用户名: 密码: 验证码:
基于双电光分子聚合物薄膜器件的THz时域谱系统的研制与介电谱测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十多年来,太赫兹时域光谱技术已广泛应用于工业生产和科学研究当中,但太赫兹辐射源和探测源一般采用电光晶体,受晶体本身晶格结构和相位匹配的影响,难以获得宽频带和高振幅的太赫兹时域光谱系统。电光聚合物与传统电光晶体相比,具有高的电光系数、大的相干长度以及无声子吸收间隙等优点,使其成为实现此系统最理想和极具应用前景的太赫兹辐射源和探测材料。电光聚合物作为新兴的太赫兹辐射源检测材料虽然优势明显,但受聚合物材料本身性质、极化方式、成膜工艺等限制,高电光系数、良好的生色团取向稳定度以及在太赫兹波段低色散等综合性能优良的材料仍很缺乏。因此,合成高品质的电光聚合物材料,使之能够广泛运用于太赫兹时域光谱系统之中具有重要的研究意义和实用价值。
     本文以侧链型电光聚合物为主体,通过物理混合方式再掺入一定比例的小电光分子制备了具有双电光分子的聚合物体系。通过强极性的小电光分子的掺入使得作为主体的侧链型聚合物的极性得到改善,使其在外部电场作用下,侧链上的生色团分子更易取向。另外,小电光分子的引入,聚合物体系的生色团分子含量增加,宏观上表现出的非线性光学效应得到增强。电光系数和生色团取向稳定度的测试结果表明,双电光分子聚合物EDB(6wt%)/2,4-二硝基苯胺接枝咔唑聚磷膦(94wt%)的电光系数能达到33pm/V,且在室温下放置600小时后,生色团取向稳定度能够保持在初始值的69%。
     目前用于太赫兹时域光谱系统中的电光聚合物薄膜探测器件常采用三明治结构,即聚合物夹在两层透明导电氧化物层(常用ITO玻璃实现)之间,或者夹在透明导电氧化物层与金属层之间。这种薄膜器件制备简单,但在实际运用中导电层在太赫兹波段的吸收性和高反性都会影响器件的探测效率和灵敏度。另一方面,这种三明治结构薄膜器件极化电场方向与聚合物薄膜表面垂直,在使用时需要考虑太赫兹脉冲的入射角度。本文利用激光微刻技术在覆有金属薄膜的玻璃衬底上生成了插指电极阵列,制备了具有共面电极结构的薄膜探测器件。由于电极共面,一方面避免了电极对探测灵敏度的影响,另一方面就是极化电场方向与聚合物薄膜表面平行,太赫兹脉冲可以垂直入射,不用考虑入射角度对探测效率的影响,从而提高太赫兹波的探测效率。实验结果表明,在相同薄膜厚度下,共面插指电极结构薄膜器件与三明治结构薄膜器件得到的振幅比约在1.3左右,即探测效率能够提高30%左右。
     太赫兹时域光谱技术用于聚合物电介质的测试当中,主要是获取样品在太赫兹波段的频谱特性,从而得到样品在太赫兹波段下的折射率、吸收系数等光学特性参数。本文选取了在电介质工程应用领域中常用的低密度聚乙烯(LDPE)及复合物作为测试对象。利用基于共面插指电极结构的双电光分子聚合物薄膜探测的太赫兹时域光谱系统分别得到了LDPE、不同湿度下的LDPE、LDPE复合物等的THz光谱特性。
Terahertz time-domain spectroscopy (THz-TDS) technology is widelyemployed in industrial and scientific in the last decade. Current THz technologiesare limited in their frequency response because of phonon absorbance and poorphase matching in crystalline emitters and detectors. In contrast, amorphouselectro-optic (EO) polymer composite materials have the potential for broad-bandwith, spectral gap-free THz emission and detection while requiring arelatively low pump laser power. EO polymer family have become an alternate tocrystalline EO materials have shown higher EO coefficient, greater coherencelength and broader bandwidth free of spectral gaps compared with theircrystalline counterparts. With better EO polymers being developed continuously,it can be envisioned that EO polymers will take a larger role in the near future.Although the EO polymers have a wide range of advantages, but it lacks a kindof material which has excellent comprehensive performance, e.g. higher EOcoefficient, good stability of chromophores orientation degree and low dispersionin the THz frequency because of it is limited in nature of the material itself,poling geometries and processing techniques. Therefore it has importantscientific meaning and practical value to design and synthesis a high qualityfactor EO polymer in order to widely use in THz-TDS system.
