用户名: 密码: 验证码:
同塔四回输电线路故障分析与故障测距
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受输电走廊通道资源等因素的制约,同时为了提高线路单位走廊的输电容量和土地利用率,降低电力建设成本,同塔多回输电方式已成为我国电网建设的必然趋势。电力系统故障分析是电力系统分析的重要内容之一,是电力系统规划设计、继电保护定值整定及故障测距等必不可缺的重要基础。故障测距是输电线路故障点查找与清除的重要依据,精确的故障测距能大大减轻人工巡线的艰辛工作,缩短排除故障的时间,及时修复线路、恢复可靠供电,对保证电力系统的安全稳定经济运行有着十分重要的作用。但由于同塔多回输电线路存在复杂的线间互感,大大增加的同塔多回输电线路故障分析与故障测距的难度。为此,本文围绕同塔四回输电线路的解耦方法、故障分析、故障选线和故障测距原理和方法进行深入研究,主要研究内容如下:
     1.以同塔四回输电线路杆塔为研究对象,分析了杆塔结构及线路排列造成的线间互感差异,构建了符合实际工程的同塔四回输电线路阻抗模型。分析了基于对称分量法的同塔四回输电线路解耦方法的局限性,揭示了对称分量法对同塔四回输电线路故障测距的影响,阐明了消除同塔四回输电线路零序耦合互感的必要性。
     2.基于同塔四回输电线路阻抗矩阵模型,通过分析同塔四回输电线路的线间耦合特征,建立了适用于频域和时域分析的同塔四回输电线路解耦理论和方法,为同塔四回输电线路故障分析、故障选线和故障测距的研究奠定了坚实的理论基础。
     3.基于同塔四回输电线路解耦方法,根据同塔四回输电线路各序分量的特征以及相分量与序分量之间的关系,结合故障边界条件,通过建立同塔四回输电线路的12相故障分析模型,提出了适用于同塔四回输电线路各种横向和纵向故障的故障分析方法。该方法无需构造复合序网,具有良好的通用性与实用性。基于ATP/EMTP,采用实际工程的500kV同塔四回输电系统模型进行了全面的仿真验证。
     4.在同塔四回输电线路解耦方法的基础上,分析了同塔四回输电线路同向量、环流量及其与两端等效系统之间的特性,利用不同回线故障时各环流量间的相位特征,提出了不受系统阻抗影响的基于环流量相位差的同塔四回输电线路故障选线方法。该方法能有效地消除两端系统阻抗对故障选线的影响,从而提高了同塔四回输电线路故障选线的准确性。基于ATP/EMTP,采用实际工程的500kV同塔四回输电系统模型进行了全面仿真验证。
     5.针对全线同塔四回输电线路,为了消除线路参数不确定性对其故障测距的影响,基于故障前两端电压和电流同向量,建立线路参数自适应的频域观测方程;基于故障环流量,通过建立故障测距频域观测方程,提出了全线同塔四回输电线路参数自适应的双端故障测距频域方法。利用ATP /EMTP,构建实际工程的全线同塔四回输电系统模型,通过全面的仿真分析验证,结果表明:该方法测距精度较高,消除了同塔四回输电线路参数的不确定性影响。
     6.首次针对三端局部同塔四回输电线路,在建立其故障分支判别方法的基础上,通过建立各故障分支的故障测距频域观测方程,提出了三端局部同塔四回输电线路的故障测距频域方法。基于ATP/EMTP,构建相应的同塔四回输电系统模型,进行全面系统的仿真验证,结果表明:所提方法测距精度高、更具实际工程应用前景。
Because four-parallel transmission lines on same tower have the advantage of narrow land corridor, increasing transmission capacity and saving investment, it becomes an inevitable trend for building power grid in China. Fault analysis is not only an important part of power system analysis but also an important foundation for planning, design, protection and fault location of power system. And the important basis of finding and removing faults is fault location theory. Fault location has the advantage of reducing workload for discovering faults, shortening time for getting rid of faults. So, fault location plays an important role in power system safe and reliable operation. However, due to mutual electromagnetic effect complexity between four-parallel transmission lines on same tower, fault analysis and fault location are faced with technical difficulty. Therefore, this dissertation researches on decoupling method, fault analysis method, fault lines selection theory and fault location scheme for four-parallel transmission lines on same tower. The main research works and results are shown as following:
     1. According to the structure of pole and tower and the lines arrangement causing different mutual inductance, the comparatively actual impedance model of four-parallel transmission lines on same tower is constructed. After the impedance model is decoupled by the symmetrical components method, this dissertation analyses the symmetrical components method disadvantage for fault location and illustrates the necessity of eliminating zero-sequence coupling mutual inductance.
