用户名: 密码: 验证码:
客运专线功率因数问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了适应我国铁路运输市场的需求,国家大力发展铁路建设,建设客运专线,实现客货分离,提高运输效率。而随着客运专线的开通,新技术新装置的采用,对牵引供电系统提出了更高更严格的要求,一系列电压波动、谐波、负序和功率因数等电能质量问题也日益展现在人们面前。
     功率因数不仅直接反应供电系统的有功功率和无功功率的分配,也是供电质量的技术指标之一,所以电力系统一直注重对功率因数的考核。因此提高功率因数在技术和经济方面都具有重要意义。
     本文根据前往合武客运专线麻城北牵引变电所,现场记录的该所范围内电压电流的波形图像,以及AT供电系统的特点和现场实际施工方案,对波形进行了观察和谐波分析,并得出该变电所具有功率因数方面的问题,因此提出加设补偿装置。
     以合武客专麻城北牵引变电所为原型,通过对牵引网的单相多导体电力传输线进行等效降阶处理,得到了牵引网的单位长度阻抗和导纳参数,建立牵引网参数模型。利用(?)MATLAB/SIMULINK对牵引供电系统进行仿真建模,仿真分析了牵引变电所单列车牵引工况、单列车制动工况、双列车牵引工况、双列车一向牵引工况一向制动工况四种情况。并针对实际情况,分析了几种无功补偿方案,最终选取了TCR+FC型静止无功补偿装置。最后仿真分析了投入补偿装置后的仿真模型,将结果与补偿前进行了技术性和经济性比较,确认了补偿后谐波明显得到改善,功率因数达到补偿要求。虽然系统还有不平衡的问题,但鉴于实际牵引变电所的主接线特性,考虑到只要干线电气化铁道多个牵引变电所,高压侧轮换相序接入,就可以减小负序电流,且运营成本有明显的降低,因此补偿方案还是合理、可行的。
     最后又设想了加入三相补偿装置的仿真实验,结果证明该方法可以确实有效的消除负序电流,平衡三相系统。
To meet the demand for railway transport market in China, the railway construction is developed faster and faster. The construction of passenger Dedicated line, not only achieve separation of passenger and freight, but also improve transport efficiency. With the opening of PDL, the adoption of new technology and new equipment, the traction power supply system demands to be safer. A series of voltage fluctuation, harmonic, negative sequence and power factor etc power quality issues are becoming increasingly showed in front of people.
     Power factor is not only a direct response to the active power and reactive power distribution in power supply system, but also one of the technical indicators of the quality of power supply. So the assessment of power factor has been emphasized by power system. Therefore improving power factor in technical and economic aspect are of great significance.
     Collecting data from Hefei-Wuhan Passenger Dedicated Line power supply system, especially the north Macheng traction substation section. According to the site record within oscillogram of the of voltage and current, the AT power supply system characteristics and the actual construction plan, it observed on the waveform and harmonic analysis, then reached a conclusion that the substation has a power factor problem. So adding compensation device was proposed.
     To north macheng traction substation as the prototype, the traction nets of unit length impedance and capacitance parameters were obtained by the equivalent reduction method of power transmission line with multi-conductor, and then established the traction nets parameter model. It built the simulation model of traction power supply system by MATLAB/SIMULINK in this paper. Simulation analysis of single train in traction condition, single train in braking condition, double train in traction condition, one train in traction condition the other in braking condition four cases. And of the actual situation, analysis of several reactive power compensations, TCR+FC Static Var Compensator device was selected. Finally it compared the simulation result with inputting the compensation device to compensation before, in technical and economic aspect, the harmonic reduced and the power factor reached the requirement. With actual characteristics of traction substation main connection, there is imbalance in the system. The electrified railway lines have a number of traction substations, when the commutating access of high voltage side of each substation in the power system, the negative sequence current significantly reduced. And because of its reduced operating costs, the compensation scheme is reasonable and feasible.
     Finally, the three-phase compensating device was joined in simulation model experiment, and the results show that the method can effectively eliminate the negative sequence current, balance three-phase system.
引文
[1]李博.客运专线列车运行仿真研究[D].铁道科学研究院硕士学位论文,2007.
    [2]国家发展和改革委员会交通运输司.国家《中长期铁路网规划》内容简介[J].交通运输系统工程与信息,2005,5(4):1-4.
    [3]中长期铁路网规划(2008年调整)[J].综合运输,2008,(12):7-9.