     In this dissertation, side chain EO polymer as the main body and doped in aproportion of small EO molecule is prepared into double EO molecule polymersystem. With the introduction of the strong polarity molecules, the polarity of theside chain EO polymer as the main body can be improved, so the chromophoresin the side chain molecules can be easier to orientation under the external electricfield. Increase the number of chromophores polymer system because of the Because of the addition of small EO molecule, the macroscopic nonlinear opticaleffect will be enhanced. Through the EO coefficient and chromophore of stabilitytesting, the EO coefficient of EDB(6wt%)/2,4-dinitraniline-carbazole-plyphosphazenes(94wt%) is33pm/V and its stability of chromophore keeps inthe initial value of69%after600hours at room temperature.
     Up to now, using an EO polymer sensor to detect THz radiation, a polymerfilm is sandwiched between two poling electrodes, which consist of eitherevaporated gold or a transparent conducting oxide (TCO), such as indiumtinoxide (ITO) or TCO-TCO. This thin-film device is easy fabrication, but thedetection efficiency and sensitivity are limited in their structure due to theabsorbability and high reflectivity of metal in the THz regime. On the other side,the poling direction of the device is normal to the polymer plane, therefore to beused it needs to consider the incident angle. In this dissertation, we adopted lasermicromachining technique to deposite interdigitated coplanar electrodes on thealuminum evaporated glass substrate and preparated the thin film device withnterdigitated coplanar electrodes. Because of the electrodes are in plane, on theone hand, to avoid the influence of electrodes for detection sensitivity, on theother hand, this devices allows for optimal overlap of the THz electric field withthe poling direction of the polymer flim without an external slant angle. Underthe same film thickness, the ratio of the THz amplitude from sensor withinterdigitated coplanar electrodes and sensor with sandwhich structure is1.3,thereby increasing the sensing efficiency by30%.
     THz-TDS technology is employed in material testing, main objective is toobtain information on the complex refractive index, dielectric constant, andconductivity of the sample in the THz regime. In this dissertation, we selectLDPE and its nanocomposite which widely used in the dielectric engineeringfield, as the research object. To used the Terahertz time-domain spectroscopysystem based on the double EO molecules polymer for Terahertz sensing studyon the THz spectroscopy of the LDPE, LDPE with different humidity, and LDPEnanocomposite.
引文
[1] PETER H S. Terahertz Technology[J]. IEEE Transactions.2002,50(3):910-928.
    [2] FERGUSON B,张希成.太赫兹科学与技术研究回顾[J].物理,2003,32(5):285-293.
    [3]张存林,张岩,赵国忠等.太赫兹感测与成像[M].北京:国防工业出版社,2008:3-47.
    [4] NAGATSUMA T. Terahertz Technologies: Present and Future[J]. IEICEElectronics Express,2011,8(14):1127-1142.
    [5]胡永生,陈钱.太赫兹技术及其应用研究的进展[J].红外,2006,27(1):11-14.
    [6]姚建铨.太赫兹技术及其应用[J].重庆邮电大学学报(自然科学版),2010,22(6):703-707.
    [7] MUKHERJEE P, GUPTA B. Terahertz (THz) Frequency Sources andAntennas-A Brief Review[J]. Infrared Milli Waves,2008,29:1091–1102.
    [8] KLEINE-OSTMANN T, NAGATSUMA T. A Review on TerahertzCommunications Research [J]. Journal of Infrared, Millimeter, andTerahertz Waves,2011,32(2):143-171.
