用户名: 密码: 验证码:
低惯量电—机械转换器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字阀是一种电液控制元件,由于其具有响应速度快,抗污染能力强,直接数字控制,且重复精度高等优点而得到广泛的应用。电-机械转换器作为数字阀的控制器,其性能的优劣直接决定数字阀性能的好坏。步进电机是一种将电脉冲信号转换成角位置信号的执行元件,可以作为电-机械转换器直接控制数字阀。因此,实验选用低惯量、高频响的永磁盘式步进电机作为电-机械转换器,通过控制方法的分析和改进提高电-机械转换器的响应频率。
     本文以永磁盘式步进为研究对象,分析其结构和原理,建立数学模型并提出电流和位置补偿校正控制方案;设计了基于DSP的专用控制器,采用电流和位置双闭环对其进行实验研究。实验结果表明电流和位置补偿校正能很好地改善电-机械转换器的动态特性,校正环节作用后,系统频响提高了60%,阶跃响应实验表示上升时间最快为2.1ms,对应相位滞后-90°的最大频宽为275Hz。
     具体研究内容如下:
     第一章,论述了数字阀、电-机械转换器以及永磁盘式步进电机的国内外发展和研究现状,阐述本论文的研究目的及意义。
     第二章,选用永磁盘式步进电机为研究对象,该电机具有极低的转动惯量,能产生优异的动态特性。详细介绍了永磁盘式步进电机的结构和原理,并对其进行了数学建模,得出两相步进电机的电压方程,力矩方程和动力学方程。
     第三章,设计基于DSP低惯量电-机械转换器控制器,介绍了硬件系统和软件系统,对各个模块进行说明;阐述了电流控制信号的产生及位置闭环等方法的实现。
     第四章,介绍电流和位置补偿校正环节,分析补偿环节的原理,理论和实验结果表明补偿环节作用后电机械转换器的频响有了很大的提高。
     第五章,搭建低惯量电-机械转换器实验平台,对其动态特性进行实验研究。控制器具有良好的阶跃响应特性,上升时间最快可达2.1ms;频宽最大可达275Hz,比补偿环节作用之前提高了66%。
     第六章,概括总结本论文的主要研究工作和成果,展望今后需进一步研究的工作和方向。
As one of the electro-hydraulic control elements, digital valve is applied widely because of its advantages, such as fast response time, strong ability to fight pollution, repeat direct numerical control, high precision etc. Low inertia electro-mechanical converter is a conversion interface used on digital valve, its performance largely determine the entire digital valves and even the whole control system performance. Stepper motor is an actuator which can change electrical pulse signal into position signal, and can directly control the digital valve. Selecting the low inertia permanent magnet stepper motor as the actuator and comparing different control methods to improve frequency response of the electro mechanical converter.
     Based on permanent magnet stepper motor, analyzing its structure and principle and presenting mathematic model and the current and position compensation control scheme. A control system is designed for magnetic disc stepper motor based on DSP and used as a low-inertia elector-mechanical converter for digital valve. The research is embedded in current and position of double closed loop control. The experimental results show that using the low-inertia motor as an elector-mechanical converter, the rise time is 2.1ms for 25% input signal and the bandwidth reaches 275Hz at -900 phase angle for 25% input signal, and that high-frequency response of digital servo valve can be realized.
     The contents of each chapter are listed as follows:
     In chapter 1, the research status of digital valve, electro-mechanical converter and permanent magnet stepper motor are summarized. The paper expounds the purpose and meanings of this research.
     In chapter 2, this paper selects permanent magnet stepper motor because of its low inertia and high frequency response. Describes the principle of electro-mechanical converters and establishes its mathematical modeling, draw the torque equation, voltage equation, and the kinetic equations of two-phase permanent magnet stepper motor and proposed current vector control strategies.
     In chapter 3, a controller is designed for low-inertia magnetic disc stepper motor based on DSP, with the current and position of double closed loop control. Introduce the hardware and software system. and the special DSP controller is designed which is used for small flow 2D digital valve. The implementation of algorithm which is used to produce signal of current and position loop is expounded
     In chapter 4, direct current feedback used in order to improve the elector mechanical converter frequency response. Current and position correction can compensate poor track with high frequency. Analysis of compensation principle and theory, experimental results show that the compensation effect of electro-mechanical converter frequency response has been greatly improved.
