用户名: 密码: 验证码:
双相对置GMM自传感驱动器及其在水压伺服控制阀中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统电液伺服阀以电磁力矩马达作为驱动方式,结构复杂、体积重量大、工作频宽窄、能量密度小、分辩率低、抗干扰能力差,难以满足现代工业对流体控制系统的要求。超磁致伸缩材料(GMM)是近年来出现的一种新型智能材料,具有应变大、响应速度快、能量传输密度高、输出力大等优异性能。利用GMM的优良性能,特别是自传感特性,提出了一种双相对置超磁致伸缩自传感驱动器新概念,以达到无传感闭环控制和同位控制、提高系统响应速度和控制精度、增强系统可靠性、简化系统和降低成本等目的。论文以GMM为基础,以双相对置GMM自传感驱动器及其在水压伺服控制阀中的应用为研究对象,采用理论分析、计算机仿真和实验相结合的方法,对其进行了系统、深入的分析和研究。
     利用解析法和ANSYS有限元法对柔性铰链微位移放大机构进行了静力学与动力学分析,计算出了放大机构的放大倍数、共振频率以及振型,建立了位移损失和负载力的线性关系,验证了有限元分析方法的准确性。此外,通过建立双相对置GMM自传感驱动器测试系统,分析了测试系统的误差来源及其主要影响因素,并对双相对置GMM自传感驱动器的静态特性及滞回特性进行了实验研究。
     提出了双相对置GMM自传感驱动器的等效动力学模型,基于Jiles-Atherton物理模型、二次畴转模型和伺服阀结构动力学原理,建立了力反馈二级双喷嘴挡板水压伺服控制阀的磁滞非线性动态模型,即驱动线圈电流→磁场强度→磁畴运动→磁致伸缩→输出应变及位移→阀芯位移之间的动态耦合数学模型,并利用Matlab/Simulink对其静动态特性进行了仿真分析。针对磁滞非线性问题,在基于建立的逆磁滞模型基础上,设计了前馈补偿器,并提出了基于磁滞逆模型与PID反馈控制的理论和方法,从而实现了对伺服阀磁滞非线性特性的有效补偿。
     通过对双相对置GMM自传感驱动器的机电耦合机理和自传感机理研究,建立了基于自适应噪声抵消原理的机电耦合模型和实时解耦模型。分析了传统的电桥平衡法在实现自传感信号的辨识和提取时存在的问题,建立了一种基于可变电感△L的桥路分析模型,并通过最小二乘均方(Least Means Squares,简称LMS)自适应算法实现了GMM自传感驱动器自传感信号的动态平衡分离技术,建立了基于DSP高速单片机控制器的实时动态平衡信号分离电路。仿真分析表明采用基于LMS的自适应算法能够实现自传感驱动器传感信号有效提取和非失真分离。
Traditional electro-hydraulic servo valve driven by electromagnetism moment motor, with complex structure, large volume and narrow frequency width, small energy density, low resolution, poor anti-interference ability, is still unable to meet the needs of fluid control system in modern industry, so its application is limited greatly. GMM (Giant Magnetostrictive Material) is a new type of function martial appearing in recent years with giant strain, fast response speed, high energy density and large output force and so on. Based on the excellent performance of GMM, especially self-sensing characteristic, a new kind of diphase oppositing giant magnetostrictive self-sensing actuator is put forward, replacing traditional actuator, will realize closed-loop control and collated control, which can be able to improve response speed, control precision, reliability and to decrease cost of servo valve. In the thesis, the diphase oppositing giant magnetostrictive self-sensing actuator and application in water hydraulic servo control valve is systematically, deep analyzed and researched by combining theory analysis, computer simulation and experimental study together.
     The statics and dynamics analysis of the displacements amplifier, based on flexure hinges, was carried on by analytic method and ANSYS FE method, the enlargement factor, rigidity, resonance frequency and vibration model are calculated, the linear relationship between displacement loss and load force is established, and the veracity of FE method is verified. In addition, test system of diphase oppositing giant magnetostrictive self-sensing actuator is established, which error source and main influence factors are analyzed, statics characteristics and hysteretic characteristics of diphase oppositing giant magnetostrictive self-sensing actuator have been studied experimentally.