    [9] WOOLARD D L, BROWN E R, PEPPER M, et al. Terahertz FrequencySensing and Imaging: A Time of Reckoning Future Applications?[J].Proceedings of the IEEE,2005,93:1722-1744.
    [10] SIEGEL P H. Terahertz Technology in Biology and Medicine[J]. IEEETransaction on Microwave Theory and Techniques,2004,52:2438-2447.
    [11]许景周,张希成.太赫兹科学技术和应用[M].北京:北京大学出版社,2007:4-10.
    [12] YUN-SHIK LEE著,崔万照等译.太赫兹科学与技术原理[M].北京:国防工业出版社,2012:5-10.
    [13]刘盛纲,钟任斌.太赫兹科学技术及其应用新进展[J].电子科技大学学报,2009,38(5):484-486.
    [14] AUSTON D H, CHEUNG K P, and SMITH P R. PicosecondPhotoconducting Hertzian Dipoles[J]. Applied Physics Letters,1984,45:284-286.
    [15] SMITH P R, AUSTON D H, and NUSS M C. SubpicosecondPhotoconducting Dipole Antennas[J]. Quantum Electronics IEEE,1988,24:255-260.
    [16] KETCHEN M B, GRISCHKOWSKY D, CHEN T C, et al. Generation ofSubpicosecond Electrical Pulses on Coplanar Transmission Lines[J].Applied Physics Letters,1986,48:751-753.
    [17] EXTER M VAN, FATTINGER C, and GRISCHKOWSKY D. High-Brightness Terahertz Beams Characterized with an Ultrafast Detector[J].Applied Physics Letters,1989,55:337-339.
    [18] YANG K H, RICHARDS P L, and SHEN Y R. Generation of Far-InfraredRadiation by Picosecond Light Pulses in LiNbO3[J]. Applied PhysicsLetters,1971,19:320-323.
    [19] AUSTON D H. Subpicosecond Electro-Optic Shock Waves[J] AppliedPhysics Letters,1983,4:713-715.
    [20] AUSTON D H, CHEUNG K-P, VALDMANIS J A, et al. CherenkovRadiation from Femtosecond Optical Pulses in Electro-Optic Media[J].Physical Review Letters,1984,53:1555-1558.
    [21] JACKSON J D. Classical Electrodynamics[M]. USA: John Wiley&SonsInc.,1999.
    [22] ZHANG X C and AUSTON D H. Optoelectronic Measurement ofSemiconductor Surfaces and Interfaces with Femtosecond optics[J].Journal of Applied Physics,1992,71:326-338.
    [23] JEPSEN P U, JACOBSEN R H, and KEIDING S R. Generation andDetection of Terahertz Pulses from Biased Semiconductor Antennas[J].Journal of the Optical Society of America B,1996,13:2424-2436.
    [24] UPADHYA P C, NGUYEN K L, SHENE Y C, et al. Excitation-Density-Dependent Generation of Broadband Terahertz Radiation in anAsymmetrically Excited Photoconductive Antenna[J]. Optical Letter,2007,32:2297-2299.
    [25] NAHATA A, WELING A, and HEINZ T F. A Wideband CoherentTerahertz Spectroscopy System using Optical Rectification and Electro-Optic Sampling[J]. Applied Physics Letters,1996,69:2321-2323.
    [26] PARK S G, MELLOCH M R, and WEINER A M. Analysis of TerahertzWaveforms Measured by Photoconductive and Electrooptic Sampling[J].Quantum Electronics IEEE,1999,35:810-819.
    [27] MCINTOSH K A, BROWN E R, NICHOLS K B, et al. TerahertzPhotomixing with Diode Lasers in Low-Temperature-Grown GaAs[J].Applied Physics Letters,1995,67:3844-3846.
    [28] PEYTAVIT E, LEPILLIET S, HINDLE F, et al. Milliwatt-Level OutputPower in the Sub-Terahertz Range Generated by Photomixing in a GaAsPhotoconductor[J]. Applied Physics Letters,2011,99:223508.
