用户名: 密码: 验证码:
恩诺沙星和磺胺二甲嘧啶核酸适配体的筛选及化学发光检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恩诺沙星(Enrofloxacin, ENR)和磺胺二甲嘧啶(Sulfamethazine, SM2)是目前在畜牧养殖及水产业应用较广的两种抗菌药,同时也是畜产品安全着重监管的对象。目前对这两种药物的快速残留检测研究主要以抗体为结合元件建立的免疫分析方法为主。然而,抗体的制备离不开使用实验动物,而且难以重复生产,再加上其对保存条件要求严格,导致抗体的使用受到限制。核酸适配体(Aptamer)是能够与许多目标分子(蛋白,药物,无机或有机分子)发生高亲合性和特异性结合的一类单链核苷酸(DNA或RNA)。与抗体相比,核酸适配体的最大优势在于不需要使用实验动物,可用体外方法分离制备,并且其更易于修饰,也更稳定。本研究以恩诺沙星和磺胺二甲嘧啶为靶分子,首次筛选出能特异性识别这两种抗菌药的核酸适配体,并分别建立了用于牛奶中恩诺沙星和磺胺二甲嘧啶残留检测的直接竞争化学发光分析方法。
     通过将恩诺沙星和氧氟沙星(Ofloxacin, OFL)与磁珠(Magnetic beads, MBs)偶联,并以OFL-MBs作为反筛工具,建立了用于恩诺沙星核酸适配体筛选的磁珠辅助-指数式扩增配体的系统进化筛选体系(Mag-SELEX)。经过8轮筛选,最终得到6条ssDNA核酸适配体,分别为No.11, No.17, No.19, No.21, No.27和No.49。其中No.17、No.19和No.49的亲和力最高,其解离常数(Dissociation constant,Kd)分别为188nM、355nM和459nM。选取这三条核酸适配体进行特异性分析,结果显示No.17和No.19的特异性优于No.49。并且,No.17对恩诺沙星的结合能力最强,其对环丙沙星也有微弱的结合能力。将数据进行统计学分析,结果显示No.17具备区分恩诺沙星与环丙沙星的能力。因此,No.17将用于检测方法的建立。
     将磺胺二甲嘧啶和磺胺甲基嘧啶(Sulfamerazine,SMR)与磁珠偶联,并以SMR-MBs作为反筛工具,建立了用于磺胺二甲嘧啶核酸适配体筛选的Mag-SELEX体系。经过9轮筛选,共得到4条核酸适配体,分别为SAM, SA06, SA07和SA41。这四条核酸适配体都具有较高的亲和力,其解离常数分别为203nM、274nM、79nM和122nM。选取拥有较低解离常数的SA07和SA41进行特异性测定,结果显示,这两条核酸适配体均能特异性识别磺胺二甲嘧啶。因此,选择亲和力最高的SA07用于检测方法的建立。
     选用生物素(Biotin)化的核酸适配体biotin-No.17作为识别工具,利用链霉亲和素-生物素系统,并合成出酶标抗原ENR-spacer-HRP,建立了用于恩诺沙星残留检测的直接竞争化学发光分析法。该方法的检测限为2.26ng/mL,并且方法特异性良好,对环丙沙星的交叉反应率为2.5%。应用于牛奶样品中恩诺沙星的残留检测,其回收率为90.6-104.7%。变异系数为9.8-18.9%,结果表明本研究建立的方法可用于牛奶中恩诺沙星的残留检测。
     同样以生物素化的核酸适配体(biotin-SA07)为识别工具,合成出酶标抗原SM2-GA-HRP,建立了用于检测磺胺二甲嘧啶的直接竞争化学发光分析方法。该方法的检测限为0.92ng/mL,线性范围为1.85-21.57ng/mL,并且该方法对27种磺胺类药物(除了磺胺二甲嘧啶)的交叉反应率均较低。将磺胺二甲嘧啶添加至空白牛奶,其回收率为88.0-98.2%,变异系数为10.0-23.4%,以上结果表明本研究建立的方法可用于检测牛奶中磺胺二甲嘧啶的残留。
Enrofloxacin (ENR) and sulfamethazine (SM2) have been wildly used to treat infections in livestock and aquatic animals. Therefore, the intensive residue monitoring for these two drugs in animal products is essential. The immunoassay, which employs antibody as the recognition element, is the most common used method for the rapid detection of veterinary drugs. However, the preparation of antibody not only needs the laboratory animals, but also requires strict storage condition. Moreover, it would be difficult to be reproduced, therefore the application of the antibody is limited. Aptamers are single-strand deoxyribonucleic acid (ssDNA) and ribonucleic acid (RNA) that can specifically bind to targets (proteins, drugs or other molecules). Compared with antibody, aptamers are selected by in vitro selection, which is an animal-friendly method. Besides, aptamers are more stable than antibodies, and they can be modified easily. In this study, ENR-specific and SM2-specific aptamers were selected by in vitro selection for the first time. And the direct competitive chemiluminescent enzyme immunoassays (dc-CLEIA) for detecting ENR and SM2were developed based on the newly developed aptamers.
     ENR and ofloxacin (OFL) were immobilized onto magnetic beads (MBs) by forming a covalent bond. The Mag-SELEX system was developed for selecting several aptamers that can specifically bind with ENR by introducing OFL-MBs as counter selection. After8rounds of selection, six aptamer were selected, which were No.1l, No.17, No.19, No.21, No.27and No.49. Three of them, No.17, No.19and No.49, showed the relatively high affinity towards ENR. The dissociation constants (K4) of the three aptamers were188nM,355nM and459nM, respectively. Then, the specific tests of individual aptamer were conducted among the three aptamers. The results showed that No.17and No.19were more specific to ENR than No.49did. Interestingly, No.17also exhibited a weak affinity towards cipfloxacin (CIP). But No.17was still capable to tell ENR from CEP and OFL according to the statistical analysis. Therefore, No.17will be chosen to develop the method for detection of ENR.
     Besides, SM2and sulfamerazine (SMR) were attached onto MBs by forming a covalent bond as well. As the tool for counter selection, SMR-MBs was introduced to develop the Mag-SELEX system for the selection of aptamers that can specifically bind to SM2. After the ninth round selection, four aptamers were selected, which were SA04, SA06, SA07and SA41. All of these aptamer showed a high affinity towards SM2, the Kd values of them were203nM,264nM,79nM and122nM separately. And the specific tests of SA07and SA41were conducted. The results showed that both aptamers were highly specific for SM2. So, SA07, the aptamer with the highest affinity, would be chosen to develop the method for the detection of SM2.