     The equivalent dynamic model of diphase oppositing giant magnetostrictive self-sensing actuator is put forward, based on the Jiles-Atherton physics model, quadratic moment domain rotation model and structural dynamics principle, the dynamic model with hysteresis nonlinearity for servo valve is founded, namely dynamic coupling mathematical model of driving coil current→magnetic field intensity→magnetic domain motion→magnetostriction→output strain and displacement→spool displacement, and its statics and dynamics characteristics are simulated and analyzed by Matlab/Simulink. According to the problem of hysteresis nonlinearity, based on established inverse hysteresis model, feed-forward compensator is designed, at the same time, theory and method based on inverse hysteresis model and PID feedback control are put forward, thus realized effective compensation for hysteresis nonlinear characteristics of servo control valve.
     Through the research on electromechanical coupling mechanism and self-sensing mechanism of diphase oppositing giant magnetostrictive self-sensing actuator, electromechanical coupling model and real-time decoupling model based on
引文
1 Hironshi Yoshinada, Taku Yamazaki, Tatsunori Suwa, et al. Seawater Hydraulic Actuator System for Underwater Manipulator[C]. Proceedings of the 5th International Conference on Advanced Robotics (ICAR’91), Pisa, Italy, Vol.2, 1991:1330~1335
    2張亮,北川能,江口隆志.水圧駆動消火ロボツトの開発[J].油压と空气压, 2001, 32(6):150~156
    3 Takeo Oomichi, Akio Tanaka. Development of water hydraulic servo control system considering water characteristics[C]. Transactions of the Japan Society of Mechanical Engineers, Series C, 1996, 62(599):2612~2619
    4 Tzou H S, Anderson G L, Natori M C. Active structure, device, and systems[M], Chapter authored by Gacia E and Jones L D. World Science Publishing Company, 1997
    5董维杰,孙宝元,崔玉国等.自感知执行器-传感器、执行器集成新概念[J].压电与声光, 2001, 23(2):120~123
    6徐爱群,项占琴,陈子辰,吕福在,唐志峰.超磁致伸缩执行器自感知机理研究[J].浙江大学学报(工学版) 2007(5), Vol 41, No5:705~708
    7 Pratt J. Flatau A. Development and analysis of a self-sensing magnetostrictive actuator design[C], Proceeding of the 1993 SPIE Smart Materials and structures Conference, 1993, SPIE 1917 pp.952~961
    8 Ben Hanson, Martin Levesley. Self-sensing applications for electromagnetic actuators[J]. Sensors and Actuators A 116 (2004) 345~351
    9 Jon Pratt, Alison B. Flatau. Development and Analysis of a Self-sensing Magnetostrictive Actuator Design[C]. Proceedings of SPIE, VOL.1917, Smart Structures and Intelligent Systems, Albuquerque, USA, 1-4 February, 1993:952~961
    10 Cole D G, Clark R L. Adaptive compensation of piezoelectric sensoriactuators[J]. Journal of Intelligent Material Systems and Strucrures, 1994,5(5):665~672
    11 Vipperman J S, Clark R L. Hybrid analog and digital adaptive compensation of piezoelectric sensoriactuators[C], AIAA/ASME/ASCE/AHS Structures, Structural Dynamics & Materials Conference, 5Apr 10-13 1995, p2854~2859
    12 Vipperman J S, Clark R L. Implementation of an adaptive piezoelectric sensoriactuators[J]. AIAA Journal, 1996, 34(10):2102~2109
    13 Vipperman J S, Clark R L. Hybrid model-insensitive control using a piezoelectric sensoriactuator[J], J. of Intelligent Material Systems and Structures, 1996, 7(6):689~695
