用户名: 密码: 验证码:
双面金属包覆波导原理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用导波光学理论在介绍一般介质平板波导的基础上,着重分析讨论了双面金属包覆波导的特性。双面金属包覆波导由上下两层金属薄膜和夹于其间的导波层构成。由于上下两层金属通常为贵金属金或银,其介电系数在可见光及近红外区域,实部相对其虚部表现为一绝对值很大的负数,故这种结构的波导有效折射率存在范围大,可以介于0和无穷大之间;另外,这种双面金属包覆波导的导波层可以扩展到毫米量级,可有效的激发出有效折射率介于0和1之间的超高阶导模,而这种超高阶导模具有一系列低阶导模所不具有的奇异特性,如有效折射率对激光的入射波长和波导的导波层折射率极其灵敏以及对入射激光偏振态不敏感等等。
     本文利用双面金属包覆结构的应用之一是提出了一种高灵敏的空芯金属包覆波导传感器。这种结构由于双面金属包覆,超高阶导模的有效折射率可以趋于零,这表明样品的折射率可不受任何限制,突破了传统波导有效折射率必须大于覆盖层折射率的限制,这对水溶液环境、接近自然状态下的生物样品的研究是十分有利的。特别值得一提的是我们这种结构传感器的待测样品是处于光场的振荡区域,因此我们常常又称之为振荡场传感器。本文第三章详细分析了这种结构传感器的灵敏度,并与传统的倏逝场传感器,如表面等离子共振传感器、长程表面等离子共振传感器、泄漏波导传感器、反对称波导传感器的灵敏度进行比较分析,得出了物理概念非常清晰的灵敏度统一解析式。并将空芯金属包覆结构传感器与现有逝场传感器结构的灵敏度进行了计算比较,研究表明振荡场传感器比现有倏逝场传感器的灵敏度至少高1-2个数量级。同时我们详细介绍了空芯金属包覆结构振荡场传感器制备流程,并利用自编分析软件分析了器件结构参数对衰减全反射峰的影响。为了测试该传感器的各项性能,进行了葡萄糖低浓度的测量和大肠杆菌在不同温度下繁殖实验。实验表明,在实验室现有条件下葡萄糖溶液浓度的探测极限可以达到1ppm,大肠杆菌繁殖能够分辨0到30分钟内生长的动态过程。实验测试说明器件工作的稳定性好,可靠性高,测试成本低廉,有望替代现有倏逝场传感器成为新一代生物传感器的发展方向。
     本文利用双面金属包覆波导结构的另一应用是提出了一种能同时测量透明陶瓷玻璃电光系数和压电系数的新方法。透明陶瓷玻璃(PMN-PT)已经被广泛应用于光开关、光衰减器,电光调制器等光电子器件的制备材料。但其电光系数和压电系数的关系并不被完全清楚,目前人们常常依赖一些模拟分析软件来加以研究。当然,如果仅仅研究其电光系数,则方法很多,如用一个光束椭偏技术测量两个正交平面偏振光和双光束干涉的相位延迟,如Mach-Zehnder型和迈克尔逊干涉引起的相位延迟测量两平行平面偏振光的干涉。另一方面,压电系数(CPE)系数的测量常常由IEEE标准技术提供的共振频率确定。然而这些不同的测量技术,要么只能单独研究其两个效应的一个,要么忽略其中一种来作近似测量,基本没有能同时分析电光效应和压电效关系有效方法。事实上在PMN-PT透明陶瓷上施加一定电压时,测量出的参量应该是两种效应的综合结果。为了更详细准确研究该类材料的压电效应和电光效应,迫切需要一种能够同时测量这类材料压电系数和电光系数的简单方法,这就成为了本文第四章主要的研究内容。
Based on basic optical waveguide theory, this thesis dealt with the ordinary dielectricplanar waveguide and mainly focused on the characteristic of the novel symmetric metalcladding waveguide (SMCW) structure. The SMCW structure is composed of three layers,where a guiding layer is sandwiched between two metal films, which are usually made ofprecious metals, such as gold or silver. Compared with the imaginary part of the complexpermittivity of the precious metals, the real part is usually a large negative quantity in thevisible and near infrared region. As a result, the effective index of the SMCW can exist in theregion of0     One application of the SMCW structure is designing a high sensitivity hollow-coremetal-cladding waveguide sensor. Since the effective index of the ultrahigh order modes canapproach zero, which is no longer limited by the conventional limitation that the effectiveindex of the guiding layer must exceed that of the cladding layer. This advantage is extremelyuseful when we research the sample under aqueous environment and natural bio samples. It isneed to mention here the detected samples are placed in the guiding layer where oscillatingelectromagnetic field propagates, so the proposed sensor is also known as the oscillating wavesensor. In the third paragraph, the sensitivity of the hollow-core metal-cladding waveguidesensor and the traditional SPR sensor, long range SPR sensor, leak waveguide sensors andanti-symmetric waveguide are deduced and analyzed theoretically, and we obtained ananalytical expression for the sensitivity with clear physical insight. Numerical comparison with those evanescent field sensors, the sensitivity of the new biosensor is increased by atleast two orders of magnitude. Meanwhile, we presents the detailed production process of thehollow-core metal-cladding waveguide sensor, and analysis the impact of the structureparameter on the ATR spectrum via self made software. Furthermore, the growth of E. ColiO157:H7under different temperature and concentration of diluted glucose solution are alsodetected to demonstrate the sensitivity and response time of the sensor experimentally.Experimental results show that new biosensor is capable of directly detecting concentration ofglucose as low as1ppm, and real-time monition of growth of E. Coli O157:H7under thelaboratory conditions. The new biosensor has a good application potential owing to itsadvantages such as good stability, high reliability and low cost.