     The direct competitive chemiluminescent enzyme immunoassay for detecting ENR was developed by introducing the streptavidin-biotin system, the biotin-labeled No.17as the recognition element and the ENR-spacer-HRP as the enzyme-labeled antigen. The optimized method displayed a detection limit (LOD) of2.26ng/mL. And a low degree of cross-reactivity between ENR and CIP (2.5%) was observed. These results revealed that the developed method was specific for ENR. Besides, recovery of spiked milk samples with ENR was studied, the recoveries of ENR were90.6-104.7%. Assay reproducibility was satisfactory, with coefficient of variation (CV) ranging from9.8%to18.9%. These results indicated that ENR in bovine milk can be detected by this method efficiently.
     Meanwhile, the dc-CLEIA for the detection of SM2was also developed. The biotin-labeled SA07and SM2-GA-HRP were used in this assay as the recognition element and the enzyme-labeled antigen, respectively. The LOD values of this method was0.92ng/mL, and the working linear range was from1.85ng/mL to21.57ng/mL. The specificity test for the determination of SM2was performed by employing27SAs. And a low degree of cross-reactivity between SM2and27SAs was observed, suggesting a high specificity of the method. Besides, the analysis of SM2fortified milk samples by the developed method showed average recoveries from88.0-98.2%with CV ranged from10.0%to23.4%. Thus, these results suggested that the SA07-based dc-CLEIA was suitable for screening SM2in milk.
引文
[1]Ellington, A.D., Szostak, J.W. In Vitro Selection of Rna Molecules That Bind Specific Ligands. Nature.1990,346 (6287):818-822
    [2]Sen, D., Gilbert, W. [10] Guanine Quartet Structures. In:Methods in Enzymology--David M.J. Lilley, J.E.D., ed.:Academic Press,1992:191-199
    [3]Tuerk, C., Gold, L. Systematic Evolution of Ligands by Exponential Enrichment:Rna Ligands to Bacteriophage T4 DNA Polymerase. Science.1990,249 (4968):505-510
    [4]Kruger, K., Grabowski, P.J., Zaug, A.J., et al. Self-Splicing Rna:Autoexcision and Autocyclization of the Ribosomal Rna Intervening Sequence of Tetrahymena. Cell.1982,31 (1):147-157
    [5]Robertson, D.L., Joyce, G.F. Selection in Vitro of an Rna Enzyme That Specifically Cleaves Single-Stranded DNA. Nature.1990,344 (6265):467-468
    [6]Hermann, T., Patel, D.J. Adaptive Recognition by Nucleic Acid Aptamers. Science.2000,287 (5454):820-825
    [7]Campbell, N.H., Parkinson, G.N., Reszka, A.P., et al. Structural Basis of DNA Quadruplex Recognition by an Acridine Drug. Journal of the American Chemical Society.2008,130 (21): 6722-6724
    [8]Wei, C., Jia, G., Yuan, J., et al. A Spectroscopic Study on the Interactions of Porphyrin with G-Quadruplex Dnas(?). Biochemistry.2006,45 (21):6681-6691
    [9]Haider, S.M., Parkinson, G.N., Neidle, S. Structure of a G-Quadruplex-Ligand Complex. Journal of Molecular Biology.2003,326 (1):117-125
    [10]Guschlbauer, W., Chantot, J.-F., Thiele, D. Four-Stranded Nucleic Acid Structures 25 Years Later: From Guanosine Gels to Telomer DNA. Journal of Biomolecular Structure and Dynamics.1990,8 (3): 491-511
    [11]Smirnov, I., Shafer, R.H. Lead Is Unusually Effective in Sequence-Specific Folding of DNA. Journal of Molecular Biology.2000,296 (1):1-5
    [12]Liu, W., Fu, Y., Zheng, B., et al. Kinetics and Mechanism of Conformational Changes in a G-Quadruplex of Thrombin-Binding Aptamer Induced by Pb2+. The Journal of Physical Chemistry B. 2011,115 (44):13051-13056
    [13]蔡莉莉.G-四联体-Hemin过氧化物模拟酶的结构及应用研究[硕士学位论文]:南开大学.2010
    [14]Rezler, E.M., Bearss, D.J., Hurley, L.H. Telomeres and Telomerases as Drug Targets. Current Opinion in Pharmacology.2002,2 (4):415-423
    [15]Proske, D., Blank, M,, Buhmann, R., et al. Aptamers-Basic Research, Drug Development, and Clinical Applications. Applied Microbiology and Biotechnology.2005,69 (4):367-374
    [16]Vater, A., Jarosch, F., Buchner, K., et al. Short Bioactive Spiegelmers to Migraine-Associated Calcitonin Gene-Related Peptide Rapidly Identified by a Novel Approach:Tailored - Selex. Nucleic Acids Research.2003,31 (21):e130
    [17]Mendonsa, S.D., Bowser, M.T. In Vitro Evolution of Functional DNA Using Capillary Electrophoresis. Journal of the American Chemical Society.2003,126 (1):20-21
    [18]Mosing, R.K., Mendonsa, S.D., Bowser, M.T. Capillary Electrophoresis-Selex Selection of Aptamers with Affinity for Hiv-1 Reverse Transcriptase. Analytical Chemistry.2005,77 (19): 6107-6112
    [19]Yu, H., Jiang, B., Chaput, J.C. Aptamers Can Discriminate Alkaline Proteins with High Specificity. ChemBioChem.2011,12 (17):2659-2666
    [20]Kanoatov, M., Krylov, S.N. DNA Adsorption to the Reservoir Walls Causing Irreproducibility in Studies of Protein-DNA Interactions by Methods of Kinetic Capillary Electrophoresis. Analytical Chemistry.2011,83 (20):8041-8045
    [21]Mann, D., Reinemann, C., Stoltenburg, R., et al. In Vitro Selection of DNA Aptamers Binding Ethanolamine. Biochemical and Biophysical Research Communications.2005,338 (4):1928-1934
    [22]Morris, K.N., Jensen, K.B., Julin, C.M., et al. High Affinity Ligands from in Vitro Selection: Complex Targets. Proceedings of the National Academy of Sciences.1998,95 (6):2902-2907
    [23]Wang, C., Zhang, M., Yang, G., et al. Single-Stranded DNA Aptamers That Bind Differentiated but Not Parental Cells:Subtractive Systematic Evolution of Ligands by Exponential Enrichment. Journal of Biotechnology.2003,102 (1):15-22