     2. Based on the proposed impedance model, a decoupling method for four-parallel transmission lines on same tower is proposed by analyzing the characteristic of coupling mutual induction. Thus, two corresponding transformation matrices are deduced for frequency domain and time domain analysis respectively, which are the foundation of fault analysis, fault lines selection and fault location.
     3. According to the characteristic of sequence components and the relationship between phase components and sequence components, a type of simple and general model for all kinds of short-circuit and open-conductors faults of four-parallel transmission lines on same tower is constructed. Thus, based on the fault boundary conditions and decoupling transformation analysis, this dissertation proposes a novel fault calculation and analysis method for four-parallel transmission lines on same tower. The proposed calculation method has the advantage of no compound sequence networks, practicability and university. Based on the ATP/EMTP, the comparatively actual model of four-parallel transmission lines on same tower is constructed for the simulation verification.
     . 4. Based on the decoupling analysis for four-parallel transmission lines on same tower, this dissertation analyses the relationship between the equal directional components and the equal system of two terminals; the relationship between the circulation components and the equal system of two terminals. And then, based on the characteristic of phase angles between circulation components, a new method for fault lines selection of four-parallel transmission lines on same tower is proposed. Because the circulation components are unrelated with system impendence, the proposed method improves accuracy for fault lines selection. Based on the ATP/EMTP, the comparatively actual model of four-parallel transmission lines on same tower is constructed for the simulation verification.
     5. For fault location of whole four-parallel transmission lines on same tower, a novel parameter adaptive fault location scheme based on two terminals data of four-parallel transmission lines on same tower is proposed. In order to eliminate the effects of transmission line parameter uncertainties for fault location, the redundant information of the normal voltage and current are used to construct the transmission lines parameters adaptive frequency domain equation. Then, the circulation components are extracted to establish the frequency domain fault location observation equation of four-parallel transmission lines on same tower. Thus a novel parameter adaptive fault location scheme based on two terminals data of four-parallel transmission lines on same tower is proposed. Using ATP/EMTP, the comparatively actual four-parallel transmission lines model is constructed for simulation. Simulation results demonstrate that the proposed fault location scheme is not only capable of eliminating the effects of transmission line parameter uncertainty but also endureing higher transition resistance.
     6. For three terminals four-parallel transmission lines on same tower, this dissertation proposes a novel frequency domain fault location scheme firstly. Based on constructing the fault branch selection method, a novel frequency domain fault location scheme of three terminals four-parallel transmission lines on same tower is proposed by establishing the fault branch frequence observation equation. Using ATP/EMTP, the model of three terminals four-parallel transmission lines on same tower is constructed for the simulation verification. Simulation results demonstrate that the proposed scheme is very accurate and easily applied to engineering practically.
引文
[ 1 ]徐建国.对国外超高压同塔多回送电线路技术的调研分析[J].电力建设,2001,22(7):15-19
    [ 2 ]易辉,纪建民.交流架空线路新型输电技术[M].北京:中国电力出版社,2006.
    [ 3 ]张嘉,葛荣良.同塔多回输电技术特点及其应用分析[J].华东电力,2005,33(7):23-26.
    [ 4 ]国家电力公司东北电力设计院.电力工程高压输电线路设计手册[M].北京:中国电力出版社,2003
    [ 5 ]袁春峰,蔡钧,钱光中.同塔多回输电技术研究[J].上海电力,2009,2:87-90
    [ 6 ]李咏新,王莉.同塔并架多回路输电[J].农村电气化,2007,2:58-61
    [ 7 ]张洞明,张国良.同塔多回路输电线路设计研究[R].沈阳:东北电力设计院,2001
    [ 8 ]邓长征,孟遂民,黄力,等.同塔多回输电线路相导线布置形式研究[J].湖北电力,2009,33(4):50-52.
    [ 9 ]袁利红,葛栋,李红,等. 220 kV/110 kV同塔6回线路耐雷性能研究[J].电力建设,2006,8:21-24
    [ 10 ] (日)冈村正已,太宏田次著,牟敦庚译,输电线路继电保护[M],北京:水利电力出版社,1983
    [ 11 ]李永斌.同杆跨线故障的选相及其单回线故障测距的研究[D].北京:华北电力大学,2008
    [ 12 ]葛耀中.新型继电保护和故障测距的原理与技术.第2版[M].西安:西安交通大学出版社.2007.
    [ 13 ]朱声石.高压电网继电保护原理与技术.第三版[M].北京:中国电力出版社,1995.