     The other application of the SMCW structure in this thesis is a new scheme to measurethe electro-optical (EO) and converse-piezoelectric (CPE) coefficients of the PMN-PTceramics simultaneously. Despite its extensive application in optical switch, opticalattenuation, electro-optic modulators and other optoelectronic devices, the values of EO andCPE coefficients of PMN-PT have not been completely known and usually depend on anumber of simulation software. If only consider the EO coefficients, they can be determinedby one-beam-ellipsometric technique for measuring the induced phase retardation betweentwo orthogonal plane-polarized lights and by two-beam-interferometric arrangements, such asMach-Zehnder and Michelson interferometers, for measuring the interference between twoparallel plane-polarized lights. On the other hand, the CPE coefficients are always determinedfrom the resonance frequencies by the IEEE standard technique. Diverse as measurementtechniques are, they can be characterized by one common shortage, namely involving onlyone effect. There is no effective way to analyze the EO and CPE coefficients simultaneously,while the variation of the detected quantity should be the results of both the variation inrefractive index due to EO effect and the change in sample thickness resulting from the CPEeffect, when an electric field is applied to PMN-PT ceramics. Therefore, it is highly expectedthat a simple and effective method to measure the EO and CPE coefficients of PMN-PTceramics simultaneously. This is what we studied in the fourth paragraph of the thesis.
引文
[1]G. L.Yurista, A. A. Friesem,“Very narrow spectral filters with multilayer grating-waveguidestructures,” Appl. Phys. Lett.,77,1596.(2000)
    [2]M. Blomqvist, S. Khartsev, and A. Grishin,“Optical waveguiding in magnetron-sputteredNa0.5K0.5NbO3thin films on sapphire substrates,” Appl. Phys. Lett.,82,439.(2003)
    [3]H. G. Li, Z. Q. Cao, H. F. Lu, Q. S. Shen,“Free-space coupling of light beam into a symmetricalmetal-cladding optical waveguide,” Appl. Phys. Lett.,83,2757~2759,(2003)
    [4]H. F. Lu, Z. Q. Cao, H. G. Li, Q. S. Shen, X.X. Deng,“Polarization-independent and tunable comb filterbased on a free-space coupling technique,” Opt. Lett.,31,386-388,(2006).
    [5]Y. F.Yang, Z. Q. Cao, Q. S. Shen, W. Yuan, P. P. Xiao,“Multi-channel light modulation based on theattenuation total re&ection,” Optics&Laser Technology,37,225-228,(2005)
    [6]Y. F. Yang, Q. S. Shen, S. Y. Zhang, Z.Q. Cao, X. H. Li, W. Yuan,“Wavelength Dependence ofElectro-Optic Coefficients in Chromophore-Incorporated Polymers,” Chin.Phys.Lett.,20,1165,(2003)
    [7]F. Chen, Z. Q. Cao, Q. S. Shen, X. X. Deng, B. M. Duan, W. Yuan, M. H. Sang, S. Q. Wang,“Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale opticalwaveguide,” Optics Express,13,10061-10065,(2005)
    [8]G. Chen, Z. Q. Cao, J. H. Gu, Q. H. Shen,“Oscillating wave sensors based on ultrahigh-order modes insymmetric metal-clad optical waveguides,” Appl.Phys.Lett.,89,081120,(2006)
    [9]顾江华,金属薄膜厚度和光学常数测量及对称金属包覆波导振荡场传感器的研究,上海交通大学博士毕业论文,2009年
    [10]张先恩,《生物传感器》,化学工业出版社,2006
    [11]靳伟等,《导波光学传感器:原理与技术》,科学出版社,1998
    [12]B. Liedberg, C. Nylander, I. Lundstrom,“Biosensing with surface plasmon resonance how it allstarted,” Biosensors and Bioelectron,10, i–ix.(1995)
    [13]B. Liedberg, C. Nylander and I. Lundstr m,“Surface plasmon resonance for gas detection andbiosensing,” Sensors and Actuators,4,299–304,(1983),
    [14]W. A. Challener, J. D. Edwards, R. W. McGowan, J. Skorjanec,Z. Yang,“A multilayer grating basedevanescent wave sensing technique,” Sensors and Actuators B,71,42-46.(2000)
    [15]K. Tiefenthaler, W. Lukosz,“Integrated optical switches and gas sensors,” Optics Letters,10:,137-139,(1984)
    [16]K. Tiefenthaler, W. Lukosz,“Sensitivity of grating couplers as integrated-optical chemical sensors,”J. Opt. Soc. Am. B,6,209-220,(1989)