    [24]Carothers, J.M., Szostak, J.W. In Vitro Selection of Functional Oligonucleotides and the Origins of Biochemical Activity, In:The Aptamer Handbook:Wiley-VCH Verlag GmbH & Co. KGaA,2006:1-28
    [25]Litman, G.W., Rast, J.P., Shamblott, M.J., et al. Phylogenetic Diversification of Immunoglobulin Genes and the Antibody Repertoire. Molecular Biology and Evolution.1993,10 (1):60-72
    [26]Margulies, D.H., Michael Kuehl, W., Scharff, M.D. Somatic Cell Hybridization of Mouse Myeloma Cells. Cell.1976,8 (3):405-415
    [27]宋娟,王榕妹,王悦秋,等.半抗原的设计、修饰及人工抗原的制备.分析化学.2010,38(8):1211-1218
    [28]邵宁生,李少华,黄燕苹.Selex技术及aptamer研究的新进展.生物化学与生物物理进展.2006,33(4):329-335
    [29]武文斌.Sirna核糖分子化学修饰对rnai功能的影响.生物技术通报.2009(6):34-37
    [30]Mehta, J., Van Dorst, B., Rouah-Martin, E., et al. In Vitro Selection and Characterization of DNA Aptamers Recognizing Chloramphenicol. Journal of Biotechnology.2011,155 (4):361-369
    [31]Zhu, J., Tao, X., Ding, S., et al. Micro-Plate Chemiluminescence Enzyme Immunoassay for Determination of Zeranol in Bovine Milk and Urine. Analytical Letters.2012,45 (17):2538-2548
    [32]Li, L., Li, B., Qi, Y, et al. Label-Free Aptamer-Based Colorimetric Detection of Mercury Ions in Aqueous Media Using Unmodified Gold Nanoparticles as Colorimetric Probe. Analytical and Bioanalytical Chemistry.2009,393 (8):2051-2057
    [33]Joshi, R., Janagama, H., Dwivedi, H.P., et al. Selection, Characterization, and Application of DNA Aptamers for the Capture and Detection of Salmonella Enterica Serovars. Molecular and Cellular Probes.2009,23(1):20-28
    [34]Misono, T.S., Kumar, P.K.R. Selection of Rna Aptamers against Human Influenza Virus Hemagglutinin Using Surface Plasmon Resonance. Analytical Biochemistry.2005,342 (2):312-317
    [35]Kato, T., Takemura, T., Yano, K., et al. In Vitro Selection of DNA Aptamers Which Bind to Cholic Acid. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression.2000,1493 (1-2):12-18
    [36]Niazi, J.H., Lee, S.J., Gu, M.B. Single-Stranded DNA Aptamers Specific for Antibiotics Tetracyclines. Bioorganic & Medicinal Chemistry.2008,16(15):7245-7253
    [37]Niazi, J.H., Lee, S.J., Kim, Y.S., et al. Ssdna Aptamers That Selectively Bind Oxytetracycline. Bioorganic & Medicinal Chemistry.2008,16 (3):1254-1261
    [38]Zhou, N., Wang, J., Zhang, J., et al. Selection and Identification of Streptomycin-Specific Single-Stranded DNA Aptamers and the Application in the Detection of Streptomycin in Honey. Talanta. 2013,108(0):109-116
    [39]Schurer, H., Stembera, K., Knoll, D., et al. Aptamers That Bind to the Antibiotic Moenomycin A. Bioorganic & Medicinal Chemistry.2001,9 (10):2557-2563
    [40]Wochner, A., Menger, M., Orgel, D., et al. A DNA Aptamer with High Affinity and Specificity for Therapeutic Anthracyclines. Analytical Biochemistry.2008,373 (1):34-42
    [41]Song, K.-M., Cho, M., Jo, H., et al. Gold Nanoparticle-Based Colorimetric Detection of Kanamycin Using a DNA Aptamer. Analytical Biochemistry.2011,415 (2):175-181
    [42]Martin, J.A., Parekh, P., Kim, Y., et al. Selection of an Aptamer Antidote to the Anticoagulant Drug Bivalirudin. PLoS ONE.2013,8 (3):e57341
    [43]Goertz, P.W., Cox, J.C., Ellington, A.D. Automated Selection of Aminoglycoside Aptamers. Journal of the Association for Laboratory Automation.2004,9 (3):150-154
    [44]Stojanovic, M.N., de Prada, P., Landry, D.W. Aptamer-Based Folding Fluorescent Sensor for Cocaine. Journal of the American Chemical Society.2001,123 (21):4928-4931
    [45]Huizenga, D.E., Szostak, J.W. A DNA Aptamer That Binds Adenosine and Atp. Biochemistry.1995, 34 (2):656-665
    [46]Kim, Y.S., Jung, H.S., Matsuura, T, et al. Electrochemical Detection of 17β-Estradiol Using DNA Aptamer Immobilized Gold Electrode Chip. Biosensors and Bioelectronics.2007,22 (11):2525-2531
    [47]Jo, M., Ahn, J.Y., Lee, J., et al. Development of Single-Stranded DNA Aptamers for Specific Bisphenol a Detection. Oligonucleotides.2011,21 (2):85-91
    [48]Cruz-Aguado, J.A., Penner, G. Determination of Ochratoxin a with a DNA Aptamer. Journal of Agricultural and Food Chemistry.2008,56 (22):10456-10461
    [49]Ma, X., Wang, W., Chen, X., et al. Selection, Identification, and Application of Aflatoxin B1 Aptamer. European Food Research and Technology.2014:1-7
    [50]McKeague, M., Bradley, C.R., Girolamo, A.D., et al. Screening and Initial Binding Assessment of Fumonisin B1 Aptamers. International Journal of Molecular Sciences.2010,11 (12):4864-4881
    [51]Wang, L., Liu, X., Zhang, Q., et al. Selection of DNA Aptamers That Bind to Four Organophosphorus Pesticides. Biotechnology Letters.2012,34 (5):869-874
    [52]He, J., Liu, Y., Fan, M., et al. Isolation and Identification of the DNA Aptamer Target to Acetamiprid. Journal of Agricultural and Food Chemistry.2011,59 (5):1582-1586
    [53]Barthelmebs, L., Jonca, J., Hayat, A., et al. Enzyme-Linked Aptamer Assays (Elaas), Based on a Competition Format for a Rapid and Sensitive Detection of Ochratoxin a in Wine. Food Control.2011, 22 (5):737-743
    [54]Ferreira, C.S.M., Papamichael, K., Guilbault, G., et al. DNA Aptamers against the Mucl Tumour Marker:Design of Aptamer-Antibody Sandwich Elisa for the Early Diagnosis of Epithelial Tumours. Analytical and Bioanalytical Chemistry.2008,390 (4):1039-1050