    [29] KOHLER R, TREDICUCCI A, BELTRAM F, et al. TerahertzSemiconductor-Heterostructure Laser[J]. Nature,2002,417:156-159.
    [30] SCALARI G, WALTHEr C, FISCHER M, et al. THz and Sub-THzQuantum Cascade Lasers[J]. Laser&Photonics Reviews,2009,3:45-66.
    [31]谭智勇,陈镇,韩英军等.基于太赫兹量子级联激光器的无线信号传输的实现[J].物理学报,2012,61:098701-098705.
    [32] SIEBERT K J, QUAST H, LEONHARDT R et al. Continuous-Wave all-Optoelectronic Terahertz Imaging[J]. Applied Physics Letters,2002,80:3003-3005.
    [33] PARK W K, LESSELIER D. Electromagnetic MUSIC-type Imaging ofPerfectly Conducting, Arc-Like Cracks at Single Frequency[J]. Journal ofComputational Physics,2009,228:8093-8011.
    [34] REIMANN K. Table-top Sources of Ultrashort THz Pulses[J]. Reports onProgress in Physics,2007,70:1597-1632.
    [35] LOFFLER T, JACOB F, ROSKOS H G. Generation of Terahertz Pulses byPhotoionization of Electrically Biased Air[J]. Applied Physics Letters,2000,77:453-455.
    [36] DALTON L R, BENIGHT S. Theory-Guided Design of Organic Electro-Optic Materials and Devices[J]. Polymers,2001,3:1325-1351.
    [37] NAHATA A, WELING A, HEINZ T F, et al. Coherent Detection of FreelyPropagating Terahertz Radiation by Electro‐Optic Sampling[J]. AppliedPhysics Letters,1996,69:2321-2323.
    [38] NAHATA A, SHAN J, YARDLEY J T, et al. Electro-Optic Determinationof the Nonlinear-Optical Properties of a Covalently FunctionalizedDisperse Red1Copolymer[J]. Journal of the Optical Society of America B,1993,10:1553-1564.
    [39] CAO H, HEINZ T F, NAHATA A. Electro-Optic Detection of FemtosecondElectromagnetic Pulses by Use of Poled Polymers[J]. Optical Letter,2002,27:775-777.
    [40] SINYUKOV A M, HAYDEN L M. Generation and Detection of TerahertzRadiation with Multilayered Electro-optic Polymer Films[J]. Optical Letter,2002,27:55-57.
    [41] SINYUKOV A M, HAYDEN L M. Efficient Electrooptic Polymers for THzApplications[J]. The Journal of Physical Chemistry B,2004,108:8515-8522.
    [42] LIANG H Y, CAO W L, PENG Y H, et al. Terahertz Generation in PoledPolymers[C]. Quantum Electronics and Laser Science Conference,Baltimore, USA,2005:794~796.
    [43] ZHANG C, DALTON L R, OH M C, et al. Low V π ElectroopticModulators from CLD-1: Chromophore Design and Synthesis, MaterialProcessing, and Characterization[J]. Chemistry of Materials,2001,13:3034-3050.
    [44] TAUSER F, LEITENSTORFER A, ZINTH W. Amplified FemtosecondPulses from an Er: Fiber System: Nonlinear Pulse Shortening and Self-Referencing Detection of the Carrier-Envelope Phase Evolution[J]. OpticalExpress,2003,11:594-600.
    [45] MCLAUGHLIN C V, HAYDEN L M, POLISHAK B, et al. Wideband15THz Response using Organic Electro-Optic Polymer Emitter-Sensor Pairsat Telecommunication Wavelengths[J]. Applied Physics Letters,2008,92:151107.
    [46] ZHENG X M, SINYUKOV A M, HAYDEN L M. Broadband and Gap-FreeResponse of a Terahertz System using Poled Polymers[C]. QuantumElectronics and Laser Science Conference, Baltimore, USA,2005:341-343.
    [47] HAVING E E and VANPELT P. Intramolecular Charge Transfer, Studied byElectrochromism of Organic Molecules in Polymer Matrices[J]. MoleculesCrystal liquid Crystal,1979,52:145-156.