    [17]Z. Qi, K. Itoh, M. Murabayashi, H.Yanagi,“A composite optical waveguide-based polarimetricinterferometer for chemical and biological sensing applications,” Journal of LightwaveTechnology,18,1106-1110,(2000)
    [18]C. R. Lavers, K. Itoh, S. C Wu, M Murabayashi,“Planar optical waveguides for sensing applications,”Sensors and Actuators B: Chemical,69,85-95,(2000)
    [19]J. I. Peterson, S. R. Goldstein, R. V. Fitzgerald, D. K. Buckhold,“Fiber optic pH probe,”Anal. Chem.,52,864-869,(1980)
    [20]H. J. Watts, C. R. Lowe, V. P. Denise,“Optical Biosensor for Monitoring Microbial Cells,” Anal.Chem.,66,2465-2470,(1994)
    [21]J. Homola,“plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.,108,462-493,(2008)
    [22]C. J. Huang, J. Dostalek, A. Sessitsch, W. Knoll,“Long-Range Surface Plasmon-EnhancedFluorescence Spectroscopy Biosensor for Ultrasensitive Detection of E. coli O157:H7,” Anal. Chem.,83,674-677,(2011)
    [23]M. Zourob, S. Mohr, T. Brown, B. J. Fielden, P. R. Mcnel,“An integrated optical leaky waveguidesensor with electrically induced concentration system for the detection of bacteria,” Lab on a Chip,12,1360-1365,(2005)
    [24]J. Homola, S.Yee, G. Gauglitz,“Surface Plasmon Resonance Sensors: Review,” Sensors andActuators B,54,3-15,(1999)
    [25] S. K. Srivastava, B. D. Gupta,“Influence of ions on the surface plasmon resonance spectrum of a fiberoptic refractive index sensor,” Sensors and Actuators B: Chemical,156,559–562,(2011)
    [26]J. Villatoro, A. G. Valenzuela,“Sensitivity of optical sensors based on laser-excited surface-plasmonwaves,” Applied Optics,38,4837–4844,(1999)
    [27]J. Homola, I. Koudela, S. S. Yee,“Surface plasmon resonance sensors based on diffraction gratingsand prism couplers: sensitivity comparison,” Sensors and Actuators B,54,16–24,(1999),
    [28] F. C. Chien, S. J. Chen,“A sensitivity comparison of optical biosensors based on four different surfaceplasmon resonance modes,” Sensors and Actuators,20,633–642,(2004),
    [29]W. C. Law, K. T. Yong, A. Baev, P. N. Prasad,“Sensitivity improved surface plasmon resonancebiosensor for cancer biomarker detection based on plasmonic enhancement,” Anal. Chem.,5,4858-4864,(2011)
    [30]E. Danelian, A Karlen, R. Karlsson, et al.,“SPR biosensor studies of the direct interaction between27drugs and a liposome surface: correlation with fraction absorbed in humans,” J. Med. Chem.,43,2083-2086,(2001)
    [31]A. Brecht, G. Gauglitz,“Label free optical immunoprobes for pesticide detection,” Analytica ChimicaActa,347,219-233,(1997)
    [32]C. Maims, J. Hulme, R. Fielden, et al.,“Grating coupled leaky waveguide micro channel sensor chipsfor optical analysis,” Sensors and Actuators B: Chemical,77,671–678,(2001)
    [33]R. Horvath, H. C. Pedersen,“Demonstration of reverse symmetry waveguide sensing in aqueoussolutions,” Appl. Phys. Lett.,8,2166-2168,(2002)
    [34]M. Zourob, S. Mohr, B. J. Brown, P. R. Fielden, N. J. Goddard,“An integrated optical leakywaveguide sensor with electrically induced concentration system for the detection of bacteria,” Labon Chip,5,1360-1365,(2005)
    [35]K. A. Donaldson, M. F. Kramer, D. V. Lim,“A rapid detection method for Vaccinia virus, thesurrogate for smallpox virus,” Biosens. Bioelectron.,20,322-327,(2004)
    [36]P. P. Xiao, X. P. Wang, J. J. Sun, H. G. Li, M. Z. Huang, X. F. Chen, Z. Q. Cao,“Biosensor based onhollow-core metal-cladding waveguide,” Sensors&Actuators: A. Physical.183(08):22~27,(2012)
    [37]肖学峰,杜愈陆,人工晶体材料的研究进展,科技创新导导,,8,6-7,(2009)
    [38]张克从,近代物理学基础,科学出版社,1987
    [39]谭浩然,无机功能晶体材料研究进展,中国科学院院刊,3,208-211,(l991)
    [40]T. H. Maiman,“Stimulated Optical Radiation in Ruby,” Nature,187,493-494,(1960)
    [41]C. Chen, Y Wu, A. Jiang, B Wu, G You,“New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc.Am.B,6,616-621,(1989)
    [42]T. Zhang, M. Yonemura,“Properties of CsLiB6O10and KBe2BO3F2Crystals for Second-HarmonicGeneration with Ultrashort Laser Pulses,” J.Appl. Phys,36,6353-6359,(1997)