    [4]潘光艳.客运专线路基与相关站后专业系统集成问题探讨[J].铁道标准设计,2005,(3):1-3.
    [5]李群湛.关于IEC标准与电气化铁道谐波的思考[A].教育部电能质量工程研究中心编,电能质量技术发展国际研讨会论文集[C].上海:教育部电能质量工程研究中心,2002,146-158.
    [6]解绍锋.电气化铁道谐波过程分析与推荐限值制定思路研究[D].西南交通大学博士学位论文,2004.
    [7]Working Group 36.05. Equipment producing Harmonics and Conditions Governing their Connection to the Mains Power Supply. Electra, No.123,1989.
    [8]李群湛,贺建闽.牵引供电系统综合补偿技术及其应用[J].电气化铁道,1998,(3):25-27.
    [9]王立天,陈维江,王彦利,张媛媛.京津城际客运专线10kV供电系统运行特性数值仿真[J].铁道工程学报,2007,12:435-440.
    [10]贺建闽,李群湛,申日青,王保国.牵引变电所功率因数及其补偿措施研究[J].铁道学报,1997,19(3):116-120.
    [11]贺建闽,黄治清,李群湛.牵引变电所固定并联电容补偿有效性评价[J].铁道学报,2004,6:41-45.
    [12]关于加强电气化铁路设计工作有关问题的通知[R].铁道部工程设计院.2007.
    [13]张丽,李群湛,贺建闽.无功反送正计条件下最佳固定补偿容量的选择[J].铁道学报,2003,25(2):35-38.
    [14]邓云川.铁道牵引变电所可调无功功率补偿[C].李学林.电气化铁路牵引变电所新技术研讨会论文集,2004,15-22.
    [15]董玲,张兴凯.TCR型静止动态无功补偿系统及应用[J].电气化铁道,2007,3:22-24.
    [16]赖惠鸽,朱学军.电气化铁道牵引供电系统动态无功补偿研究[J].宁夏工程技术,2002,(9):182-185.
    [17]李群湛,贺建闽.牵引供电系统分析[M].西南交通大学出版社,2007.
    [18]曹建猷.电气化铁道供电系统[M].中国铁道出版社,1993.
    [19]喻奇.客运专线牵引供电系统电气模型的研究[D].西南交通大学硕士学位论文,2009.
    [20]王奇.高速铁路牵引供电系统高次谐波谐振仿真研究[D].西南交通大学硕士学位论文,2009.
    [21]E. Pilo, L. Rouco. A reduced representation of 2x25kV electrical systems for high-speed railways [A]. Proceedings on the 2003 IEEE ASME Joint Rail Conference. Vol.4,2003, PP.199-205.
    [22]朱金奇.TCR+FC静止型无功补偿装置(SVC)原理及应用[J].电气工程应用,2006.32-37.
    [23]温建民.山区铁路牵引变电所无功补偿方案研究[D].西南交通大学硕士学位论文,2007.
    [24]李群湛.关于电气化铁道的负序影响与限制问题的研究[J].铁道学报,1994,16(4):22-27.
    [25]施汉基.三相不对称负荷的无功功率对称化补偿[J].电网技术,1998,22(2):40-43.
    [26]Bhavaraju V B, EnjetiP N. Analysis and design of an active power filter for balancing unbalanced loads. IEEE Trans. Power Electric 1992. Power Electronics Specialists Conference 1992. PESC '92 Record,23rd Annual IEEE, Vol.2, PP.1214-1220.
    [27]Wu J C, Jou H L. Simplified control method for the single—Phase active Power filter. IEEE Proc. Electric, Power. Vol.3,1996. PP.231-237.
    [28]林海雪.电力系统的三相不平衡[M].中国电力出版社,1998.5.
    [29]陈晰.电力系统稳态分析(第二版)[M].中国电力出版社,1995.11.
    [30]蒋家久,陈志博,沈辉,王才孝.动车试验线牵引供电三相平衡补偿装置的系统设计[J].大功率变流技术,2010,5:38-44.
    [31]吴命利.牵引供电系统电气参数与数学模型研究[D].北京交通大学博士论文,2006.
    [32]N.Golovanov, G.C.Lazaroiu, M.Roscia, D.Zaninelli. Voltage Unbalance Vulnerability Areas in Power Systems Supplying High Speed Railway.IEEE Power Engineering Society General Meeting, Vol.3, Jun.2005, PP.2509-2514.