    [55]Swensen, J.S., Xiao, Y., Ferguson, B.S., et al. Continuous, Real-Time Monitoring of Cocaine in Undiluted Blood Serum Via a Microfluidic, Electrochemical Aptamer-Based Sensor. Journal of the American Chemical Society.2009,131 (12):4262-4266
    [56]Li, W., Yang, X., Wang, K., et al. Fret-Based Aptamer Probe for Rapid Angiogenin Detection. Talanta.2008,75 (3):770-774
    [57]Bruno, J., Carrillo, M., Phillips, T., et al. A Novel Screening Method for Competitive Fret-Aptamers Applied to E. Coli Assay Development. Journal of Fluorescence.2010,20 (6): 1211-1223
    [58]Breaker, R.R., Joyce, G.F. A DNA Enzyme That Cleaves Rna. Chemistry & Biology.1994,1 (4): 223-229
    [59]Hollenstein, M., Hipolito, C., Lam, C., et al. A Highly Selective Dnazyme Sensor for Mercuric Ions. Angewandte Chemie International Edition.2008,47 (23):4346-4350
    [60]Travascio, P., Li, Y, Sen, D. DNA-Enhanced Peroxidase Activity of a DNA Aptamer-Hemin Complex. Chemistry & Biology.1998,5 (9):505-517
    [61]Li, T., Dong, S., Wang, E. Label-Free Colorimetric Detection of Aqueous Mercury Ion (Hg2+) Using Hg2+-Modulated G-Quadruplex-Based Dnazymes. Analytical Chemistry.2009,81 (6): 2144-2149
    [62]Zeng, K., Zhang, J., Wang, Y, et al. Development of a Rapid Multi-Residue Assay for Detecting B-Lactams Using Penicillin Binding Protein 2x*. Biomedical and Environmental Sciences.2013,26 (2): 100-109
    [63]Liang, X., Wang, Z., Wang, C., et al. A Proof-of-Concept Receptor-Based Assay for Sulfonamides. Analytical Biochemistry.2013,438 (2):110-116
    [64]Stone, E., Hirama, T., Tanha, J., et al. The Assembly of Single Domain Antibodies into Bispecific Decavalent Molecules. Journal of Immunological Methods.2007,318 (1-2):88-94
    [65]Qi, Y, Wu, C., Zhang, S., et al. Selection of Anti-Sulfadimidine Specific Scfvs from a Hybridoma Cell by Eukaryotic Ribosome Display. PLoS ONE.2009,4 (7):e6427
    [66]Korpimaki, T., Brockmann, E.-C., Kuronen, O., et al. Engineering of a Broad Specificity Antibody for Simultaneous Detection of 13 Sulfonamides at the Maximum Residue Level. Journal of Agricultural and Food Chemistry.2003,52 (1):40-47
    [67]Wen, K., Nolke, G., Schillberg, S., et al. Improved Fluoroquinolone Detection in Elisa through Engineering of a Broad-Specific Single-Chain Variable Fragment Binding Simultaneously to 20 Fluoroquinolones. Analytical and Bioanalytical Chemistry.2012,403 (9):2771-2783
    [68]Mazzotta, E., Picca, R.A., Malitesta, C., et al. Development of a Sensor Prepared by Entrapment of Mip Particles in Electrosynthesised Polymer Films for Electrochemical Detection of Ephedrine. Biosensors and Bioelectronics.2008,23 (7):1152-1156
    [69]Puoci, F., Garreffa, C., lemma, F., et al. Molecularly Imprinted Solid Phase Extraction for Detection of Sudan I in Food Matrices. Food Chemistry.2005,93 (2):349-353
    [70]邹晓楠,龚云飞,奚茜,等.恩诺沙星人工抗原及多克隆抗体的制备.安徽农业科学.2012(27):13415-13417
    [71]郭娇娇,宫智勇.恩诺沙星在水产养殖中的研究进展.江苏农业科学.2011,39(4):290-292
    [72]Gratacos-Cubarsi, M., Garcia-Regueiro, J.-A., Castellari, M. Assessment of Enrofloxacin and Ciprofloxacin Accumulation in Pig and Calf Hair by Hplc and Fluorimetric Detection. Analytical and Bioanalytical Chemistry.2007,387 (6):1991-1998
    [73]陈军霞.量子点标记荧光免疫吸附测定法的建立和应用[硕士学位论文]:中国农业大学.2006
    [74]Kim, S., Ko, J., Lim, H.B. Application of Magnetic and Core-Shell Nanoparticles to Determine Enrofloxacin and Its Metabolite Using Laser Induced Fluorescence Microscope. Analytica Chimica Acta.2013,771 (0):37-41
    [75]Urlacher, VB., Girhard, M. Cytochrome P450 Monooxygenases:An Update on Perspectives for Synthetic Application. Trends in Biotechnology.2012,30 (1):26-36
    [76]胡红芳.恩诺沙星对鸡细胞色素p450酶系的影响[博士学位论文]:中国人民解放军军事医学科学院.2009
    [77]贾娴.恩诺沙星在异育银鲫肝微粒体中代谢及对p450主要亚酶影响的初步研究[硕士学位论文]:四川农业大学.2009
    [78]韩华,李健,李吉涛,等.喹诺酮类药物对牙鲆肝药物代谢酶活性的影响.海洋科学.2009,33(11):48-54
    [79]卢丽红,张斐斐,林居纯,等.恩诺沙星对小鼠肝微粒体细胞色素p450影响的研究.中国药理学通报.2013,29(9):1324-1325
    [80]Zhu, Y.-G., Johnson, T.A., Su, J.-Q., et al. Diverse and Abundant Antibiotic Resistance Genes in Chinese Swine Farms. Proceedings of the National Academy of Sciences.2013,110 (9):3435-3440
    [81]Aly, S.A., Debavalya, N., Suh, S.-J., et al. Molecular Mechanisms of Antimicrobial Resistance in Fecal Escherichia Coli of Healthy Dogs after Enrofloxacin or Amoxicillin Administration. Canadian Journal of Microbiology.2012,58 (11):1288-1294
    [82]Pourcher, A.M., Jadas-Hecart, A., Cotinet, P., et al. Effect of Land Application of Manure from Enrofloxacin-Treated Chickens on Ciprofloxacin Resistance of Enterobacteriaceae in Soil. Science of the Total Environment.2014,482-483 (0):269-275
    [83]孟春萍,陈燕杰,吴华,等.鸭源大肠杆菌对氟喹诺酮类耐药机制的研究.江西农业学报.2012,24(1):128-130,133
    [84]Vanni, M., Meucci, V., Tognetti, R., et al. Fluoroquinolone Resistance and Molecular Characterization of Gyra and Pare Quinolone Resistance-Determining Regions in Escherichia Coli Isolated from Poultry. Poultry Science.2014,93 (4):856-863
    [85]Nelson, J.M., Chiller, T.M., Powers, J.H., et al. Fluoroquinolone-Resistant Campylobacter Species and the Withdrawal of Fluoroquinolones from Use in Poultry:A Public Health Success Story. Clinical Infectious Diseases.2007,44 (7):977-980
    [86]陈燕军.再思考欧盟禁用动物抗生素添加剂.中国牧业通讯.2007(10):20-23
    [87]Food and Drug Administration. New Animal Drugs; Updating Tolerances for Residues of New Animal Drugs in Food. FDA-2012-N-1067,2012
    [88]中华人民共和国农业部.第235号公告.2002.