    [ 14 ]田羽,范春菊,龚震东.同杆4回线12序分量法[J].电力系统及其自动化,2007,31(21):35-39.
    [ 15 ]任永军,汪萍.互感线路中继电保护零序补偿系数的整定[J].江苏电机工程. 2000,19(1):32-34.
    [ 16 ]金红核,任明珠,袁成,等.同塔四回线线间互感对接地距离保护的影响及对策.华东电力[J],2009,37(8):1346-1352
    [ 17 ]华北电力学院.电力系统故障分析[M].北京:电力工业出版社,1980.
    [ 18 ] Fortescue, C.L. Method of symmetrical coordinates applied to the solution of polyphase network [J], Trans. AIEE, 1918, 37:1027-1140
    [ 19 ] Tinney W. F., Walker J. W.. Direct solutions of sparse network equations by optimally ordered triangular factorization [J]. Proc of the IEEE, 1967, 5(11):1801-1809
    [ 20 ] Paul. M. Anderson. Analysis of faulted power systems [M]. New York: IEEE Press, 1995.
    [ 21 ] GROSSC.A. Power System Analysis [M]. New York: John Wiley & Sons In Press,1979.
    [ 22 ] Z. X. Han. Generalized method of analysis of simultaneous faults in electric Power system[J]. IEEE Trans. on PAS, 1982, 101(10):3933-3942
    [ 23 ] O.Alsac, B. Stott, W. F. Tinney. Sparsity-oriented compensation. methods for modified network solutions [J]. IEEE Trans. on PAS, 1983, 102(5):1050-1060
    [ 24 ] Chen Q, Li X. A General fault analysis algorithm for arbitrary complicated faults[C]. Eighth IEE International Conference on Developments in Power System Protection.Stevenage: The IEE, 2004: 164-167.
    [ 25 ]陈青,江世芳.一种求解电力系统复杂故障的新方法[J].中国电机工程学报,2000,20(9):41-43,49.
    [ 26 ] Chen Q, Liu YT. A new algorithm for complex faults and object-oriented programming [J].Engineering Intelligent System for Electrical Engineering and Communications, 2004, 12(2):107-110
    [ 27 ]张伯明,杨健.一种规范化的计算机故障分析计算方法[J].清华大学学报,1995,35 (1):32-38.
    [ 28 ]曹国臣,武晓梅,宋家骤.一种基于分解协调法的电力系统故障计算方法[J].中国电机工程学报,1999,19(1):14-18.
    [ 29 ]刘万顺.电力系统故障分析(第二版)[M].北京:中国电力出版社,1998: 239-259.
    [ 30 ] M. A. Laughton. Analysis of unbalanced polyphase networks by the method of phase co-ordinates-Part I [J], Proc of IEE. 1968, 115(8):1163-1172
    [ 31 ] M. A. Laughton. Analysis of unbalanced polyphase networks by the method of phase co-ordinates-Part 2[J]. Proc of IEE. 1969, 116(5):857-865
    [ 32 ] L.Roy, N.D.Rao. Exact calculation of simultaneous faults involving open conductors and line-to-ground short circuits on inherently unbalanced power systems [J].IEEE Trans on Power Apparatus and Systems, 1982, 101(8):2738-2746
    [ 33 ] M Agrasar, F Uriondo, J R Hermandez, etc. A useful method for analyzing distance relays performance during simple and inter-circuit faults in multi-circuit lines [J].IEEE Trans. On PWRD, 1997, 12(4):1465-1471.
    [ 34 ] Elham B. Makram. V. Omar Zambrano. Ronald G.. Harley, etc. Three-phase modeling for transient stability of large scale unbalanced distribution systems [J]. IEEE Transactions on Power Systems, 1989, 4(2):487-493
    [ 35 ]曹炎生,林日明.三相参数不对称电力系统短路故障的计算机计算[J].电力系统自动化,1994,18(3):32-36
    [ 36 ]曹炎生,林日明.三相参数不对称电力系统断线故障的计算机计算[J].电力系统白动化,1995,19(8):43-46
    [ 37 ]唐宏丹,孙辉,谈小魏.改进的不对称电力系统故障计算方法[J].继电器,2005,33(12):10-16
    [ 38 ] G. Gross, H.W. Hong. A two-step compensation method for solving short circuit problems [J]. IEEE Trans. on PAS, 1982, 101(6):1322-1331
    [ 39 ]于大勇,马柏杨,张国庆,等.电力系统故障分析的相分量法研究[J].黑龙江电力,2003,25(5):366-368.