    [43]C. Chen, Z. Xu, D. G. Deng, J. Zhang, G. K. L. Wong, B.H. Wu, N. Ye, D. Y. Tang,“The vacuumultraviolet phase‐m atching characteristics of nonlinear optical KBe2BO3F2crystal,” Appl. Phys.Lett.,68,2930-2932,(1996)
    [44]W. L. Smith,“KDP and ADP transmission in the vacuum ultraviolet,” Appl. Opt.,16,1798-1798,(1977)
    [45]R. C. Alfeness,“Efficient waveguide electro‐optic TE TM mode converter/wavelength filter,” Appl.Phys.Lett.,36,513-515,(1980)
    [46]P. Kaminov, E. H. Tumer,“Electrooptic light modulators,” Proc.IEEE,54,1374-1390,(1966)
    [47]A. Garzarella, R. J. Hinton et al., Appl. Phys.Lett.,92:22111,(2008)
    [48]X.Yan, A. M. MaeLeod, W. A. Gillespie,“Subpicosecond Electro-optic Measurement of RelativisticElectron Pulses,” Phys. Rev. Lett.,85,3404-3407,(2000)
    [49]T. Volk,D. Isakov, M. Wohlecke,“Ferroelectric switching of strontium–barium–niobate crystals inpulsed fields,” Appl. Phys.Lett.,,83,2220-2222,(2003)
    [40]W. P. Mason,“Piezoelectric crystals and their application to ultrasonics,” Van Nostrand Reinhold.NewYork,(1950)
    [51]张福学,压电与热释电材料,电子软科学,1,52-58,(1990)
    [52]张福学,王丽坤,现代压电学,北京:科学出版社,2001
    [53]R. W. Wllatmore, P.C.Osbond et al., Ferroelectrics,763:51-67,(1987)
    [54]A. A. Sosnin, Quant. Electron. Optoelectro.,3:489-95,(2000)
    [55]W. Ren, H. J. Zhou, X. Yao,“Measurement of piezoelectric coefficients of lead zirconate titanate thinfilms by the normal load method using a composite tip,” Mater. Lett.,31,185,(1997)
    [56]P. Verardi, F. Cracium, et al., M. Dinescu,“Characterization of PZT thin film transducers obtained bypulsed laser deposition,” IEEE, New Jersey,1,569,(1997)
    [57]M. Dubois, P. Muralt,“Measurement of the effective transverse piezoelectric coefficient e31,f of AlNand Pb(Zrx,Ti1x)O3thin films,” Sens. Actuat. A,77,106,(1999)
    [58]B. Jaber, D. Remiens, E. Cattan, et al.,“Characterization of ferroelectric and piezoelectric properties oflead titanate thin films deposited on Si by sputtering,” Sens. Actuat. A,63,91,(1997)
    [59]J. J. Bernstein, S. L. Finberg, K. Houston, L.C. Niles, et al.,“Micromachined high frequencyferroelectric sonar transducers,” IEEE Trans.,44,960,(1997)
    [60]F. Xu, F. Chu, S. T. McKinstry,“Longitudinal piezoelectric coefficient measurement for bulk ceramicsand thin films using pneumatic pressure rig,” J. Appl. Phys.,86,588,(1999)
    [61]S. Muensit, D. Wilson, et al.,“Study of piezoelectric effect in GaN thin films using a modifiedMichelson interferometer,” IEEE, New Jersey,3,329,(1997)
    [62]C. M. Lueng, H. L. Chan, C. Surya, C. L. Choy, M. Rosamond,“Piezoelectric coefficient of GaNmeasured by laser interferometry,” J. Non-Cryst. Solids,254,123,(1999)
    [63]C.A. Eldering, A. Knoesen, S.T. Kowel,“Use of Fabry--Perot devices for the characterization ofpolymeric electro-optic films,” Journal of Applied Physics,69,3676-3686,(1991)
    [64]L.M. Hayden, G.F. Sauter, F.R. Ore, et al.,“Second-order nonlinear optical measurements inguest-host and side-chain polymers,” Journal of Applied Physics,68,456-465,(1990)
    [65]S. H. Han, J. W. Wu,“Single-beam polarization interferometry measurement of the linear electro-opticeffect in poled polymer films with a reflection configuration,” J.Opt. Soc.Am.B,14,1131-1137,(1997)
    [66]P. M. Lundquist, M. Jurich, J. F. Wang, et al.,“Electro-optical characterization of poled-polymer filmsin transmission,” Appl. Phys. Lett.,69,901-903,(1996)
    [67]R. A.Norwood, M. G. Kuzyk, R. A. Keosian,“Electro-optic tensor ratio determination of side-chaincopolymers with electro-optic interferometry,” Journal of Applied Physics,75,1869-1874,(1994)
    [68]K. D. Singer, M. G. Kuzyk, W. R. Holland, etal.,“Electro-optic phase modulation and opticalsecond-harmonic generation in corona-poled polymer films,” Appl. Phys.Lett.,53,1800-1802,(1988)
    [69]P. P. Xiao, X. P. Wang, J. J Sun, M. Z. Huang, X. F. Chen, Z. Q. Cao,“Simultaneous measurementof electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics,” Optics Letters,20,13833-13840,(2012)
    [1]T. TAMIR,“Integrated Optics,” Berlin, Springer-Verlag,1975.