    [89]Commission European. European Union decision EC/2002/657.2002.
    [90]黎其万,潘灿平.农药残留免疫分析方法及其应用研究进展.西南农业学报.2004,17(2):248-252
    [91]Zhang, M., Liu, S., Zhuang, H., et al. Determination of Dimethyl Phthalate in Environment Water Samples by a Highly Sensitive Indirect Competitive Elisa. Applied Biochemistry and Biotechnology. 2012,166 (2):436-445
    [92]Sakharov, I.Y., Alpeeva, I.S., Efremov, E.E. Use of Soybean Peroxidase in Chemiluminescent Enzyme-Linked Immunosorbent Assay. Journal of Agricultural and Food Chemistry.2006,54 (5): 1584-1587
    [93]Levine, M.N., Raines, R.T. Sensitive Fluorogenic Substrate for Alkaline Phosphatase. Analytical Biochemistry.2011,418 (2):247-252
    [94]Watanabe, H., Satake, A., Kido, Y., et al. Monoclonal-Based Enzyme-Linked Immunosorbent Assay and Immunochromatographic Assay for Enrofloxacin in Biological Matrices. The Analyst.2002, 127 (1):98-103
    [95]Kato, M., Ihara, Y., Nakata, E., et al. Development of Enrofloxacin Elisa Using a Monoclonal Antibody Tolerating an Organic Solvent with Broad Cross-Reactivity to Other Newquinolones. Food and Agricultural Immunology.2007,18 (3-4):179-187
    [96]Wang, Z., Zhu, Y., Ding, S., et al. Development of a Monoclonal Antibody-Based Broad-Specificity Elisa for Fluoroquinolone Antibiotics in Foods and Molecular Modeling Studies of Cross-Reactive Compounds. Analytical Chemistry.2007,79 (12):4471-4483
    [97]尹东光,贺佑丰,刘一兵,等.几种主要化学发光物质的发光性能及其化学发光免疫分析体系.标记免疫分析与临床.2002,9(4):225-230
    [98]Diaz, A.N., Sanchez, F.G., Gonzalez Garcia, J.A. Phenol Derivatives as Enhancers and Inhibitors of Luminol-H2o2-Horseradish Peroxidase Chemiluminescence. Journal of Bioluminescence and Chemiluminescence.1998,13 (2):75-84
    [99]Marzocchi, E., Grilli, S., Della Ciana, L., et al. Chemiluminescent Detection Systems of Horseradish Peroxidase Employing Nucleophilic Acylation Catalysts. Analytical Biochemistry.2008, 377 (2):189-194
    [100]Kricka, L.J., Ji, X.4-Phenylylboronic Acid:A New Type of Enhancer for the Horseradish Peroxidase Catalysed Chemiluminescent Oxidation of Luminol. Journal of Bioluminescence and Chemiluminescence.1995,10 (1):49-54
    [101]Dotsikas, Y, Loukas, Y.L. Effect of the Luminol Signal Enhancer Selection on the Curve Parameters of an Immunoassay and the Chemiluminescence Intensity and Kinetics. Talanta.2007,71 (2):906-910
    [102]Vdovenko, M.M., Ciana, L.D., Sakharov, I.Y.3-(10'-Phenothiazinyl)Propane-l-Sulfonate Is a Potent Enhancer of Soybean Peroxidase-Induced Chemiluminescence. Analytical Biochemistry.2009, 392 (1):54-58
    [103]Yu, S., Yu, F., Zhang, H., et al. Optimization of Condition for Conjugation of Enrofloxacin to Enzymes in Chemiluminescence Enzyme Immunoassay. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2014,127 (0):47-51
    [104]Yu, R, Yu, S., Yu, L., et al. Determination of Residual Enrofloxacin in Food Samples by a Sensitive Method of Chemiluminescence Enzyme Immunoassay. Food Chemistry.2014,149 (0):71-75
    [105]张静.恩诺沙星化学发光酶免疫分析方法研究[硕士学位论文]:郑州大学.2010
    [106]张振亚,梅兴国.现代荧光免疫分析技术应用及其新发展.生物技术通讯.2006,17(4):677-680
    [107]Mi, T., Liang, x., Ding, L., et al. Development and Optimization of Fluorescence Polarization Immunoassay for Orbifloxacin in Milk. Analytical Methods.2014
    [108]Mi, T., Wang, Z., Eremin, S.A., et al. Simultaneous Determination of Multiple (Fluoro)Quinolone Antibiotics in Food Samples by a One-Step Fluorescence Polarization Immunoassay. Journal of Agricultural and Food Chemistry.2013,61 (39):9347-9355
    [109]潘利华,杜继贤,谢文兵,等.时间分辨激光荧光光谱技术在免疫分析中的应用.光谱学与光谱分析.2000,20(3):277-279
    [110]Liu, T.-C., Chen, M.-J., Ren, Z.-Q., et al. Development of an Improved Time-Resolved Fluoroimmunoassay for Simultaneous Quantification of C-Peptide and Insulin in Human Serum. Clinical Biochemistry.2014,47 (6):439-444
    [111]Bin, Z., Kai, Z., Jue, Z., et al. A Novel and Sensitive Method for the Detection of Enrofloxacin in Food Using Time-Resolved Fluoroimmunoassay. Toxicology Mechanisms and Methods.2013,23 (5): 323-328
    [112]Liu, B.-H., Hsu, Y.-T., Lu, C.-C., et al. Detecting Aflatoxin B1 in Foods and Feeds by Using Sensitive Rapid Enzyme-Linked Immunosorbent Assay and Gold Nanoparticle Immunochromatographic Strip. Food Control.2013,30 (1):184-189
    [113]王羚鸿.恩诺沙星单克隆抗体的制备鉴定及其胶体金免疫层析试纸条的研制[硕士学位论文]:内蒙古医学院.2009
    [114]刘荟岭.Hplc法测定禽血清和肌肉中恩诺沙星含量的方法改进与应用[硕士学位论文]:东北农业大学.2013
    [115]Hatano, K. Simultaneous Determination of Quinolones in Foods by Lc/Ms/Ms. Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan.2004,45 (5):239-244
    [116]Barron, D., Jim6nez-Lozano, E., Cano, J., et al. Determination of Residues of Enrofloxacin and Its Metabolite Ciprofloxacin in Biological Materials by Capillary Electrophoresis. Journal of Chromatography B:Biomedical Sciences and Applications.2001,759 (1):73-79