    14 Vipperman J S. Structural health monitoring applications using piezo-dielectric effects[J], American Society of Mechanical Engineers, Aerospace Division, Nov 14-19 1999,397~401
    15 Vipperman J S. Simultaneous qualitative health monitoring and adaptive piezoelectric sensoriactuation[J], AIAA Journal, 2001, 39(9):1822~1825
    16 Fannin C A, Saunders W R. Analog adaptive piezoelectric sensoriactuator design, Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures[C], Structural Dynamics & Materials Conference v 2 Apr 7-10 1997 1997 AIAA p1728~1737
    17 Pourboghrat F, Pongpairoj H, Youn ll-Jin, etc. Vibration control of Flexible structures using self-sensing actuators[C], SPIE 3668, p950~959
    18 Pourboghrat F, Pongpairoj H, Aazhang B. Vibration control of flexible beams using self-sensing actuators[C], World Automatiom Congress, 2002. Proceedings of the 5th Biannual, V14, p133~140
    19 Law W W, Liao W H. Implementation of Structures with Self-sensing Piezoelectric Actuators Incorporating Adaptive Mechanisms[C], Proceedings of SPIE Conference on Smart Structures and Materials,2002, SPIE 4701:304~315
    20 Oshima k, Takigami T, Hayakawa Y. Robust vibration control of a cantilever beam using self-sensing actuator[J]. JSME International Journal, 1997, Series C 40(4):681~687
    21 Vipperman J S, Cox D E, Clark R L. Robust multivariable active control with sensoriactuator feedthrough[C], AIAA/ASME/A:iCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 1999, v4:3115~3122
    22 Sun D C, Tong L Y. Control stability analysis of smart beams with debonded piezoelectric actuator layer[J], AIAA Journal, 2002, 40(9):1852~1859
    23 Jones L D, Garcia E. Novel approach to self-sensing actuation[C], Bellingham: SPIE 3401, 1997,305~314
    24 Babuska V, O'Donnell R P. Self-sensing actuators for precision structures[C], Proceeding of the 1998 IEEE Aerospace Conference, 1998, 1(1):179~187
    25董维杰.压电自感知执行器理论与应用研究[D].大连:大连理工大学, 2003
    26 Wakatsuki N, Yokoyama H, Kudo H. Piezoelectric actuator of LiNbO3 with an integrated displacement sensor[J],Japanese Journal of Applied physics, 1998, 37 (5B):2970~2973
    27贺西平.稀土超磁致伸缩换能器[M].北京:科学出版社, 2006
    28 Steel G A. A 2kHz Magnetostrictive Transducer. In: McCollum M D, Hamonic B F, Wilson O B. Transducers for Sonics and Ultrasonic[J]. Orlando: Technomic Publishing Co. Inc, 1992, 181~197
    29 Steel G A, Oswin J R. A Magnetostrictive Transducer Design. In: McCollum M D, Hamonic B F, Wilson O B. Transducers for Sonics and Ultrasonics[J]. Orlando: Technomic Publishing Co. Inc, 1992,152~161
    30 Nakano, et al. Giant Magnetostrictive Acoustic Transducer and Its Application to Acousticmouitoring of Oceans[C]. International Syaposium on Giant Magnetostrictive Materials and Their Application. Japan, 1992, 77~82
    31 Tenghman R, et al. Flextensional Transducers Based on Terfenol-D[C]. International Symposium on Giant Magnetostrictive Materials and Their Application. Japan,1992, 83~89
    32周利生.多边形稀土换能器[J].声学与电子工程,1996, 1: 8~17
    33吕猛.基于超磁致伸缩驱动器的主动隔振系统研究[D].杭州:浙江大学, 2004
    34 Fern R C, Gerver M J. Passive damping and velocity sensing using magnetostrictive transduction[C], Proceedings of the SPIE Smart Materials and structures Conference, 1994, SPIE 2190 pp.216~227