    [2]B. H. Ma, A. K. Y. Jen, L. R. Dalton,“Polymer-based optical waveguides:materials, processing, anddevices,” Adv. Mat.,14,1339-1365,(2002)
    [3]E. V. Tomme, P. P. V. Daele, R. G. Baets, etc.,“Integrated optic devices based on nonlinear opticalpolymers,” IEEE J. Quant. Electr.,778-787,27,(1991)
    [4]W. H. Steier, A. Chen, S. Lee, S. Garner, etc.“Polymer electro-optic devices for integratedoptics,”Chemical Physics,245,487-506,(1999)
    [5]L.Dalton,“Nonlinear optical polymeric materials: From chromophore design to commercialapplications,” Polymers for Photonics Applications,158,1-86,(2002)
    [6]曹庄琪,《导波光学中的转移矩阵方法》,上海交通大学出版社,2000
    [7]D. Marcuse,“Theory of dielectric optical waveguides,” New York, Academic Press,1974.
    [8]F. Z. Yang, and J. R. Sambles,“Optical characterization of liquid-crystals by means of half-leaky guidedmodes,” J Opt. Soc. Am. B,10,858,(1993)
    [9]玻恩M.沃耳夫E.著,光学原理[M],北京,科学出版社,1978.
    [10]W. P. Chen, G. Ritchie, E. Burstein,“Excitation of surface electromagnetic-waves in attenuated totalreflection prism configuration,” Phys. Rev. Lett.,37,993,(1976)
    [11]D. Sarid,“Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett.,47,1927,(1981)
    [12]A.Otto,“Excitation of nonradiative surface plasmon waves in silver by the method of frustrated totalreflection,” Z.Physik,216,398,(1968)
    [13]E. Kretschmann,“Die bestimmung optischer konstanten von metallen durch anregung vonoberflachenplasmaschwinggungen,” Z. Physik,248,313,(1971)
    [14]S. R. J. Brueck, V. Diadiuk, T. Jones, et al.“Enhanced quantum efficiency internal photo-emissiondetectors by grating coupling to surface plasma-waves,” Appl. Phys. Lett,46,915,(1985)
    [15]Y.Suematsu,“Measurements of refractive index and film thickness of glass films by use of propagationconstants,” Trans.Int.Electron.Commun.Eng.Japan,55,98,(1972)
    [16]H. G. Li, Z. Q. Cao H. F. Lu, Q. S. Shen,“Free-space coupling of light beam into a symmetricalmetal-cladding optical waveguide,” Appl. Phys. Lett.,83,2757-2759,(2003)
    [17]H. F. Lu, Z.Q. Cao, H. G. Li, Q. S.Shen,“Study of ultrahigh-order modes in a symmetricalmetal-cladding optical waveguide,” Appl. Phys. Lett.,85,1-3,(2004)
    [18]曹庄琪,《导波光学》,科学出版社,2007
    [19]陈凡,超高阶导模生化传感器,上海交通大学博士毕业论文,2006年
    [20]周见红,有机聚合物电光特性及器件研究,上海交通大学博士毕业论文,2006年
    [21]杨艳芳,衰减全反射有机聚合物的电光调制器,上海交通大学博士毕业论文,2004年
    [22]朱琨,双面金属包覆聚合物波导电光调制的研究,上海交通大学硕士毕业论文,2007年
    [23]陈麟,光波导波长传感器和古斯-汉欣效应的研究,上海交通大学博士毕业论文,2008年
    [24]王毅,偏振光束分离和古斯-汉欣效应应用的研究,上海交通大学博士毕业论文,2010年
    [1]H. Li, Z. Cao, H. Lu, and Q. Shen,“Free-space coupling of a light beam into a symmetricalmetal-cladding optical waveguide,” Appl. Phys. Lett.,(2003),83,2757-2759.