     In chapter, to build a permanent magnet stepping electro mechanical converter experiment platform, do the experiment of dynamic characteristics. The controller has a good step response, rise time up to 2.1ms; bandwidth of 275Hz, the compensation effect before the increased 66%.
     In chapter 6, all achievements of the paper are summarized and new prospect is put forward.
引文
[1]阮健,裴翔,李胜. 2D电液数字换向阀[J].机械工程学报, 2000, 36(3).
    [2]王传礼,袁桂峰.阀用电―机械转换器的应用研究[J].安徽理工大学学报(自然科学版) , 2005, 12(25): 41~44.
    [3]李其朋.直动式电液伺服阀关键技术的研究.浙江大学博士学位论文, 2005.
    [4]王宗培,孔昌平,李楚武.步进电机及其控制系统.哈尔滨:哈尔滨工业大学出版社,1984.
    [5] Michael M. Schechter. Fast Response Multipole Solenoids. SAE 820203 ,846~857.
    [6] N. John Back, Robert L. Barkhimer, Michael A. Calkins, etc. Direct Digital Control of Electronic Unit Injectors [J]. SAE 840273, 21332-21340.
    [7] Ramechandran, S, Ukrainetz, P R, Nikiforuk P N, "Digital flow control valve-an evaluation", 1985, Proceeding of international conference on fluid power, Hangzhou, China, pp. 508-512.
    [8] Erik Trostmann. Water Hydraulics Control Technology [M]. Danfoss A/S, 1996.
    [9] K·T·Koskinen, M·J·Vilenius, T·Virvalo, et al. Water as a pressure medium in position servo systems. The Forth Scandinavian International Conference on Fluid Power [Z]. Tampere, Finland, 1995, Septemter: 26-29.
    [10] Eizo Urata, Shimpei Miyakawa, Chishiro Yamashina, etc. Development of a water hydraulic servovalve[J].JSME International Journal, Series B, 1998, 41(2): 286-294.
    [11]王成宾,权龙.步进电机控制的液压数字阀的建模与仿真研究[D].太原:太原理工大学, 2006.
    [12]田中裕久.高速电磁开关阀的研究[A].日本机械学会论文集, 1984, 1594-1610.
    [13]田中裕久.ディジタル制御とその应用システム[J].油空压化设计,1984, 22(1): 16-23.
    [14]田中裕久,荒木一雄.三方向形高速电磁弁の电子油压ディジタル制御[J].油空压化设计, 1984, 50(458): 16-23.
    [15] Masahiko Miyaki, Hideya Fujisawa, Akira Masuda, etc. Development of New Electronically controlled Fuel Injection System ECD-U2 for Diesel Engines [J]. ASE 910252, 312-328.
    [16] Nascutiu L.Voice coil actuator for hydraulic servo valves with high transient performances [A].Proceedings of IEEE international conference on automation, quality and testing, robotics [C]. Cluj-Napoca, Romania: IEEE, 2006. 185 -190.
    [17]周棣,王东,首天成.数字液压阀的发展与研究[J].武汉科技学院学报, 2008, 21(2): 24-28.
    [18]赵晓燕. HGDV脉冲调制开关数字阀的理论及应用研究[D].兰州:兰州理工大学, 2004.
    [19] OUYang XiaoPing, YANG Hua Yong, JIANG Hao, etc. Simulation of the Piezoelectric High-speed on/off Valve [J]. Chinese Science Bulletin, 2008, 53(17): 2706-2711.
    [20] Reichert M, Murrenhoff H. New Concepts and Design of High Response Hydraulic Valves using Piezo-technology [J]. In: Power Transmission and Motion Control, Bath, 2006: 401-414.
    [21]易际研. 2D数字伺服阀及控制器的性能研究[D].杭州:浙江工业大学, 2009.
    [22]史敬灼.步进电动机伺服控制技术.北京:科学出版社2006, 7.
    [23]赵晓燕. HGDV脉冲调制开关数字阀的理论及应用研究[D].兰州:兰州理工大学, 2004.
    [24]阮健,李胜,裴翔.数字阀的分级控制及非线性[J].机械工程学报, 2005, 41(11): 91-97.
    [25]王传礼,袁桂峰.阀用电―机械转换器的应用研究[J].安徽理工大学学报(自然科学版), 2005, 12(25): 41~44.
    [26]骆涵秀,李世伦,朱捷,陈大军.机电控制[M],杭州:浙江大学出版社,1994.
