of a controllablemulti-plate magneto-rheological fluid limited slip differential clutch[C]. Smart Structures andMaterials2003: Smart Structures and Integrated Systems. Proceedings of SPIE,2003.
    [118]申玉良,杨绍普,刘旭东.发动机冷却风扇磁流变液离合器控制系统研究[J].工程机械,2006,(2):23-25.
    [119]申玉良,藩存治,张军刚.汽车风扇磁流变液离合器模糊智能控制系统研究[J].石家庄铁道学院学报,2005,18(2):49-53.
    [120]崔亮.基于磁流变技术的离合器设计、控制及实验研究[D].南京:南京理工大学,2008.
    [121]胡利永.基于回转式磁流变液阻尼器的张力控制研究[D].吉林:吉林大学,2010.
    [122]侯鹏.磁流变液稳定性的评价研究[D].武汉:武汉理工大学,2008.
    [123] Foister, R T, Lyengar V R, Yurgelevic S M. Stabilization of magnetorheological fluidsuspensions using a mixture of organoclays[P]. US Patent:20030111634,2003.
    [124] Gorodkin S R, Kordonski W I, Medvedeva E V, et al. Amethod and device for measurementof a sedimentation constant of magnetorheological fluids[J]. Review of scientific instruments,2000,71(6):2476-2480.
    [125]李星,李虹,李奎白.一种研究絮凝过程的新方法—透光脉动检测技术[J].环境科学学报,1997,17(4):429-433.
    [126]江万权,朱春玲,陈祖耀.微米级浓悬浮体系中粒子的沉降稳定性及其表征方法[J].中国科学技术大学学报,2001,31(6):663-667.
    [127] Kordonski W I, Gorokin S R, Novikova Z A. The influence of ferropatical concentration andsize on MR fluid properties[C]. Proceeding of the6th international conference on ER fluids,MR suspensions and their applications, Singapore: world scientific,1998,535-542.
    [128] Podszun W, Halle O, Kijlstra J, Bloodworth R. Magnetorheological liquids, a process forproducing them and their use, and a process for producing magnetizable particles coated withan organic polymer[P]. US Patent:5989447,1999.
    [129] Bednarek S. Magnetic suspensions based on composite particles[J]. Journal of Magnetism andMagnetic Material,1998,183(1-2):195-200.
    [130]浦鸿汀,蒋峰景.磁流变液材料的研究进展和应用前景[J].化工进展,2005,2(24):132-136.
    [131] Jeon D, Park C, Park k. Virbration suppression by controlling an MR damper[C]. In: NakanoM, Koyama K. Proceeding of the6th international conference on ER fluids, MR suspensionsand their applications, Singapore: World Scientific,1998:853-860.
    [132] Weiss K D, Duclos T G, Carlson J D, et al. High strength magneto-and electro-rheologicalfluids[J]. Society of Automotive Engineers, SAE Paper,1993.
    [133] Weiss, K D, Duclos T G. Controllable fluids: the temperature dependence of post-yieldproperties[C]. Proceeding of the4th International Conference on ER Fluids, Singapore: WorldScientific,1994,43-59.
    [134]潘胜,吴建耀,胡林等.磁流变液的屈服应力与温度效应[J].功能材料,1997,28(2):264-266.
    [135] Tang X, Conrad H. An analytical model for magnetorheological fluids[J]. Applied Physics,2000,33:3026-3032.
    [136] Tang X, Conrad H. Quasistatic measurements on a magnetorheological fluid[J]. Journal ofRheology,1996,40(6):1167-1178.
    [137] Rosensweig R. On magnetorheology and electrorheology as status of unsymmetric stress[J].Journal of Rheology,1995,39(1):179-192.
    [138] Lemaire E, Bossis G. Influence of the particle size on the rheological fluids[J]. Journal ofRheology,1995,39(5):1011-1020.
    [139]金昀.磁流变液剪切屈服应力的数值计算[J].中国科学技术大学学报,2001,31(2):168-173.
    [140] Li W. Experimental investigation of creep and recovery behaviors of magnetorheologicalfluids[J]. Materials Science and Engineering,2002,333(1-2):368-376.