    [2]H. Lu, Cao, H. Li, et al.,“Study of ultrahigh-order modes in a symmetrical metal-cladding opticalwaveguide,” Appl. Phys. Lett.,(2004),85,4579-4581.
    [3]F. Chen, Z. Cao, Q. Shen, et al.,“Picometer displacement sensing using the ultrahigh-order modes in asubmillimeter scale optical waveguide,” Opt. Express,(2005)13,10061-10065.
    [4]H. Lu, Cao Z., Li H., and Shen Q.,“Study of ultrahigh-order modes in a symmetrical metal-claddingoptical waveguide,” Appl. Phys. Lett.,2004,85(21):1~3
    [5]Pingping Xiao,“Beam reshaping in the occurrence of the Goos–H nchen shift,” Journal of the opticalsociety of America B,28,1895-1898,(2011)
    [6]P. P. Xiao,“Theoretical and Experimental Study on High Sensitivity Oscillating Field Biosensor,”Chinese journal of quantum electronics,28,197-201,(2011)
    [7]P. P. Xiao, M. Deng,“Study on electro-optic variable optical attenuator based on two attenuated totalreflections configurations,” Optical communication technology,2011,35(3):49-51
    [8]Y. Jiang, Z. Cao, and Q. S. Shen, et al,“Improved attenuated-total-reflection technique for measuringthe electro-optic coefficients of nonlinear optical polymers,” J. Opt. Soc. Am. B,2000,17(5)805-808
    [9]I. P. Kaminow, W. L. Mamel, and H. P. Weber,“Metal-clad optical waveguides: analytical andexperimental study,” Appl. Opt.,197413(2):396-405
    [10]B. Liedberg, C.Nylander, I. Lundstrom,“Biosensing with surface plasmon resonance how it all tarted,”Biosensors and Bioelectron,10, i–ix.(1995)
    [11]C. J. Huang, J. Dostalek, A. Sessitsch, W. Knoll,“Long-Range Surface Plasmon-EnhancedFluorescence Spectroscopy Biosensor for Ultrasensitive Detection of E. coli O157:H7,” Anal. Chem.,83,674-677,(2011)
    [12]N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, H. C. Pedersen “Deep-probe metal-cladwaveguide biosensors,” Biosens and Bioelectron.,22,1282,(2007)
    [13]R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, N. B. Larsen,“Fabrication of reversesymmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” Micromech.Microeng.,15,1260-1264,(2005)
    [14]R. L. Rich, D. G. Myszka,“Survey of the2009commercial optical biosensor literature,” Mol.Recognit.,24,892-914,(2011)
    [15]K. Tiefenthaler, W. Lukosz,“Sensitivity of grating couplers as integrated-optical chemical sensors,” J.Opt. Soc. Am. B,6,209-220,(1989)
    [16]G. G. Nenninger, P. Tobiska, J. Homola, S. S. Yee,“Long-range surface plasmons for high-resolutionsurface plasmon resonance sensors,” Sensors and Actuators B,74,145-151,(2001)
    [17]F. C. Chien, S, J, Chenb,“A sensitivity comparison of optical biosensors based on four different surfaceplasmon resonance modes,” Biosens and Bioelectron.,20,633-642,(2004)
    [18]R. Horvath, H. C. Pedersen, N. B. Larsen,“Demonstration of reverse symmetry waveguide sensing inaqueous solutions,” Appl. Phys. Lett.,81,2166-2168,(2002)
    [19]P. Hao, Y. H. Wu, P. Zhang,“Study of interaction of surface plasmon resonance sensor withnano-gold,” Acta Phy. Sin.,59,6532-06,(2010)(in chinese)
    [20]A. Hanninga, J. Roeraadea, J.J. Delrowb, R.C. Jorgenson,“Enhanced sensitivity of wavelengthmodulated surface plasmon resonance devices using dispersion from a dye solution,” Sensors andActuators B,54,25-36,(1999)
    [21]R.P.H. Kooyman, H. Kolkman, J. Van Gent, J. Greve “Surface plasmon resonance immunosensors:sensitivity considerations,” Analytica Chimica Acta,213,35-45,(1988)
    [22]Homola J “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,”Sensors and Actuators B,41,207-211,(1997)
    [23]G. Chen, J. Hao, H. G. Li,Z. Q. Cao,“Double-channel narrowband filter based on Goos-H nchenshift,” Acta Phy. Sin.,60,074223-4,(2011)(in chinese)
    [24]G. Chen, Z. Q. Cao, J. H. Gu, Q. S. Shen,“Oscillating wave sensors based on ultrahigh-order modes insymmetric metal-clad optical waveguides,” Appl. Phys. Lett.,89,081120-03,(2006)