    [ 40 ]王春,柳焕章.电力系统不对称状态计算[[J].中国电机工程学报,1993,13 (6):33-39
    [ 41 ]姜彤,郭志忠,陈学允,等.多态相分量法及其在电力系统三相不对称分析中的应用[[J].中国电机工程学报,2002,22 (5):70-74.
    [ 42 ]姜彤.电力系统故障分析及其多态计算方法的研究[D].哈尔滨工业大学博士学位论文,2002.
    [ 43 ] W X He, C Y Teo. Unbalanced short-circuit calculation by phase coordinates[C]. International Conference on Energy Management and Power Delivery, vol.2, 21-23 Nov. 1995, pp.744-748.
    [ 44 ] Garcia, P. A. N., Pereira, L. R., Vinagre, M.P, Oliveira, E. J.. Fault analysis using continuation power flow and phase coordinates [C]. Proc of IEEE PowerEngineering Society General Meeting, 2004, pp.872-874.
    [ 45 ] Xuefeng Bai, Tong Jiang, Zhizhong Guo, etc. A unified approach to processing unbalanced conditions in transient stability calculations [C]. Proc of IEEE Power Engineering Society General Meeting, 2004, pp.1542-1546.
    [ 46 ] J.邓肯.格洛弗.电力系统分析与设计[M].北京:机械工业出版社,2004.
    [ 47 ] Rajeev Kumar Gajbhiye, Pushpa Kulkarni, S. A. Soman. Analysis of fault power systems in three phases coordinates-A generic approach [C]. Proc of the 7th International Power Engineering Conference, 2005, pp.1052-1057.
    [ 48 ]王伟. 500kV洪龙同杆双回线继电保护的研究[D].成都:四川大学,2003
    [ 49 ] Takaaki, Toshihisa. A new analytical method for cross-country multi-fault in double-circuit transmission line and operation of a distance relay[J]. Trans. IEE of Japan, 1992, 112-B(2):138-146.
    [ 50 ]索南,葛耀中,陶惠良.利用六序分量复合序网法分析同杆双回线故障的新方法[J].电力系统及其自动化学报,1991,3(1):92-106
    [ 51 ]索南,葛耀中.利用六序分量复合序网法分析同杆双回线断线故障的新方法[J]. 电力系统自动化,1992,16(3):15-21
    [ 52 ]傅旭,王锡凡.同杆双回线断相故障计算的解耦相分量法[J].电力系统自动化, 2004,28(6):41-45.
    [ 53 ]傅旭,王锡凡.同杆双回线跨线短路故障计算的等值双端电源相分量法[J].电力系统自动化,2004,28(7):54-55.
    [ 54 ]曹国臣,张洪波.采用虚拟网络加网络操作法的双回线故障计算方法[J].中国电机工程学报,2006,26(2):71-77
    [ 55 ]刘为雄,蔡泽祥,邱建.融合对称分量法与相分量法的大规模电力系统跨线故障计算[J].电工技术学报,2007,22(5):141-147.
    [ 56 ]陈朝晖,黄少锋,陶惠良,等.新型阻抗选相方法[J].电力系统自动化,2005,29(3):51-56
    [ 57 ]杨奇逊,黄少锋.微型机继电保护基础(第二版)[M].北京:中国电力出版社,2005:89-91
    [ 58 ] G. B. Benmouyal, J. Mahsered jian. A combined directional and faulted phase selector element based on incremental quantities[J].IEEE Trans. on PowerDelivery, 2001, 16 (4):478-484
    [ 59 ]徐振宇,杨奇逊,刘万顺,等,一种序分量高压线路保护选相元件[J].中国电机工程学报,1997,17(3):214-216
    [ 60 ]林湘宁,刘沛,杨春明等,基于相关分析的故障序分量选相元件[J].中国电机工程学报,2002,22(5):16-21
    [ 61 ]俞波.超高压同杆并架双回线路微机保护的研究[D].北京:华北电力大学,2002:11-28
    [ 62 ]钱国明,何奔腾.一种改进的高压线路保护选相元件[J].电力自动化设备,1999,19(4):2-4
    [ 63 ]杨世弊,何奔腾.一种基于电压序分量的高压线路保护选相元件[J].中国电力,1999,32(7):25-28
    [ 64 ]索南加乐,葛耀中,陶惠良.同杆双回线的六序选相原理[J].中国电机工程学报.1991,11(6):1-9.
    [ 65 ]唐宝锋,徐玉琴.基于相关分析的同杆双回线故障序分量选相研究[J].继电器,2005,33(9):39-42
    [ 66 ]刘千宽,黄少锋,王兴国.同杆并架双回线基于电流突变量的综合选相[J].电力系统自动化,2007,31(21):53-57.