    [48] YE C, MARKS T J, YANG J, et al. Synthesis of Molecular Arrays withNonlinear Optical Properties Second-Harmonic Generation by CovalentlyFunctionlized Glassy Polymers[J]. Macromolecules,1987,20:2322-2325.
    [49] KATZ H E, SINGEr K D, SOHN J E, et al. Greatly Enhanced Second-Order Nonlinear Optical Susceptibilities in Donor-Acceptor OrganicMolecules[J]. Journal of the American Chemical Society,1987,109:6561-6563.
    [50] BURLAND D M, MILLER R D, WALSH C A. Second-Order Nonlinearityin Poled-Polymer Systems[J]. Chemical Reviews,1994,94:31-75.
    [51] DROST K J, JEN A K-Y, RAO V P, et al. Functionalized Siloxane-LinkedPolymersfor Second-Order Nonlinear Optics[J]. Chemistry of materials,1994,328:517-520.
    [52] LIN J T, HUBBARD M A, MARKS T J, et al. Poled Polymeric NonlinearOptical Materials: Exceptional Second Harmonic Generation TemporalStability of a Chromophore-Functionalized Polyimide[J]. Chemistry ofMaterials,1992,4:1148-1150.
    [53] BECKER M W, SAPOCHAK L S, GHOSEN S R, et al. Large and StableNonlinear Optical Effects Observed for a Polyimide CovalentlyIncorporating a Nonlinear Optical Chromophore[J]. Chemistry of Materials,1994,6:104-106.
    [54] JEN K-Y, DROST K J, CAI Y, et al. Heteroaromatic ChromophoreFunctionalized Epoxy Nonlinear Optical Polymers[J]. Macromolecule,1994,4:965-969.
    [55] CHEN X B, ZHANG J J, ZHANG H B, et al. Preparation and NonlinearOptical Studies of a Novel Thermal Stable Polymer Containing AzoChromophores in the Side Chain[J]. Dyes and Pigments,2008,77:223-228.
    [56] MITCHELL M, MULVANEY J, HALL H K, et al. Enhanced Third-OrderNonlinear Optical Properties in Dendrimer-Metal Nanocomposites[J].Polymer Bullation.1992,28:381.4.
    [57] FUSO F, PADIAS A B, HALL H K. Poly[(ι-hydroxyalkyl)thio-α-Cyanocinnamates: Linear Polyesters with NLO-Phores in the MainChain[J]. Macromolecules,1991,24:1710-1713.
    [58] CUI Y Y, CHEN L J, QIAN G D, et al. Epoxy-Based Nonlinear OpticalPolymers from Post Azo Coupling Reaction[J]. Journal of Non-CrystallineSolids,2008,354:1211-1215.
    [59] ZHU X, CHEN Y M, LI L, et al. Electronic, Optical, and VibrationalProperties of Bridged Dithienylethylene-Based NLO Chromophores[J].Optics Communications,1992.88:77-80.
    [60] JUNGBAUER D, RECK B, TWIEG R, et al. Highly Efficient and StableNonlinear Optical Polymers via Chemical Cross-Linking under ElectricField[J]. Applied Physics Letters,1990,56(26):2610-2613.
    [61] PROUTIERE S, FERRUTI P, UGO R, et al. The Ethynyl Groups in thePolymer Backbone can Undergo Thermal Intramolecular orIntermolecularreactions[J]. Materials Science and Engineering B,2008,147:293-297.
    [62] TENG C C, Man H T. Simple Reflection Technique for Measuring theElectro-Optic Coefficient of Poled Polymers[J]. Applied Physics Letters,1900,56:1734-1736.
    [63] HAN S, WU J W. Single-Beam Polarization Interferometry Measurementof the Linear Electro-Optic Effect in Poled Polymer Films with aReflection Configuration[J]. Journal of the Optical Society of America,1997, B14:1131-1136.