    [25]F. Chen, Z. Q. Cao, QS..Shen, X.X. Deng, B.M. Duan, W. Yuan, M.H. Sang, S.Q. Wang,“Picometerdisplacement sensing using the ultrahigh-order modes in a submillimeter scale optical waveguide,”Opt.Exp.,13,10061-10065,(2005)
    [26]Y. Wang, H.G. Li, Z. Q. Cao, J. Hao, T.Y. Yu, Q.S. Shen,“Electric control of spatial beam positionbased on the Good–H nchen effect,” Appl. Phys. Lett.,92,061117,(2008)
    [27]W. Yuan, C. Yin, P.P. Xiao, X.P. Wang, J.J. Sun, M.H.Sang, X.F. Chen, Z.Q. Cao,“Microsecond-scaleswitching time of magnetic fluids due to the optical trapping effect in waveguide structure,”Microfluidics and Nanofluidics,11,781-785,(2011)
    [28]W. P. CHEN, J.M. CHEN,“Use of Surface Plasma Waves for Determination of the Thickness andOptical Constants of Thin Metallic Films,” Journal of the Optical Society of America,71,189-191,1981,
    [29]杨艳芳,衰减全反射有机聚合物的电光调制器,上海交通大学博士毕业论文,2004年
    [30]朱琨,双面金属包覆聚合物波导电光调制的研究,上海交通大学硕士毕业论文,2007年
    [31]陈麟,光波导波长传感器和古斯-汉欣效应的研究,上海交通大学博士毕业论文,2008年
    [32]王毅,偏振光束分离和古斯-汉欣效应应用的研究,上海交通大学博士毕业论文,2010年
    [33]J.Villatoro, A.G. Valenzuela,“Sensitivity of optical sensors based on laser‐excited surface‐plasmonwaves,” Applied optics,1999,38(22):4837‐4844.
    [34]余天一,基于双面金属包覆波导中古斯汉欣效应的位移传感器的研究,上海交通大学硕士毕业论文,2009年
    [35]邵加峰,沈启舜,曹庄琪,李红根,邓晓旭,实现倍角转动的转台,发明专利,CN200410067137.5
    [36]P. Xiao,“Theoretical and Experimental Study on High Sensitivity Oscillating Field Biosensor,”Chinese journal of quantum electronics,2011,28(2):197-201
    [37]P. Xiao, X. P. wang, J. J. Sun, Z. Q. Cao,“Biosensor based on hollow-core metal-claddingwaveguide,” Sensors and Actuators A,(Accepted)
    [38]M. M. Han, G. J. Dong, Z. Sun,“Application of biosensors in environmental monitoring,” Chinesejournal of environmental engineering,2004,(08)83-87
    [39]W. Tong, J. M. Zhang, C. Q. Tong,“Application of biosensors in medicine,” Journal of clinicalrehabilitative tissue engineering research,2006,(05)125-127
    [40]A. M. Armani, R. P. Kulkarni, S. E. Fraser,“Label-Free, Single-Molecule Detection with OpticalMicrocavities,” Science,2007,317(8)783-787
    [1]P. Kuitiar, C. Prakashb,“Dielectric, ferroelectric and pyroelectric properties of PMNT ceramics,”Physica B,371,313-316,(2006)
    [2]P. Kuitiar, C. Prakashb,“Characterization of optical properties of nanocrystalline doped PZT thin films,”Journal of the European Ceramic Society,25,2273–2276,(2005)
    [3]H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang,“Transparent electro-optic ceramics anddevices,” Proc. SPIE,5644,380-394,(2005)
    [4]G. H. Haertling,“PLZT electro-optic materials and applications–a review,” Ferroelectrics,75,25-55,(1987)
    [5]T. Tamura, K. Matsuura, H. Ashida, K. Kondo, and S. Otani,“Hysteresis variations of (Pb, La)(Zr,Ti)O3capacitors baked in a hydrogen atmosphere,” Appl. Phys. Lett.,74,3395-3397,(1999)
    [6]S. W. Choi, T. R. Shrout, S. J. Jang, and A. S. Bhalla,“Morphotropic phase boundary inPb(Mg1/3Nb2/3)O3-PbTiO3system,” Materials letters,8,253-255,(1989)
    [7]R. Zhang, B. Jiang, and W. Cao,“Elastic, piezoelectric, and dielectric properties of multidomain0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3single crystals,” J. Appl. Phys.,90,3471-3475,(2001)
    [8]B. Noheda, D. E. Cox, G. Shirane, J. Gao, and Z. G. Ye,“Phase diagram of the ferroelectric(1-x)PbMg1/3Nb2/3O3-xPbTiO3,” Phys. Rev. B,66,054104,(2002)
    [9]O. Noblanc, P. Gaucher, and G. Calvarin,“Structural and dielectric studies ofPb(Mg1/3Nb2/3)O3-PbTiO3ferroelectric solid solutions around the morphotropic boundary,” J. Appl.Phys.,79,4291-429,(1996)
    [10]Y. L. Lu, B. Gaynor, C. Hsu, G. H. Jin, M. C. Golomb, F. L. Wang, J. Zhao, S.–Q. Wang, P. Yip, and A.J. Drehmap,“Structural and electro-optic properties in lead magnesium niobate titanate thin films,”Appl. Phys. Lett.,74,3038-3040,(1999)
    [11]Y. L. Lu, and C. Gao,“Optical limiting in lead magnesium niobate-lead titanate multilayers,” Appl.Phys. Lett.,92,121109,(2008).