    [ 67 ]陈福锋,钱国明.基于同杆双回线跨线故障识别的选相方案[J].电力系统自动化,2008,32(6):66-70.
    [ 68 ] D.W.P.Thomas,M.S.Jones,C.ChristoPoulos,Phase selection based on superimposed components[J].IEE Proc. Generation,Transmission And Distribution,May1996,143(3):295-299
    [ 69 ] W.MAIhawi, N.H.Abbiasi A neural-network-based approach for fault classifieation and faulted phase selection[C].Conference on Electrical and Computer Engineering, Canadian, 1996,vol.l:384-387
    [ 70 ] R.K.Aggarwal, Q.Y.Xuan, R.W.Dunn,et al. A novel fault classification technique for double-circuit lines based on a combined unsupervised/supervised neural network[J].IEEE Trans on Power Delivery,1999,14(4):1250-1256
    [ 71 ]董新洲,贺家李,葛耀中.基于小波变换的行波故障选相研究第1部分(理论基础) [J].电力系统自动化,1998,22(12):24-27
    [ 72 ]何正友,陈小勤,罗国敏,等.基于暂态电流小波嫡权的输电线路故障选相方法[J].电力系统自动化,2006,30(21):39-44
    [ 73 ] Wiszniewski A.. Accurate fault impedance locating algorithm[J]. IEE Proceedings Pt C. 1983, 130(6): 311~315
    [ 74 ]岳嵘.基于工频量的故障测距方法的研究[D].西安:西安交通大学, 1997
    [ 75 ] Sant M.T., Paithanker Y.G.. Online digital fault location for overhead transmission line[J]. IEE Proc. 1979, 126(11): 1181-1185
    [ 76 ]李志民,陈学允.基于单侧信息的输电线路故障测距新方法[J].中国电机工程学报,1997,17(6):416-420
    [ 77 ]蔡德礼.高压输电线路故障点定位的一种新的计算机算法[J].重庆大学学报,1982,(2)::1-14
    [ 78 ]叶一麟,蔡德礼.系统参数变化对输电线路故障测距精度的影响[J].重庆大学学报,1984,(12):70-78
    [ 79 ]徐启峰,魏孝铭.高压输电线路故障测距的负距问题及修正方法[J].中国电机工程学报,1989,9(3):41-50
    [ 80 ]毛小明,刘沛.利用单侧电气量的高压输电线路故障测距算法研究[J].电网技术,1998,22(11):15-17
    [ 81 ]刘沛,程实杰.架空输电线路故障测距方法综述[J].电力系统自动化,1993, 17(8):46-56
    [ 82 ]胡帆,刘沛,程时杰.高压输电线路故障测距算法仿真研究[J].中国电机工程学报,1995,15(1):67-72
    [ 83 ] Aggarwal R.K., Aslan Y., Johns A.T.. New concept in fault location for overhead distribution systems using superimposed components[J]. IEE Proc.-General Transmission. Distribution. 1997, 144(3):309-316
    [ 84 ]张哲,陈德树.高压输电线路故障测距中的伪根问题及其改进方法[J].中国电机工程学报,1992,12(6):11-17
    [ 85 ] Lawrence D.J., Waser D.L.. Transmission line fault location using digital recorders[J]. IEEE Trans. Power Delivery. 1988, 5(3): 496-502
    [ 86 ] Djurie M.B., Radojevic Z.M., Terzija V.V.. Distance protection and fault location utilizing only phase current phasors[J]. IEEE Trans. Power Delivery. 1998, 13(4):1214-1223
    [ 87 ]周玉江,黄焕琨.探测故障距离的新方法[J].电力系统自动化,1988,12(5):34-39
    [ 88 ] Ranjbar A.M., Shirani A.R., Fathi A.F.. A new approach for fault location problem on power lines[J]. IEEE Trans. On Power Delivery. 1992, 7(1): 146-151
    [ 89 ] Ha H.X., Zhang B.H., Lv Z.L.. A novel principle of single-ended fault location technique for EHV transmission lines[J]. IEEE Transactions on Power Delivery. 2007, 18(4): 1147-1151
    [ 90 ]刘劲,孙扬生,罗毅.一种基于时间域的实用单侧电量故障测距方法[J].电力系统自动化,1994,18(5):52~56
    [ 91 ]冯载生.利用零序电流比值分布曲线确定接地故障点的方法[J].电力系统自动化,1988,12(4):3-8
    [ 92 ] Nagasawa T., Abe M., Otsuzuki N.,et al. Development of a new fault location algorithm for multi-terminal two parallel transmission lines[J]. IEEE Trans. Power Delivery. 1992,7(3): 1516-1532
    [ 93 ]董新洲,葛耀中.一种使用两端电气量的高压输电线路故障测距算法[J].电力系统自动化,1997,19(8):47-53