    35 Ohmata K, Zaike M, koh T. A There-link Arm Type Vibration Control Device Using Magnetostrictive Actuators[J]. Journal of Alloys and Compounds, 1997, 258(8): 74~78
    36 M. Anjanappa, J. Bi. A Theoretical and Experimental Study of Magnetostrictive Mini-actuator[J]. Smart Materials and Structures, 1994, (3): 83~91
    37欧阳光耀,施引.磁致伸缩材料及其作动器设计[J].海军工程学院学报, 1998, (1):44~47
    38夏春林.超磁致伸缩电-机械转换器及其在流体伺服元件中的应用基础研究[D].杭州:浙江大学博士学位论文, 1998
    39 ANDERSON E H, FUMO John P, ERWIN R S. Satellite ultraquiet isolation technology experiment (SUITE)[C]. IEEE Aerospace Conference, Big Sky, Momtana, 2000
    40 Franklin Hoke, Smart material research expands beyond defense arena[EB/OL]. Http://www. thescientist. Com/yr1992/april/research 920427. html,01-4-13
    41 Takahiro Urai. Development of a Vavle Using a Giant Magnetostrictive Actuator[C]. Proceeding of the 2nd JHPS International Symposium on Fluid Power. Edited by Maeda T., Tokyo, 1993:131~135
    42 [47] Takahiro Urai, Hirohisa Tanaka. Development of a Giant Magnetostrictive Tandem Actuator and the Application to a Servovalve[J]. Transactions of the Japan Hydraulics and Pneumatics Society, 2001, 32(3): 53~57 (in Japanese)
    43 Mel Goodfriend et al. Application of a Magnetostrictive Alloy, Terfenol-D to Direct Control of Hydraulic Valves[C]. SAE International off-Highway & Powerplant & Congress & Exhibition, Sept. 1990:10~13
    44 Wang Chuanli, Ding Fan, Zhang Yongshun et al. Giant Magnetostrictive Actuator in Servo Valve and Micro Pipe Robot[J]. Chinese Journal of Mechanical Engineering, 2005, 18(1): 10~13
    45王传礼,丁凡,张凯军.基于超磁致伸缩转换器的流体控制阀及其技术[J].农业机械学报,2003, 34(5):164~167
    46王传礼,丁凡,方平.基于超磁致伸缩转换器喷嘴挡板阀的控制压力特性[J].机械工程学报, 2005, 41(5):127~131
    47 Natale C, Velard F, Visone C. Modelling and compensation of hysteresis formagnetostrictive actuators[C]. Advanced Intelligent Mechatronics, Proceedings of 2001 IEEE/ASME International Conference, vol.2:744~749
    48贾振元,王福吉,郭东明.功能材料驱动的微执行器及其关键技术[J].机械工程学报, 2003,39(11):61~67
    49张菊.超磁致伸缩执行器磁滞建模与控制技术研究[D].大连:大连理工大学硕士学位论文, 2003
    50 M. J. Sablik. A Model for Asymmetry in Magnetic Property Behavior under Tensile and Compressive Stress in Steel[J]. IEEE Trans. Magn., Sept. 1997, vo1. 33:3958~3960
    51 D. C. Jiles. Introduction to Magnetism and Magnetic Materials[C]. New York: Chapman and Hall, 1991
    52 G.P. Carman, M. Mitrovic. Nonlinear Constitutive Relations for Magnetostrictive Materials with Application to I-D Problems[J]. J Intelligent Mat Syst & Stru, 1995(6):673~684
    53 F.T. Calkins, R.C. Smith, A.B. Flatau. Energy-Based Hysteresis Model for Magnetostrictive Transducers[J]. IEEE Trans. Magn, March 2000, 36(2):429~439
    54曹淑瑛.超磁致伸缩致动器的磁滞非线性动态模型与控制技术[D].天津:河北工业大学博士学位论文, 2004
    55 D. C. Jiles. Introduction to Magnetism and Magnetic Materials[C]. New York: Chapman and Hall, 1991
    56 F.Preisach.Uber Die Magnetische Nachwrikung.Zeitschrift fur Physik,1935,vo1.94:277~302
    57 I. D. Mayergoyz. Mathematical Models of Hysteresis[D]. New York: Spring-Verlag, 1991
    58 A. A. Adly, I. D. Mayergoyz. Magnetostriction Simulation Using Anisotropic Vector Preisach-Type Models[J]. IEEE Trans. Magn., Sept.1996, 32(5):4473~4475
    59 V. Basso, G. Bertotti. Hysteresis Models for the Description of Domain Wall Motion[J]. IEEE Trans. Magn., Sept.1996,32(5):4210~4212