    [117]Okerman, L., van Hoof, J., Debeuckelaere, W. Evaluation of the European Four-Plate Test as a Tool for Screening Antibiotic Residues in Meat Samples from Retail Outlets. Journal of AOAC International.1998,81 (1):51-56
    [118]Mietzsch, F., Klarer, J. [Title not avialabe]. Deutsches Reichpatent.1932,61:250
    [119]Colebrook, L., Kenny, M., the members of the, H.S.O.F.Q.C.S.H. Treatment with Prontosil of Puerperal Infections:Due to H molytic Streptococci. The Lancet.1936,228 (5910):1319-1322
    [120]Bentley, R. Different Roads to Discovery; Prontosil (Hence Sulfa Drugs) and Penicillin (Hence B-Lactams). Journal of Industrial Microbiology & Biotechnology.2009,36 (6):775-786
    [121]Larocque, L., Carignan, G., Sved, S. Sulfamethazine (Sulfadimidine) Residues in Canadian Consumer Milk. Journal - Association of Official Analytical Chemists.1990,73 (3):365-367
    [122]周万蓉.细菌对磺胺类药物耐药基因三重pcr检测试剂盒研制与应用[硕士学位论文]:四川农业大学.2007
    [123]Miert, A.S.J.P.A.M.V. The Sulfonamide-Diaminopyrimidine Story*. Journal of Veterinary Pharmacology and Therapeutics.1994,17 (4):309-316
    [124]Poirier, L.A., Doerge, D.R., Gaylor, D.W., et al. An Fda Review of Sulfamethazine Toxicity. Regulatory Toxicology and Pharmacology.1999,30 (3):217-222
    [125]Tang, X., Tan, C., Zhang, X., et al. Antimicrobial Resistances of Extraintestinal Pathogenic Escherichia Coli Isolates from Swine in China. Microbial Pathogenesis.2011,50 (5):207-212
    [126]徐秋桐,常跃畅,章明奎.浙江省土壤中细菌对抗生素耐药性的生态分布特征.浙江大学学报(农业与生命科学版).2013,39(5):537-544
    [127]Wang, S., Zhang, H.y., Wang, L., et al. Analysis of Sulphonamide Residues in Edible Animal Products:A Review. Food Additives & Contaminants.2006,23 (4):362-384
    [128]Yang, T., Ren, X., Li, Y, et al. Development of a Sensitive Monoclonal Antibody-Based Elisa for the Detection of Sulfamethazine in Cow Milk, Honey, and Swine Urine. Hybridoma.2010,29 (5): 403-407
    [129]Li, X., Zhang, G., Liu, Q., et al. Development of Immunoassays for the Detection of Sulfamethazine in Swine Urine. Food Additives & Contaminants:Part A.2009,26 (3):314-325
    [130]Franek, M., Kolar, V., Deng, A., et al. Determination of Sulphadimidine (Sulfamethazine) Residues in Milk, Plasma, Urine and Edible Tissues by Sensitive Elisa. Food and Agricultural Immunology.1999,11 (4):339-349
    [131]吴健敏,马玲,韦建兴,等.磺胺二甲嘧啶化学发光酶免疫分析检测法及试剂盒.中国专利,CN103344758 A,2013-7-4
    [132]万宇平,吴鹏,冯只君,等.食品中磺胺类药物化学发光酶联免疫检测试剂盒的初步研究.北京工商大学学报:自然科学版.2012,30(2):27-34
    [133]Liu, J., Fang, G., Zhang, Y., et al. Development of a Chemiluminescent Enzyme-Linked Immunosorbent Assay for Five Sulfonamide Residues in Chicken Muscle and Pig Muscle. Journal of the Science of Food and Agriculture.2009,89 (1):80-87
    [134]Wang, Z.-H., Zhang, S.-X., Shen, J.-Z., et al. Analysis of Sulfamethazine by Fluorescence Polarization Immunoassay. Chinese Journal of Analytical Chemistry.2007,35 (6):819-824
    [135]Zhang, S., Wang, Z., Nesterenko, I.S., et al. Fluorescence Polarisation Immunoassay Based on a Monoclonal Antibody for the Detection of Sulphamethazine in Chicken Muscle. International Journal of Food Science & Technology.2007,42 (1):36-44
    [136]Le, T., Yan, P., Liu, J., et al. Simultaneous Detection of Sulfamethazine and Sulfaquinoxaline Using a Dual-Label Time-Resolved Fluorescence Immunoassay. Food Additives & Contaminants:Part A.2013,30 (7):1264-1269
    [137]冯梁.磺胺二甲嘧啶胶体金免疫层析试纸条的研制[硕士学位论文]:中国农业大学.2005
    [138]张佳宜,张燕,王硕.胶体金免疫层析法快速检测猪肉及牛奶中磺胺二甲嘧啶残留.中国食品学报.2010,10(1):181-185
    [139]Guo, Y, Ngom, B., Le, T., et al. Utilizing Three Monoclonal Antibodies in the Development of an Immunochromatographic Assay for Simultaneous Detection of Sulfamethazine, Sulfadiazine, and Sulfaquinoxaline Residues in Egg and Chicken Muscle. Analytical Chemistry.2010,82 (18):7550-7555
    [140]Agarwal, V.K. Detection of Sulfamethazine Residues in Milk by High Performance Liquid Chromatography. Journal of Liquid Chromatography.1990,13 (17):3531-3539
    [141]钱朝海,杨秀娟,张曦.猪血浆中磺胺二甲嘧啶hplc残留检测方法.饲料工业.2005,26(18):42-43
    [142]吴西梅,杨业,梁春穗,等.高效液相色谱质谱测定肉品中的磺胺二甲嘧啶.中国卫生检验杂志.2004,14(2):164-165
    [143]Kim, D.H., Choi, J.O., Kim, J., et al. Application of a Polymeric Solid Phase Extraction for the Analysis of Sulfonamides in Milk by Lc/Ms. Journal of Liquid Chromatography & Related Technologies.2003,26 (7):1149-1159
    [144]谢玉璇,谢天尧,刘秋英,等.毛细管电泳-电导法分离检测磺胺嘧啶、磺胺甲嘧啶和磺胺二甲嘧啶.分析测试学报.2006,25(3):100-102
    [145]Thomas, M.H., Soroka, K.E., Simpson, R.M., et al. Determination of Sulfamethazine in Swine Tissues by Quantitative Thin-Layer Chromatography. Journal of Agricultural and Food Chemistry.1981, 29 (3):621-624
    [146]Li, H., Ding, X., Peng, Z., et al. Aptamer Selection for the Detection of Escherichia Coli K88. Canadian Journal of Microbiology.2011,57 (6):453-459
    [147]Jenison, R., Gill, S., Pardi, A., et al. High-Resolution Molecular Discrimination by Rna. Science. 1994,263(5152):1425-1429