    [ 94 ] Jeyasurya B, Rahman M.A.. An accurate algorithm for transmission line fault location using digital relay measurements[J]. Electric Machines and Power Systems. 1989(16):25-34
    [ 95 ] Sachdev M.S., Agarwal R.. A technique for estimation transmission line fault locations from digital impedance relay measurement[J]. IEEE Trans. Power Delivery. 1988, 3(1):121-129
    [ 96 ] Cook V.. Fundamental aspects of fault location algorithms used in distance protection[J]. IEE Proc. 1986, 133(6): 359-368
    [ 97 ]周大敏.一种输电线路故障测距算法[J].继电器,1944,(3):9-13
    [ 98 ] Girgis A.A., Hart D.G., Peterson W.L.. A new fault location technique for two- and three-terminal lines[J]. IEEE Trans. Power Delivery. 1992, 7(1): 98-107
    [ 99 ] Novosel D., Hart D.G., Udren E., et al. Unsynchronized two-terminal fault location estimation[J]. IEEE Trans. Power Delivery. 1996, 11(1): 130-138
    [ 100 ] Zamora I., Minzmbres J.F., Mazon A.J., et al. Fault location on two-terminal transmission lines based on voltages[J]. IEE Proc-General. Transmission. Distribution. 1996, 143(1): 1-6
    [ 101 ] Minzmbres J.F., Zamora I., Mazon A.J., et al. A new technique based on voltages for fault location on three-terminal transmission lines[J]. Electric Power System Research. 1996, (37): 143-151
    [ 102 ]束洪春.基于分布参数线路模型的架空电力线故障测距方法研究[D].哈尔滨:哈尔滨工业大学,1997
    [ 103 ]束洪春,邬大明,陈学云,等.基于模式分析的对称和非对称三相不接地系统故障测距算法研究[J].自动化学报,1997,23(5):703-707
    [ 104 ] Kezunovic M., Mrkic J.. An accurate fault location algorithm using synchronized sampling[J]. Electric Power Systems Research. 1994, 29: 161-169
    [ 105 ]王绪昭,Gale P. F..利用测量电阻分量实现高阻接地短路的准确测距法[J].继电器,1988,(3):13-20
    [ 106 ] Fikri M., El-sayed M.A.H.. New algorithm for distance protection of high voltage transmission lines[J]. IEE Proc. 1988, 135(5): 436-440
    [ 107 ] Masayuki A., Nobuo O., Tokuo B., et al. Development of a new fault location system for multi-terminal signal transmission lines. IEEE Trans. Power Delivery. 1995,10(1): 159-168
    [ 108 ] Johns A.T., Jamali S.. Accurate fault location technique for power transmission lines[J]. IEE Proc 1990. 137(6): 395-402
    [ 109 ] Aggarwal R.K., Coury D.V., Johns A.T., et al. A practical approach to accurate fault location on extra high voltage teed feeders[J]. IEEE Trans. Power Delivery. 1993, 8(3): 874-883
    [ 110 ] Lawrence D.J., Cabeza L.Z., Hochberg L.T.. Development of an advanced transmission line fault location system, Part I: Input transducer analysis and requirements[J]. IEEE Trans. On Power Delivery. 1992, 7(4): 1963-1971
    [ 111 ] Lawrence D.J., Cabeza L.Z., Hochberg L.T.. Development of an advanced transmission line fault location system, Part II: Algorithm development and simulation[J]. IEEE Trans. On Power Delivery. 1992, 7(4): 1972-1981
    [ 112 ] Abe M., Otsuzuki N.. Development of a new fault location system for multi-terminal single transmission lines[J]. IEEE Trans. On Power Delivery. 1995, 10(1): 159-168
    [ 113 ]陈琨薇,黄守盟,宋丽群.输电线路分布参数的故障分析与继电保护动作特性[J].电力系统及其自动化学报,1995,7(1):38-47
    [ 114 ]梁军,孟昭勇,车仁飞,等.精确双端测距新算法[J].电力系统自动化, 1997,21(9):24-27