    60 R. C. Smith. Hysteresis Modeling in Magnetostrictive Materials via Preisach Operators. Inst. Comput. Applicat[J]. Sci.Eng, NASA Langley Res. Center, Hampton, VA, Tech. Rep. May 1997,97~23
    61 D. Makaveev, L. Dupre, M. De Wulf, J. Melkebeek. Modeling of quasi-static magnetichysteresis with feedfordward neural networks[J]. Appl. Phys, June 2001, 89(11): 6737~6739
    62 M.E.H. Benbouzid. Dynamic Modeling of Giant Magnetostriction in Terfenol-D Rods by the Finite Element Method[J]. IEEE Transactions on Magnetics, 1995, 31(5):1821~1824
    63薛实福,李庆祥.精密仪器设计[M].北京:清华大学出版社, 1991
    64张定会.采用柔性铰链实现微位移的方法研究[J].工业仪表与自动化装置, 1999(5): 11~13
    65 Stuart T. Smith, Vievek G.. Badami, Jami S. Dale, etc al. Elliptical flexure hinges [J]. Review of Scientific Instruments, 1997, Vol.68, No.3:1474~1483
    66 Nicolae Lobontiu, Jeffrey S. N. Paine. Corner-Filleted Flexure Hinges [J]. Journal of Mechanical Design, 2001, Vol.123:346~352
    67于靖军,宗光华,毕树生.全柔性微位移放大机构的设计技术研究[J].航空学报, 2004, 2(1):74~78
    68吴鹰飞.压电驱动柔性铰链机构传动实现超精密定位[J].机械强度2002(2): 157~160
    69 Renyi Yang, Design and Characterization of a low-profile micropositioning stage [J]. Precision Engineering, 1996, 18(1):20~29
    70周志平,王隆太,马志新.两级对称式柔性铰链位移放大机构设计分析[J].机械设计与研究, 2006,Vol. 22 (5): 62~64
    71马浩全,胡德金,张凯.柔性铰链位移放大机构在活塞加工中的应用[J].压电与声光, 2004.12:514~516
    72李富.超磁致伸缩致动器在电控阀门的应用研究[D].天津:河北工业大学硕士学位论文, 2007
    73李庆龄. ANSYS中网格划分方法研究[J].上海电机学院学报, 2006, Vol. 9 (5) : 28~30
    74高志刚,刘泽明,李娜.复杂模型的ANSYS有限儿网格划分研究[J].机械工程与自动化, 2006 (3):41~43
    75 A. E. Clark, D. N. Crowder. High Temperature Magnetostriction of TbFe2 and Tb27Dy73Fe2 [J]. IEEE Transactions of Magnetics, 1985, MAG. 21(5):1945~1947
    76郭鹏飞.基于磁激励智能材料阻尼器的设计与研究[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2006
    77宋志安.基于MATLAB的液压伺服控制系统分析与设计[M].北京:国防工业出版社, 2007
    78刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社, 2003
    79余明杨,蒋新华,王莉.开关电源的建模与优化设计研究[J].中国电机工程学报, 2006,26 (2):165~169
    80徐贤敏.电路分析[M].成都:西南交通大学出版社, 2002
    81樊尚春,刘广玉.新型传感技术及应用[M].北京:中国电力出版社, 2005
    82 H. Wakiwaka, M. Iio, M. Nagumo, H. Yamada. Impedance Analysis of Acoustic Vibration Element Using Giant Magnetostrictive Materials[C]. IEEE Trans. Magn., Sept.1992,28(5): 2208~2210
    83 Simon Haykin著.自适应滤波器原理[M].北京:电子工业出版社, 2003
    84王宏禹,邱天爽著.自适应噪声抵消与时间延迟估计[M].大连:大连理上大学出版社, 1999
    85何振亚.自适应信号处理[M].北京:科学技术出版社, 2002
    86 Fannin C A. Design of an analog adaptive piezoelectric sensorial actuator[D]. [MA. DThesis]. Virginia: Virginia Polytechnic and State University, 1997
    87 Vipperman. J. S. Adaptive piezoelectric sensorial actuators for active structural acoustic control[D]: [Ph. D Thesis]. Durham: Duke University, 1997
    88 Shlomo karmi, Gengsheng zeng. The analysis of the continuous-time LMS algorithm[C]. IEEE Transaction on Acoustics Speech and Signal Processing, 1989, 37:595~597
    89 Vitor H. Nascimento. Analysis of the Hierarchical LMS algorithm[C]. IEEE Signal Processing Letter, 2003,10(3):78~81
    90 Michael Reuter,James R.Zeidler. Nonlinear Effects in LMS Adaptive Equalizers[C]. IEEE Transactions on Signal Processing, 1999,47(6):1570~1579
    91胡红生,钱林方,徐亚栋.基于压电自感作动器的振动主动控制系统研究[J].振动、测试与诊断, 2004(9), Vol24, No3:197~203
    92刘君华.虚拟仪器图形化编程语言[M].西安:西安电子科技大学出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700