    [27]胡美君.微型数字伺服阀电―机械转换器的研究[D].杭州:浙江工业大学, 2007.
    [28]张德虎.高速开关阀的理论研究与改进设计[D].四川:西南科技大学, 2006.
    [29] Murrenhoff H.Develop Trends in Fluid Power[J]. Konstruklion, 1997(3):20-29.
    [30] Lindler Jason E,Erson Eric H.Piezoelectric Direct Drive Servovalve[C].Industrial and Commercial Application of Smart Structures Technologies, 2002: 46-53.
    [31] Ai H X, Wang D H, Liao W H. Design and modeling of a new magnetorheological fluid valve [A] . Beijing: Proceedings of the 9th International Conference on Electrorheological (ER) Fluids and Magnetorheological (MR) Suspensions[C], 2004. 836-842.
    [32]王传礼,丁凡,张凯军.基于超磁致伸缩转换器的流体控制阀及其技术[J].农业机械学报, 2003, 34(5): 164-167.
    [33] Claeyssen F, Lhermet N, Leety R L et al. Actuators, transducers and motors based on giant magnetostrictive materials [J]. Journal of Alloys and Components. 1997(258):61-73. 33.
    [34] Coodfriend M, Sewell J, Jones C. Application of a magnetostrictive alloy, terfenol-D to direct control of hydraulic valves. SAE Paper 901581, 1990.
    [35] Yoshio Y,Hiroshi E,Jun S.Micro positioning and actuation devices using giant magnetostrictive materials[A]. Proceedings of the 2000 IEEE International Conference on Advanced Intelligent Mechatronics[C].San Francisco, USA, 2000:3635-3640.
    [36]方群,黄增.电液伺服阀的发展历史、研究现状及发展趋势[J].机床与液压, 2007, 35(11): 162-165.
    [37]孙建忠,白凤仙.特种电机及其控制.北京:中国水利水电出版社[M], 2005.朱骏.稀土永磁电机的应用现状及其发展.中国重型装备, 2008, 12.
    [38]朱骏.稀土永磁电机的应用现状及其发展[M].中国重型装备, 2008, 12.
    [39]魏静微.小功率永磁电机原理、设计及应用[M].北京:机械工业出版社, 2009, 2.邱国平,邱明.永磁直流电机实用技术及应用技术[M].北京:机械工业出版社, 2009, 3.
    [40]邱国平,邱明.永磁直流电机实用技术及应用技术[M].北京:机械工业出版社, 2009, 3.
    [41]唐任远.稀土永磁电机发展综述.永磁电机专委会, 2007, 11.
    [42]骆涵秀,李世伦,朱捷,陈大军.机电控制[M].杭州:浙江大学出版社, 1994.
    [43]梅晓榕,柏桂珍,张卯瑞.自动控制元件及线路[M].科学出版社, 2007, 4.
    [44]阮健.电液(气)直接数字控制技术[M].杭州:浙江大学出版社, 2000.
    [45]丛望,郭镇明.电机学.哈尔滨工程大学出版社[M], 1996, 1.
    [46]徐宇翔.基于DSP的数字阀控制器的研究[D].杭州:浙江工业大学, 2008.
    [47]易际研. 2D数字伺服阀及控制器的性能研究[D].杭州:浙江工业大学, 2009.
    [48]易际研,李胜,阮健. 2D数字伺服阀的频率特性研究[J].机床与液压, 2009, 11(37): 67~70.
    [49]万山明. TMS320F281XDSP原理及应用实例[M].北京:北京航空航天大学出版社, 2007, 7.
    [50]苏奎峰,吕强,常天庆,张永秀. TMS320F281XDSP原理及C程序开发[M].北京:北京航天大学出版社, 2008, 2.
    [51]坂本正文,王自强.步进电机应用技术[M].北京:科学出版社, 2010.
    [52]刘满雀,姚若河.一种高精度电流检测电路的设计[J].中国集成电路, 2009(118): 53~57.
    [53]赵强,毕文青,刘丙娥.基于双路输出低压差电压调制器TPS767D318的DSP电源设计[J].科技信息, 2007(31): 367~368.
    [54]李元春.计算机控制系统主编[M].北京:高等教育出版社, 2005, 3.
    [55]梅晓榕,庄显义.自动控制原理[M].北京:科学出版社, 2007, 2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700