    [ 115 ]束洪春,高峰,陈学允,等. T型输电系统故障测距算法研究[J].中国电机工程学报,1998,18(6):416-420
    [ 116 ]全玉生,杨敏中,王晓蓉,等.双端测距中的自适应线路参数在线估计[J].电力系统自动化,2000,24(7):26-30
    [ 117 ]全玉生,王晓蓉,杨敏中,等.工频双端故障测距算法的鲁棒性问题和新算法研究[J].电力系统自动化,2000,24(10):28-32
    [ 118 ] Gopalakrishnan A., Kezunovic M., Mckenna S. M., et al. Fault location using the distributed parameter transmission line model[J]. IEEE Trans. On Power Delivery. 2000, 15(4): 1169-1174
    [ 119 ]傅周兴,郭颖娜,何文林.基于GPS同步时钟的相量测量在电力系统中的应用研究[J].继电器,2001,29(7):31-34
    [ 120 ] Chen Z., Lou C.M., Su J.X., et al. A fault location algorithm for transmission line based on distributed parameter[A]. Seventh International Conference on developments in Power System Protection[C]. Conference Publication IEE. 2001: 411-413
    [ 121 ]袁宇春,刘晓川.工频量双端测距综述[J].继电器,2006,34(23):74-77
    [ 122 ]车仁飞,梁军,孟昭勇.一种考虑线路参数变化的输电线路双端测距算法[J].中国电力. 2004,37(2):45-49
    [ 123 ]梁军,麻常辉,贠志皓.基于线路参数估计的高压架空输电线路故障测距新算法[J].电工技术,2004,28(4):60-63
    [ 124 ]腾林,刘万顺,李营,等.一种实用的新型高压输电线路故障双端测距精确算法[J].电力系统自动化,2001, 25(9):24-27
    [ 125 ]毛鹏,张兆宁,苗友忠.基于双端电气量的输电线路故障测距的新方法[J].继电器,2000, 28(5):24-27
    [ 126 ]徐鹏,王钢,张尧,等.双端非同步数据故障测距的非线性估计算法[J].继电器,2005,33(1):16-20
    [ 127 ]梁远升,王钢,李海锋.消除暂态过程影响的滤波算法及其在故障测距中的应用[J].电力系统自动化,2007,32(22):77-82
    [ 128 ]索南加乐,张怿宁,齐军,等.基于参数识别的时域法双端故障测距原理[J].电网技术,2007,30(8):65-70
    [ 129 ] Yang Q.S., Morison I.F.. Microprocessor based algorithm for high resistance earth-fault distance protection[J]. IEE Proceeding. Generation, Transmission and Distribution. 1983, 130(11): 306-310
    [ 130 ] Eriksson L., Saha M. M., Rockefeller G. D.. An accurate fault location with compensation for apparent reactance in the fault resistance resulting from remote end infeed[J]. IEEE Trans on PAS. 1985, 104(2): 424-436
    [ 131 ]李红巍.一种实用的双回线测距算法[J].电力系统自动化,1995,19(9):30-33
    [ 132 ] Zhang Qingchao,Zhang Yao,Song Wennan,etal.Fault location of two-parallel transmission line for non-earth fault using one-terminal data[J].IEEE Trans.on Power Delivery,1999,14(3):863-866
    [ 133 ] Zhang Qingchao,Zhang Yao,Song Wennan,etal.Transmission line fault location for phase-to-earth using one-terminal data[J].IEE proceedings Generation, Transmission and Distribution,1999,146(2):121-125
    [ 134 ]李艳,李志民,陆振,等.利用单端信息的双回线跨非线故障的测距算法[J].电站系统工程,2000,16(5):301-304
    [ 135 ]栗小华.基于平行双回线单端实时数据的准确故障测距实用新算法[J].继电器,2001,29(5):5-7
    [ 136 ]束洪春,高峰,李卫东.利用单端工频量的高压输电线路故障测距实用方法研究[J].电工技术学报,1998,13(5):9-15
    [ 137 ]索南加乐,吴亚萍,宋国兵,等.基于分布参数的同杆双回线单线故障准确测距原理[J].中国电机工程学报,2003,23(5):39-43
    [ 138 ]宋国兵,索南加乐,等.基于单端电流量的同杆双回线故障定位方法[J].继电器,2004,32(7):1-6
    [ 139 ]李胜芳,范春菊,郁惟镛.基于相量测量的输电线路故障测距算法[J].电网技术,2004,28(17):28-32
    [ 140 ] Mazon A J, Minambres J F, Zorrozua M A, etal. New method of fault location on double-circuit two-terminal transmission lines[J].Electric Power System Research,1995,35(3):213-219
    [ 141 ]赵永娴,曹小拐,刘万顺.同杆并架双回线准确参数未知时的故障测距新算法[J].电力系统自动化,2005,29(4):72-76
    [ 142 ]杨博,卫志农,王华芳,等.基于不对称分布参数的同杆双回线双端故障测距算法[J].继电器,2005,33(5):8-11
    [ 143 ]孙立山,张晓友,陈学允.平行双回线故障测距算法的研究[J].电力系统自动化,1999,23(5):28-30
    [ 144 ]索南加乐,吴亚萍,宋国兵,等.基于分布参数的同杆双回线单线故障准确测距原理[J].中国电机工程学报,2003,23(5):39-43.