    [148]Liang, Z., Lao, R., Wang, J., et al. Solubilization of Single-Walled Carbon Nanotubes with Single-Stranded DNA Generated from Asymmetric Per. International Journal of Molecular Sciences.2007,8 (7):705-713
    [149]Morii, T., Hagihara, M., Sato, S., et al. In Vitro Selection of Atp-Binding Receptors Using a Ribonucleopeptide Complex. Journal of the American Chemical Society.2002,124 (17):4617-4622
    [150]Bucknall, S., Silverlight, J., Coldham, N., et al. Antibodies to the Quinolones and Fluoroquinolones for the Development of Generic and Specific Immunoassays for Detection of These Residues in Animal Products. Food Additives & Contaminants.2003,20 (3):221-228
    [151]Zhang, H.-t., Jiang, J.-q., Wang, Z.-1., et al. Development of an Indirect Competitive Elisa for Simultaneous Detection of Enrofloxacin and Ciprofloxacin. Journal of Zhejiang University SCIENCE B. 2011,12 (11):884-891
    [152]Khor, S.M., Liu, G., Peterson, J.R., et al. An Electrochemical Immunobiosensor for Direct Detection of Veterinary Drug Residues in Undiluted Complex Matrices. Electroanalysis.2011,23 (8): 1797-1804
    [153]Niedermeier, S., Singethan, K., Rohrer, S.G., et al. A Small-Molecule Inhibitor of Nipah Virus Envelope Protein-Mediated Membrane Fusion. Journal of Medicinal Chemistry.2009,52 (14): 4257-4265
    [154]Pennington, L.D., Croghan, M.D., Sham, K.K.C., et al. Quinolinone-Based Agonists of Slpl:Use of a N-Scan Sar Strategy to Optimize in Vitro and in Vivo Activity. Bioorganic & Medicinal Chemistry Letters.2012,22(1):527-531
    [155]Stern, E., Muccioli, G.G., Millet, R., et al. Novel 4-Oxo-1,4-Dihydroquinoline-3-Carboxamide Derivatives as New Cb2 Cannabinoid Receptors Agonists:Synthesis, Pharmacological Properties and Molecular Modeling. Journal of Medicinal Chemistry.2005,49 (1):70-79
    [156]王镜言.生物化学(第3版).北京:高等教育出版社,2002,335-362
    [157]Davis, J.T., Spada, G.P. Supramolecular Architectures Generated by Self-Assembly of Guanosine Derivatives. Chemical Society Reviews.2007,36 (2):296-313
    [158]Rothemund, P.W. Folding DNA to Create Nanoscale Shapes and Patterns. Nature.2006,440 (7082):297-302
    [159]Carothers, J.M., Oestreich, S.C., Szostak, J.W. Aptamers Selected for Higher-Affinity Binding Are Not More Specific for the Target Ligand. Journal of the American Chemical Society.2006,128 (24): 7929-7937
    [160]王战辉.动物性产品中磺胺类和喹诺酮类等兽药残留的免疫分析检测技术研究[博士学位论文]:中国农业大学.2007
    [161]Sternesjo, A., Mellgren, C., Bjorck, L. Determination of Sulfamethazine Residues in Milk by a Surface Plasmon Resonance-Based Biosensor Assay. Analytical Biochemistry.1995,226 (1):175-181
    [162]Murtazina, N.R., Medyantseva, E.P., Pisarev, V.V., et al. Immunochemical Determination of Sulfamethazine in River Water and Medicinal Preparations. Pharmaceutical Chemistry Journal.2005,39 (10):556-560
    [163]Trupina, S. Synthesis of Metalloporphyrins with Oligothiophenes as Probes for Amyloid Diseases, 2010:39
    [164]Ruzza, P., Calderan, A., Cavaggion, F., et al. Solid-Phase Synthesis of an Htc-Containing Dimer Analog of the Autophosphorylation Site of Pp60 Src Ptk:Effective Acylation Conditions for Htc Residues. Letters in Peptide Science.2000,7 (2):79-83
    [165]Neves, M.A.D., Reinstein, O., Johnson, P.E. Defining a Stem Length-Dependent Binding Mechanism for the Cocaine-Binding Aptamer. A Combined Nmr and Calorimetry Study. Biochemistry. 2010,49 (39):8478-8487
    [166]Nagatoishi, S., Tanaka, Y., Tsumoto, K. Circular Dichroism Spectra Demonstrate Formation of the Thrombin-Binding DNA Aptamer G-Quadruplex under Stabilizing-Cation-Deficient Conditions. Biochemical and Biophysical Research Communications.2007,352 (3):812-817
    [167]Lin, P.-H., Chen, R.-H., Lee, C.-H., et al. Studies of the Binding Mechanism between Aptamers and Thrombin by Circular Dichroism, Surface Plasmon Resonance and Isothermal Titration Calorimetry. Colloids and Surfaces B:Biointerfaces.2011,88 (2):552-558
    [168]Cao, X., Li, S., Chen, L., et al. Combining Use of a Panel of Ssdna Aptamers in the Detection of Staphylococcus Aureus. Nucleic Acids Research.2009,37 (14):4621-4628
    [169]Valimaa, L., Pettersson, K., Vehniainen, M., et al. A High-Capacity Streptavidin-Coated Microtitration Plate. Bioconjugate Chemistry.2002,14 (1):103-111
    [170]Wang, Z., Zhang, H., Ni, H., et al. Development of a Highly Sensitive and Specific Immunoassay for Enrofloxacin Based on Heterologous Coating Haptens. Analytica Chimica Acta (0)
    [171]Weber, P., Ohlendorf, D., Wendoloski, J., et al. Structural Origins of High-Affinity Biotin Binding to Streptavidin. Science.1989,243 (4887):85-88
    [172]余冰宾.生物化学实验指导(第二版).北京:清华大学出版社,2006,117-125
    [173]Gonzalez, M., Bagatolli, L.A., Echabe,I., et al. Interaction of Biotin with Streptavidin: Thermostability and Conformational Changes Upon Binding. Journal of Biological Chemistry.1997, 272(17):11288-11294