    [12]B. C. Lim, P. B. Phua, W. J. Lai, and M. H. Hong,“Fast switchable electro-optic radial polarizationretarder,” Opt. Lett.,33,950-952,(2008).
    [13]Y. K. Zou, Q. S. Chen, R. Zhang, K. K. Li, and H. Jiang,“Low voltage, high repetition rateelectro-optic Q-switch,” Conference on Laser and Electro-Optics (CLEO), Baltimore, Maryland,2,1094-1096,(2005).
    [14]L. Qiao, Q. Ye, J. L. Gan, H. W. Cai, and R. H. Qu,“Optical characteristics of transparent PMNTceramic and its application at high speed electro-optic switch,” Opt. Comm.,284,3886-3890(2011).
    [15]M.W Ran, X. F. Chen, Z.Q. Cao,“Measurement of Quadratic Electro-Optic Coefficient ofPMN-PT Transparent Ceramics Based on Ultrahigh-Order Guide Modes,” Acta optica sinica,31,1012002–4(2011),(in Chinese)
    [16]Y. T. Lin, B. Ren, X. Y. Zhao, D. Zhou, J. Chen, X. B. Li, H. Q. Xu, D. Lin, and H. S. Luo,“Largequadratic electro-optic properties of ferroelectric base0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3singlecrystal,” Journal of Alloys and Compounds,507,425-428,(2010)
    [17]C. J. He, W. W. Ge, X. Y. Zhao, H. Q. Xu, H. S. Luo, and Z. X. Zhou,“Wavelength dependence ofelectro-optic effect in tetragonal lead magnesium niobate lead titanate single crystals,” J. Appl. Phys.,100,113119,(2006)
    [18]C. J. He, Z. X. Zhou, D. J. Liu, X. Y. Zhao, and H. S. Luo,“Photorefractive effect in relaxorferroelectric0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3single crystal,” Appl. Phys. Lett.,89,261111,(2006)
    [19]S. E. Park, and T. R. Shrout,“Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectricsingle crystals,” J. Appl. Phys.,84,1804-1811,(1997)
    [20]P. P. Xiao, X. P. Wang, J. J Sun, M. Z. Huang, X. F. Chen, and Z. Q. Cao,“Simultaneous measurementof electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics,” Opt. Express,20,13833-13840,(2012)
    [21]P. P. Xiao,“Beam reshaping in the occurrence of the Goos–H nchen shift,” J. Opt. Soc. Am.B,28,1895-1898,(2011)
    [22]H. G. Li, Z. Q. Cao, H. F. Lu, and Q. S. Shen,“Free-space coupling of a light beam into a symmetricalmetal-cladding optical waveguide,” Appl. Phys. Lett.,83,2757-2759,(2003)
    [23]H. F. Lu, Z. Q. Cao, H. G. Li, and Q. S. Shen,“Study of ultrahigh-order modes in a symmetricalmetal-cladding optical waveguide,” Appl. Phys. Lett.,85,4579-4581,(2004)
    [24]J. H. Gu, G. Chen, Z. Q. Cao, and Q. S. Shen,“An intensity measurement refractometer based on asymmetric metal-clad waveguide structure,” J. Phys. D: Appl. Phys.,41,185105,(2008).
    [25]F. Chen, Z. Q. Cao, Q. S. Shen, X. X. Deng, B. M. Duan, W. Yuan, M. H. Sang, and S. Q. Wang,“Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale opticalwaveguide,” Opt. Express,13,10061-10065,(2005)
    [26]W. P. Chen and J. M. Chen,“Use of surface plasma waves for determination of the thickness andoptical constants of thin metallic films,” J. Opt. Soc. Am.,71,189-191,(1981)
    [27]K.K. Li, Y. Lu, and Q. Wang,“Electro-optic ceramic material and device,” U.S. patent,6,890,874B1,(2005)
    [28]M. C. Ponsard, J. M. Desvignes, A. Bellemain, and F. Bridou,“Simulatneous characterization of theelectro-optic, converse-piezoelectirc, and electroabsorptive effects in epitaxial (Sr, Ba)Nb2O6thinfilms,” J. Appl. Phys.,109,014107,(2011)
    [29]K. Kurihara, and K. Suzuki,“Theoretical understanding of an absorption-based surface plasmonresonance sensor based on kretchmann’s theory,” Anal. Chem.,74,696-701,(2002)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700