    [64] SANDALPHON A, KIPPELEN B, MEERHOLZ K, et al. EllipsometricMeasurements of Poling Birefringence, the Pockels Effect, and the KerrEffect in High-Performance Photorefractive Polymer Composites[J].Applied Optical,1996,35:2346-235.
    [65] HAYDEN L M, SANTER G F, ORE F R, et al. Second-Order NonlinearOptical MeasurementsinGuest-Host and Side-Chain Polymers[J]. Journalof Applied Physics,1990,68:456-465.
    [66] KAZUHIKO M, CHENG X M, AKIKATSU U, et al. Determination ofComplex Tensor Components of Electro-Optic Constants of Dye-DopedPolymer Films with a Mach-Zehnder Interferometer[J]. Applied PhysicsLetters,1994,65(13):1605-1607.
    [67] KNOESEN A, KOWEL S T. Use of Fabry-Perot Devices for theCharacterization of Polymeric Electro-Optic Films[J]. Journal of AppliedPhysics,1991,69(6):3676-3686.
    [68] PAGE R H, JURICH M C, RECK B, et al. Electrochromic and OpticalWaveguide Sstudies of Corona-poled Electro-Optic Polymer Films[J].Journal of the Optical Society of America,1900,7:1239-1250.
    [69]史伟,房昌水,潘奇伟等.简单反射法测量聚合物薄膜线性电光系数的研究[J].物理学报,2000,49(02):0262-0265.
    [70] GIACOMETTI J A. Constant Current Corona Triode with Grid VoltageControl[J]. Review of Scientific Instrume,1990, l61:1143-1150.
    [71]蒋强.恒流电晕三极管及其在聚合物材料电晕极化应用的研究[D].哈尔滨:哈尔滨理工大学(硕士学位),2011.
    [72] XU T, MAO Q H, MAO Z P. Reserch and Application ofPolyphosphazenes[J]. New Chemical Materials,2010,38:22-25.
    [73] FUSHIMI T, ALLCOCK H R. Synthesis and Optical Properties of Sulfur-Containing Monomers and Cyclomatrix Polyphos-Phazenes[J]. DaltonTransaction,2010,39:5349-5355.
    [74]张文龙,赵成龙,蒋强等.聚磷腈接枝官能团的光电性能[J].功能材料,2012,24:3386-3388.
    [75] VENET C, PEARSON C, JOMBERT A S, et al. The Morphology andElectrical Conductivity of Single-Wall Carbon Nanotube Thin FilmsPrepared by the Langmuir–Blodgett Technique[J]. Colloids and Surfaces,2010,354:113-117.
    [76] ZHOU X Z, BOEY F, ZHANG H. Controlled Growth of Single-WalledCarbon Nanotubes on Patterned Substrates[J]. Chemical Society Reviews,2011,40:5221-5231.
    [77] Fang X X, Zhang H Q, Zhang F, et al. Real-Time Monitoring of Strand-Displacement DNA Amplification by a Contactless ElectrochemicalMicrosystem using Interdigitated Electrodes[J]. Lab on a Chip,2012,12:3190-3196.
    [78] CHRISTENSON C W, GREENLEE C, LYNN B, et al. InterdigitatedCoplanar Electrodes for Enhanced Sensitivity in a PhotorefractivePolymer[J]. Optics Letters,2011,36(17):3377-3379.
    [79] KLANK H, KUTTER J P and GESCHKE O. CO2-Laser Micromachiningand Back-End Processing for Rapid Production of PMMA-BasedMicrofluidic Systems[J]. Lab on a Chip,2002,2:242-246.
    [80]蒋强,王暄,李志远.共面插指电极结构电光聚合物薄膜器件电光系数的测量[J].光学学报,2013,33(9):09131001-09131005.
    [81] JIANG Q, WANG X, WANG Y, et al. Efficiency of Terahertz Detection inElectro-optic Polymer Sensor with Interdigitated Coplanar Electrodes[J].Chinese Optical Letter,2013,11(9):092301-092303.