    [ 145 ]韦刚,张子阳,房正良等.基于小波变换的同杆并架双回线双端行波故障测距[J].电力系统自动化,2004,28(5):51-55.
    [ 146 ]苏红梅,刘晓东,魏国平,等.一种基于方向行波的平行双回线保护方案[J].电力系统保护与控制,2008,36(21):7-12
    [ 147 ]韦钢,黄金生.同杆并架多回线序参数及不平衡计算[J].电网技术,1998,22(10):8-11.
    [ 148 ]赵华,阮江军,文武,等.500kV同塔四回线路施工线路的感应电压分析[C].全国电工理论与新技术学术年会. 2005:533-536.
    [ 149 ]张启春,喻剑辉,阮江军,等.同杆并架多回输电线附近的工频电磁场[J].武汉水利电力大学学报,2000,33(2):54-58.
    [ 150 ]潘震东,张嘉旻,顾承昱.500kV同塔四回线路工频过电压研究[J].华东电力,2007,35(3):24-27.
    [ 151 ]谷定燮,陈志达.我国500kV同塔双回线路绝缘方式选择[J].中国电力,2005,38(3):40-42.
    [ 152 ]陈国庆. 500kV同塔双回线路导线排列方式对电气特性的影响[J].重庆大学学报,2003,26(6):60-62.
    [ 153 ]冯桂宏,张炳义,王晓辉. 500kV同塔四回路生态环境影响分析[J].电网技术,2007,31(l2):52-56.
    [ 154 ]朱忠烈,李建华,祝瑞金,等.同塔4回线故障和暂态仿真分析方法[J].电力系统及其自动化,2008,32(8):49-54.
    [ 155 ]王向平,徐磊,张晓秋.同塔并架四回线中线路保护的适应性[J].电力系统及其自动化,2007,31(24):80-85.
    [ 156 ]张琦兵,邰能灵,袁成,等.同塔四回线电流差动保护的电容电流补偿分析[J]. 电力系统及其自动化,2010,34(8):46-50.
    [ 157 ]康文韬,秦鹏,罗伟强,等.同杆多回线序分量法的推广[J].华北电力大学学报,2009,36(6):39-43.
    [ 158 ]张琦兵,邰能灵,袁成,等.同塔四回输电线的相模变换[J].中国电机工程学报,2009,29(34):57-62.
    [ 159 ]邓孟华,范春菊,刘玲,等.基于12序分量的同杆4回线短路故障计算[J].电力系统自动化,2008,32(14):64-67.
    [ 160 ]邓孟华,范春菊,舒巧俊,等.同杆4回线故障选线方法[J].电力系统自动化,2008,32(15):57-59.
    [ 161 ]龚震东,范春菊,田羽.一种适合于同杆4回线的故障测距方法[J].电力系统自动化,2007,31(23):70-73.
    [ 162 ]任明珠,邰能灵,袁成,等.基于单端量的同塔并架4回线路故障测距方法[J]. 上海交通大学学报,2009,43(1):1228-1232.
    [ 163 ]龚震东.同杆多回线的故障测距研究[D].上海:上海交通大学,2009
    [ 164 ]索南加乐,王树刚,张超,等.一种反应环流电流的平行双回线保护选相元件[J].电力系统自动化,2004,28(15):47-52
    [ 165 ]索南加乐,许庆强,宋国兵,等.电力系统振荡过程中序分量选相元件动作行为分析[J].电力系统自动化,2003,27(7):50-54.
    [ 166 ]李海锋,张璞,王钢,等.直流馈入下的工频变化量方向纵联保护动作特性分析(一)直流系统等值工频变化量阻抗模型[J].电力系统自动化. 2009,33(9):41-46
    [ 167 ]王晓彤,林集明,班连庚,等.广东500 kV同塔四回线路相序排列的选择[J].电网技术. 2009,33(19):87-91
    [ 168 ]蔡广林,曹华珍,王晓彤,等. 500 kV同塔四回线路感应电压与感应电流分析[J].南方电网技术. 2009,3:141-144
    [ 169 ]田羽,范春菊,龚震东.三侧同杆双回线互联的T型线路测距新方法[J].电力自动化设备. 2007,27(9):63-66
    [ 170 ] Dommel H.W..电力系统电磁暂态计算理论[M].李永庄等译.北京:水利电力出版社, 1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700