    [141] Bossis G, Mathis C, Mimouni Z, Paparoditis C. Magnetoviscosity of micronic suspensions[J].Europhys Letters,1990,11(2):133-137.
    [142] Felt D, Hagenbuchle M, Liu J. MR suspensions and associated technology, Proceeding of the5th International Conference on ER/MR. Bullogh W. World Scientific, Singapore1996,613-619.
    [143] Chen Z Y, Tang X, Zhang G C, et al. A novel approach of preparing ultrafine magneticparticles and the magnetorheological fluid[c]. Proceeding of the6th International Conferenceon ER Fluids, MR Suspensions and Their Applications, Singapore: World Scientific,1998,486-493.
    [144]李海涛.磁流变液特性分析及微观机理研究[D].重庆:重庆大学,2006.
    [145]金昀,张培强,汪小华,吴卅建.磁流变液剪切屈服应力的数值计算[J],中国科学技术大学学报,2001,31(2):169-173.
    [146]杨长河,李劲,瞿晶晶,刘宗辉.偶极子模型计算混合体局部场强的误差分析[J],高电压技术,2005,31:3-5.
    [147]杨长河,叶齐政,李劲.偶极子模型在介质混合体中的适用范围[J],电工技术学报,2005,20:28-32.
    [148]颜威利,杨庆新,汪友华.电气工程电磁场数值分析[M].北京:机械工业出版社,2005.
    [149]谢德馨,杨仕友.工程电磁场数值分析与综合[M].北京:机械工业出版社,2009.
    [150] Jang K I, Seok J, Min B K, Lee S J. A3d model for magnetorheological fluid that considersneighboring particle interactions in2d skewed magnetic fields[J]. International Journal ofPrecision Engineering and Manufacturing,2009,10(1):115-118.
    [151] Tao R, Jiang Q, Sim H K. Finite element analysis of electrostatic interactions inelectrorheological fluids[J]. Physical Review E,1995,52(3):2727-2735.
    [152]司鹄,彭向和,陈伟民.分析磁流变流体屈服应力微观力学模型[J].应用力学学报,2005,22(2):198-201.
    [153]李海涛,彭向和,陈伟民.基于链化分析的磁流变液剪切屈服应力模型[J].化学物理学报,2005,18(4):505-509.
    [154]余小玲,冯全科.电力电子设备常用散热方式的散热能力分析[J].变频器世界,2009:76-78.
    [155]第一机械工业部情报所,磁粉离合器(译文集),1975:80-86.
    [156]汪晓云.普通机床的零件加工[M].北京:机械工业出版社,2010.
    [157]谢方伟.温度场及变形界面对液粘传动特性影响规律的研究[D].徐州:中国矿业大学,2010.
    [158] Tian Z Z, Hou Y F, Wang N N. The temperature field of the instrument for measuring theyield stress of magnetorheological fluid[C].2011International Conference on Electronic&Mechanical Engineering and Information Technolgy,2011(5):2415-2418..
    [159]李小兵,刘莹,郭纪林,余桂英.不同机加工表面微观形貌的特征分析[J],润滑与密封,2007,32(7):26-28.
    [160]刘翊. Si-DLC膜微观摩擦性能及弹塑性接触有限元分析[D].镇江:江苏大学,2010.
    [161]朱双霞.磨削表面纹理表征及其摩擦特性研究[D].南昌:南昌大学,2007.
    [162] Hans M L, Claus G, Christoffer Kieburg. Wall material and roughness effects on transmittableshear stresses of magnetorheological fluids in plate-plate magnetorheometry[J]. Rheol Acta,2011,50:141-157.
    [163] Tang X, Zhang X, Tao R. Structure-enhanced yield strength of MR fluids[J]. Journal ofApplied Physics,2000,87(5):2634-2638.
    [164]张先舟,王琪民,张培强.基于磁流变液相变技术的柔性夹具[J].实验力学,2003,18(2):185-192.
    [165] Tang X, Zhang X, Tao R. Flexible fixture device with magnetorheological fluids[J]. Journal ofIntelligent Material Systems and Structures,1999,10(9):690-694.
    [166]黄金,贺建民,麻建坐.圆盘式磁流变离合器的分析与设计[C].第五届全国电磁流变液及其应用学术会议,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700