    [82] EXTER M Van, GRISCHKOWSKY DR. Characterization of anOptoelectronic Terahertz Beam System[J]. Microwave Theory andTechniques,1990,38:1684-1691.
    [83] WITHAYACHUMNANKUL W, FERGUSON B, RAINSFORD T, et al.Simple Material Parameter Estimation via Terahertz Time-DomainSpectroscopy[J]. Electronics Letter,2005,41:800-801.
    [84] NASHIMA S, MORIKAWA O, TAKATA K, et al. Measurement of OpticalProperties of Highly Doped Silicon by Terahertz Time Domain ReflectionSpectroscopy[J]. Applied Physics Letters,2001,79:3923-3925.
    [85] GRISCHKOWSKY D, KEIDING S, VAN EXTER M, et al. Far-InfraredTime-Domain Spectroscopy with Terahertz Beams of Dielectrics andSemiconductors[J]. Journal of the Optical Society of America B,1900,7:2006-2015.
    [86] VAN EXTER M and GRISCHKOWSKY D, Optical and ElectronicProperties of Doped Silicon from0.1to2THz[J]. Applied Physics Letters,1990,56:1694-1696.
    [87] NUSS M C, MANKIEWICH P M, O'MALLEY M L, et al. DynamicConductivity and Coherence Peak in YBa-{2}Cu-{3}O-{7}superconductors[J]. Physical Review Letter,1991,66:3305-3308.
    [88] GAO F, CARR L G, PORTER C D, et al. Quasiparticle Damping and theCoherence Peak in YBa-{2}Cu-{3} O-{7-δ}[J]. Physical Review B,1996,54:700-710.
    [89] CHEVILLE R A and GRISCHKOWSKY D. Far-Infrared Terahertz Time-Domain Spectroscopy of Flames[J]. Optics Letters,1995,20:1646-1648.
    [90] KIDA N, HANGYO M, and TONOUCHI M. Low-Energy ChargeDynamics in La0.7Ca0.3MnO3: THz Time-Domain SpectroscopicStudies[J]. Physical Review B,2000,62: R11965–R11968.
    [91] FISCHER B, WALTHER M, and JEPSEN P U. Far-Infrared VibrationalModes of DNA Components Studied by Terahertz Time-DomainSpectroscopy[J]. Physics in Medicine and Biology,2002,47:3807-3814.
    [92] LEAHY-HOPPA M R, FITCH M J, ZHENG X, et al. Wideband TerahertzSpectroscopy of Explosives[J]. Chemical Physics Letters,434:227-230.
    [93] JEON T I, KIM K J, KANG C, et al. Terahertz Conductivity of AnisotropicSingle Walled Carbon Nanotube Films[J]. Applied Physics Letters,2002,80:3403-3405.
    [94] LLOYDHUGHES J, RICHARDS T, SIRRINGHAUS H, et al. ChargeTrapping in Polymer Transistors Probed by Terahertz Spectroscopy andScanning Probe Potentiometry[J]. Applied Physics Letters,2002,89:112101-112103.
    [95] CLOTHIER R H and BOURNE N. Effects of THz Exposure on HumanPrimary Keratinocyte Differentiation and Viability[J]. Journal ofBiological Physics,2003,29:179-185.
    [96] LOFFLER T, SIEBERT K J, CZASCH S, et al. Terahertz Dark-FieldImaging of Biomedical Tissue[J]. Physics in Medicine and Biology,2002,47:3847-3852.
    [97] WOODWARD R M, WALLACE V P, ARNONE D D, et al. TerahertzPulsed Imaging of Skin Cancer in the Time and Frequency Domain[J].Journal of Biological Physics,2003,29:257-261.
    [98] ZHONG H, XU J, XIE X, et al. Nondestructive Defect Identification withTerahertz Ttime-of-Flight Tomography[J]. Sensors Journal, IEEE,2005,5:203-205.
    [99] FISCHER B, HOFFMANN M, HELM H, et al. Chemical Recognition inTerahertz Time-Domain Spectroscopy and Imaging[J]. SemiconductorScience and Technology,2005,20: S246-S253.