    [33]章赛军.电气化铁道滤波研究[D].武汉:华中科技大学,2003.
    [34]Gary W.Chang, Hsin-Wei Lin, Shin-Kuan Chen. Modeling characteristics of harmonic currents generated by high-speed railway traction drive converters. IEEE trans. on Power delivery, vol.19, no.2,2004, PP.766-773.
    [35]肖正虎.针对电气化铁路负荷的无功补偿方法的研究[D].西安理工大学硕士学位论文,2010.
    [36]Roberto Cella, Giuseppe Giangaspero, Andrea Mariscotti, Angelo Montepagano, Paolo Pozzobon, Marco Ruscelli, and Maurizio Vanti. Measurement of AT Electric Railway System Currents at Power-Supply Frequency and Validation of a Multi-conductor Transmission-Line Model. IEEE transactions on power delivery, Vol.21, NO.3,1995. PP.1721-1726.
    [37]Dr R. John Hill, Mr David C. Carpenter. Modeling of nonlinear rail impedance in AC traction power systems. IEEE Transactions on Power Delivery, Vol.6, NO.4, Oct.1991. PP.1132-1137
    [38]R. Yacamini, O.A.R. Hamoud, and O. Afacan. Modeling of traction load distortion in electricity supply systems, IEE Proc, Vol.128, Pt. B, No.3, May.1981.PP.1231-1236.
    [39]杨建兴.AT牵引变电所动态无功补偿方案的设计与实施[C].电气化铁路牵引变电所新技术年会论文集,2007.
    [40]A.Mariscotti, P.Pozzobon, M. Vanti. Distributions of the traction return current in AT electric railway systems. Power Delivery, IEEE Trans. Vol.20, Issue 3, July 2005, PP.2119-2128.
    [41]R.Cella, Giuseppe Giangaspero, A.Mariscotti, A.Montepagano, P.Pozzobon, M.Ruscelli, M.Vanti. Measurement of AT electric railway system currents at power-supply frequency and validation of a multi-conductor transmission-line model. Power Delivery, IEEE Transactions, Vol.21, Issue 3, July 2006, PP.1721-1726.
    [42]韩祯祥.电力系统分析[M].浙江大学出版社,2007.
    [43]李维波MATLAB在电气工程中的应用[M].中国电力出版社,2007.
    [44]U.J.Shenoy, K.G.Sheshadri, K.Parthasarathy, H.P.Khincha, D.Thukaram. MATLAB/PSB based modeling and simulation of 25 kV AC railway traction system-a particular reference to loading and fault conditions. TENCON 2004.2004 IEEE Region 10 Conference Vol. C 21-24, Nov.2004, PP.508-511.
    [45]Peter Kiss, Hungary Andras Dmn, Hungary Y. Novel Method for Modeling and Calculating the Harmonic Effect and Psophometric Disturbance of High Power Electric Traction. Electromagnetic Compatibility and Electromagnetic Ecology,2005.IEEE 6th International Symposium on, Vol.4,2007,PP.48-51.
    [46]李群湛,贺建闽.电气化铁路电能质量及其综合控制技术[M].西南交通大学电气工程学院,2007
    [47]IEEE Working Group on Power System Harmonics. Power System Harmonics:An Overview. IEEE Trans.Vol.PAS-102,No.8, Aug.1983,PP.2455-2460
    [48]李群湛.试论电气化铁道的电能质量问题[J].客运专线技术研讨会论文集,2006:1-6.
    [49]Sasaki H. Machida T, A new method to eliminate ac harmonic currents by magnetic compensation consideration on basic design, Power Applications System, IEEE Trans. Vol.90 Issue 5, Sep.-Oct.1971,PP.2009-2019.
    [50]林磊.电气化铁路对电力系统影响的分析研究[D].浙江大学硕士研究生论文,2004.
    [51]EI-Habrouk M, Darwish M K, Mehta P. Active power filters:A review [J]. IEE proc-Electr. Power Appl.2000,147(5), PP.403-413.
    [52]DaoZhi Xia, G.T. Heydt. Harmonic power Flow Studies, part Ⅰ,Ⅱ, IEEE Trans. Vol. PAS-101, No.6,1982, PP.1257-1270.
    [53]Yahia. Baghzou, Owent. Tan. Probabilistic Modeling of Power System Harmonics. IEEE Trans.Vol.IA-23, No.1,1987, PP.173-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700