    [174]Lin, Z., Wang, X., Li, Z.-J., et al. Development of a Sensitive, Rapid, Biotin-Streptavidin Based Chemiluminescent Enzyme Immunoassay for Human Thyroid Stimulating Hormone. Talanta.2008,75 (4):965-972
    [175]Ohml, N., Wingfield, J.M., Yazawa, H., et al. Development of a Homogeneous Time-Resolved Fluorescence Assay for High Throughput Screening to Identify Lck Inhibitors:Comparison with Scintillation Proximity Assay and Streptavidin-Coated Plate Assay. Journal of Biomolecular Screening. 2000,5 (6):463-470
    [176]Adikaram, C.P., Perera, J., Wijesundera, S.S. DNA Probe Based Colorimetric Method for Detection of Rifampicin Resistance of Mycobacterium Tuberculosis. Journal of Microbiological Methods.2014,96 (0):92-98
    [177]袁志波.一种链霉亲和素预包被酶标板的制备方法与应用.中国专利,CN 201210560898,2010-12-21
    [178]http://en.wikipedia.org/wiki/Streptavidin.htm [EB/OL].2014.1.14
    [179]Iwata, R., Ito, H., Hayashi, T., et al. Stable and General-Purpose Chemiluminescent Detection System for Horseradish Peroxidase Employing a Thiazole Compound Enhancer and Some Additives. Analytical Biochemistry.1995,231 (1):170-174
    [180]Chandra, P., Noh, H.-B., Won, M.-S., et al. Detection of Daunomycin Using Phosphatidylserine and Aptamer Co-Immobilized on Au Nanoparticles Deposited Conducting Polymer. Biosensors and Bioelectronics.2011,26 (11):4442-4449
    [181]Huet, A.-C., Charlier, C., Tittlemier, S.A., et al. Simultaneous Determination of (Fluoro)Quinolone Antibiotics in Kidney, Marine Products, Eggs, and Muscle by Enzyme-Linked Immunosorbent Assay (Elisa). Journal of Agricultural and Food Chemistry.2006,54 (8):2822-2827
    [182]Li, Y., Ji, B., Chen, W., et al. Production of New Class-Specific Polyclonal Antibody for Determination of Fluoroquinolones Antibiotics by Indirect Competitive Elisa. Food and Agricultural Immunology.2008,19 (4):251-264
    [183]Tao, X., Chen, M., Jiang, H., et al. Chemiluminescence Competitive Indirect Enzyme Immunoassay for 20 Fluoroquinolone Residues in Fish and Shrimp Based on a Single-Chain Variable Fragment. Analytical and Bioanalytical Chemistry.2013,405 (23):7477-7484
    [184]Cao, Z.-J., Peng, Q.-W., Qiu, X., et al. Highly Sensitive Chemiluminescence Technology for Protein Detection Using Aptamer-Based Rolling Circle Amplification Platform. Journal of Pharmaceutical Analysis.2011,1 (3):159-165
    [185]Zhou, L., Ou, L.-J., Chu, X., et al. Aptamer-Based Rolling Circle Amplification:A Platform for Electrochemical Detection of Protein. Analytical Chemistry.2007,79 (19):7492-7500
    [186]Yoshida, Y., Horii, K., Sakai, N., et al. Antibody-Specific Aptamer-Based Pcr Analysis for Sensitive Protein Detection. Analytical and Bioanalytical Chemistry.2009,395 (4):1089-1096
    [187]Csordas, A., Gerdon, A.E., Adams, J.D., et al. Detection of Proteins in Serum by Micromagnetic Aptamer Per (Map) Technology. Angewandte Chemie International Edition.2010,49 (2):355-358
    [188]张伟,钟理,许若丹,等.磺胺二甲基嘧啶人工抗原合成及多克隆抗体制备.河北农业大学学报.2005,28(6):76-80
    [189]He, J., Shen, J., Suo, X., et al. Development of a Monoclonal Antibody-Based Elisa for Detection of Sulfamethazine and N4-Acetyl Sulfamethazine in Chicken Breast Muscle Tissue. Journal of Food Science.2005,70 (1):C113-C117
    [190]Gaudin, V., Pavy, M.L. Determination of Sulfamethazine in Milk by Biosensor Immunoassay. Journal of AOAC International.1999,82 (6):1316-1320
    [191]胥传来,彭池方,郝凯,等.动物源食品中磺胺二甲嘧啶人工抗原的合成研究.食品科学.2005,26(7):118-121
    [192]杨磊,李彦伸,盛雅洁,等.包被半抗原间隔臂长度对elisa方法检测磺胺二甲基嘧啶灵敏度的影响研究.中国科技论文在线.2013
    [193]Singh, P., Ram, B.P., Sharkov, N. Enzyme Immunoassay for Screening of Sulfamethazine in Swine. Journal of Agricultural and Food Chemistry.1989,37 (1):109-114
    [194]Kohen, F., Gayer, B., Amir-Zaltsman, Y., et al. Generation of an Anti-Idiotypic Antibody as a Surrogate Ligand for Sulfamethazine in Immunoassay Procedures. Food and Agricultural Immunology. 2000,12 (3):193-201
    [195]Crabbe, P., Van Peteghem, C. Rapid and Sensitive Screening of Sulfamethazine in Porcine Urine with an Enzyme-Linked Immunosorbent Assay and a Field-Portable Immunofiltration Assay. Journal of Food Protection.2002,65 (5):820-827
    [196]李子颖,刘一兵,袁志刚,等.磺胺二甲嘧啶抗体的制备及酶联免疫分析方法的建立.原子能科学技术.2008,42(z1):63-67
    [197]Adrian, J., Font, H., Diserens, J.-M., et al. Generation of Broad Specificity Antibodies for Sulfonamide Antibiotics and Development of an Enzyme-Linked Immunosorbent Assay (Elisa) for the Analysis of Milk Samples. Journal of Agricultural and Food Chemistry.2009,57 (2):385-394
    [198]Zhang, H., Duan, Z., Wang, L., et al. Hapten Synthesis and Development of Polyclonal Antibody-Based Multi-Sulfonamide Immunoassays. Journal of Agricultural and Food Chemistry.2006, 54 (13):4499-4505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700