    [100] KAWASE K, OGAWA Y, and WATANABE Y. Non-DestructiveTerahertz Imaging of Illicit Drugs Using Spectral Fingerprints[J]. OpticsExpress,2003,11:2549-2554.
    [101] MELINGER J S, LAMAN N, HARSHA S S, et al. Line Narrowing ofTerahertz VibrationalModes for Organic Thin Polycrystalline Films withina Parallel Plate Waveguide[J]. Applied Physics Letters,2006,89:251110-251113.
    [102] CHEN H T, PADILLA W J, ZIDE J M, et al. Active Terahertz MetamaterialDevices[J]. Nature,2006,444:597-600.
    [103] ZHAO Y and GRISCHKOWSKY D. Terahertz Demonstrations ofEffectively Two-Dimensional Photonic Bandgap Structures[J]. OpticalLetter,2006,31:1534-1536.
    [104] BIRCH J R. The Far Infrared Optical Constants of Polyethylene[J].Infrared Physics,1990,30:195-197.
    [105] BIRCH J R and NICOL E A. The FIR Optical Constants of the PolymerTPX[J]. Infrared Physics,1984,24:573-575.
    [106] BIRCH J R. The Far-Infrared Optical Constants of Polypropylene, PTFEand Polystyrene[J]. Infrared Physics,1992,33:33-38.
    [107] CHANTRY G W, FLEMING J W, SMITH P M, et al. Far Infrared andMillimeter-Wave Absorption Spectra of Some Low-Loss polymers[J].Chemical Physics Letters,1971,10:473-477.
    [108] ARSCOTT S, GARE F, MOUNAIX P, et al. Terahertz Time-DomainSpectroscopy of Films Fabricated From SU-8[J]. Electronics Letter,1999,35:243-244.
    [109] ROMAN C, ICHIM O, SARGER L, et al. Terahertz DielectricCharacterization of Polymethacrylimide RigidFoam: The Perfect SheerPlate?[J]. Electronics Letter,2004,40:1167-1169.
    [110] JIN Y S, KIM G J, and JEON S G. Terahertz Dielectric Properties ofPolymers[J]. Journal of Korean Physical Society,2006,49:513-517.
    [111] NAFTALY M and MILES R E. Terahertz Time-Domain Spectroscopy forMaterial Characterization[J]. Proceedings of the IEEE,2007,95:1658-1665.
    [112]方容川.固体光谱学[M].合肥:中国科学技术大学出版社,2003:110-115.
    [113] DORNEY T D, BARANIUK R G, MITTLEMAN D M. Material ParameterEstimation with Terahertz Time-Domains Spectroscopy[J]. Joumal of theOptical Soeiety of Ameriea A-Optics Image Scienceand Vision,2001,18(7):1562-1571.
    [114] DUVILLARET L, GARET F, COUTAZ J L. Highly Precise Determinationof Optical Constrants and Sample Thickness in Terahertz Time-DomainSpectroscopy[J] Applied Optics,1999,38(2):409-415.
    [115] BOLIVAR P H, BRUCHERSEIFER M, RIVAS J G, et al. Measurement ofthe Dielectric Constant and Loss Tangent of High Dielectric-ConstantMaterials at Terahertz Frequencies[J]. Microwave Theory and Techniqu,2003,51:1062-1064.
    [116] CHAKRABORTY S, DEBNATH M, BANDYOPADHYAY S, et al.Moisture Content Determination of Different Polymers by Karl FischerTitration[J]. Rubber World,2007,236(4):12-14.
    [117] CAMACHO W, VALLES-LLUCH A, RIBES-GREUS A, et al. Determi-Nation of Moisture Content in Nylon6,6by Near-Infrared Spectroscopyand Chemometrics[J]. Journal of Applied Polymer Science,2003,87(13):2165-2170.
    [118] R. P.费曼, R. B.莱登, M.桑兹.费曼物理学讲义(第一卷)[M].上海:上海科学技术出版社,1983:289-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700